Temperature regulation growth of Au nanocrystals: from concave trisoctahedron to dendritic structures and their ultrasensitive SERS-based detection of lindane
A facile temperature regulation strategy is developed for fabrication of Au concave nanocrystals with specific shapes via seed-assisted growth at 25 °C or lower. It has been found that the reaction temperature, even with minor changes, can significantly influence the shape of the nanocrystals, which...
Saved in:
Published in | Journal of materials chemistry. C, Materials for optical and electronic devices Vol. 5; no. 39; pp. 10399 - 10405 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
2017
|
Online Access | Get full text |
ISSN | 2050-7526 2050-7534 |
DOI | 10.1039/C7TC03808A |
Cover
Abstract | A facile temperature regulation strategy is developed for fabrication of Au concave nanocrystals with specific shapes
via
seed-assisted growth at 25 °C or lower. It has been found that the reaction temperature, even with minor changes, can significantly influence the shape of the nanocrystals, which evolves from the concave trisoctahedral to calyptriform, coral and dendritic structures with the decrease of temperature from 25 °C to 5 °C. The size and optical absorbance spectra of the nanocrystals can be determined just by the addition amount of Au seeds. The formation of the Au concave nanocrystals is attributed to the preferential growth of the nuclei in 〈110〉 and 〈111〉 directions, along which the growth rates are of different temperature dependences. Importantly, the concave trisoctahedral and calyptriform Au nanocrystal-built films have exhibited strong surface enhanced Raman scattering (SERS) activity towards the lindane molecules, with the enhancement factor higher than 10
7
, due to their high density of sharp corners/edges or the tip effect. The Raman peak intensity
versus
lindane concentration is subject to a linear double logarithmic relation from 30 ppb to 300 ppm, which is attributed to the Freundlich adsorption of lindane molecules on the Au nanocrystals. This work provides not only a simple route for the fabrication of the Au nanocrystals with various specific structures but also efficient SERS substrates for trace detection of organochlorine pesticide residues. |
---|---|
AbstractList | A facile temperature regulation strategy is developed for fabrication of Au concave nanocrystals with specific shapes
via
seed-assisted growth at 25 °C or lower. It has been found that the reaction temperature, even with minor changes, can significantly influence the shape of the nanocrystals, which evolves from the concave trisoctahedral to calyptriform, coral and dendritic structures with the decrease of temperature from 25 °C to 5 °C. The size and optical absorbance spectra of the nanocrystals can be determined just by the addition amount of Au seeds. The formation of the Au concave nanocrystals is attributed to the preferential growth of the nuclei in 〈110〉 and 〈111〉 directions, along which the growth rates are of different temperature dependences. Importantly, the concave trisoctahedral and calyptriform Au nanocrystal-built films have exhibited strong surface enhanced Raman scattering (SERS) activity towards the lindane molecules, with the enhancement factor higher than 10
7
, due to their high density of sharp corners/edges or the tip effect. The Raman peak intensity
versus
lindane concentration is subject to a linear double logarithmic relation from 30 ppb to 300 ppm, which is attributed to the Freundlich adsorption of lindane molecules on the Au nanocrystals. This work provides not only a simple route for the fabrication of the Au nanocrystals with various specific structures but also efficient SERS substrates for trace detection of organochlorine pesticide residues. |
Author | Li, Yue Zhao, Qian Zhang, Hongwen Zhou, Xia Liu, Guangqiang Cai, Weiping |
Author_xml | – sequence: 1 givenname: Xia surname: Zhou fullname: Zhou, Xia organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 – sequence: 2 givenname: Qian surname: Zhao fullname: Zhao, Qian organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 – sequence: 3 givenname: Guangqiang surname: Liu fullname: Liu, Guangqiang organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 – sequence: 4 givenname: Hongwen surname: Zhang fullname: Zhang, Hongwen organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 – sequence: 5 givenname: Yue orcidid: 0000-0002-1202-4224 surname: Li fullname: Li, Yue organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 – sequence: 6 givenname: Weiping orcidid: 0000-0002-4515-6098 surname: Cai fullname: Cai, Weiping organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 |
BookMark | eNptkN9KwzAUxoNMcM7d-AS5Fqpp0qatd6PMPzAQ3LwuaZJukS4ZJ6myl_FZzaYoiOfmHA7f73yH7xyNrLMaocuUXKeEVTd1saoJK0k5O0FjSnKSFDnLRj8z5Wdo6v0riVWmvOTVGH2s9HanQYQBNAa9HnoRjLN4De49bLDr8GzAVlgnYe-D6P0t7sBtsXRWijeNAxjvZBAbrSBiwWGlrQITjMQ-wCAPhz0WVuGw0Qbw0AcQXlsfJZFfzp-XSRsXKoJBy6N5dO2NVcLqC3TaRVM9_e4T9HI3X9UPyeLp_rGeLRJJWRoSkbNKtlVZcdIJSnlRZEzKLmdtRVvGheIZoS3hLcmUTDNF01LotihEx3lFWsYmiHzdleC8B9010oRjEvFb0zcpaQ4RN78RR-TqD7IDsxWw_0_8CfjVgk8 |
CitedBy_id | crossref_primary_10_3390_nano11020304 crossref_primary_10_1007_s11468_024_02261_0 crossref_primary_10_1016_j_jallcom_2023_169875 crossref_primary_10_1016_j_jallcom_2024_177027 crossref_primary_10_1016_j_jallcom_2024_176313 crossref_primary_10_1016_j_jcis_2018_07_038 crossref_primary_10_1016_j_optmat_2020_110788 crossref_primary_10_1016_j_aca_2020_02_034 crossref_primary_10_1016_j_jes_2024_08_022 crossref_primary_10_3390_s22072649 crossref_primary_10_1016_j_snb_2022_131762 crossref_primary_10_1002_jrs_5519 crossref_primary_10_3390_nano8070560 crossref_primary_10_1016_j_snb_2019_04_153 crossref_primary_10_1039_D1CE00894C crossref_primary_10_1021_acssuschemeng_0c04821 crossref_primary_10_3390_ma11020239 crossref_primary_10_1016_j_apsusc_2020_147744 crossref_primary_10_1186_s11671_019_3117_5 crossref_primary_10_1039_D3CE00717K crossref_primary_10_1039_D4TC00908H crossref_primary_10_1039_D1DT02305E crossref_primary_10_1016_j_jcat_2024_115588 crossref_primary_10_1021_acs_jpclett_1c03535 crossref_primary_10_1039_D1DT01167G crossref_primary_10_1039_D0AN00999G crossref_primary_10_1016_j_jhazmat_2019_01_070 |
Cites_doi | 10.1021/cr100275d 10.1080/10807039.2014.883800 10.1039/b100521i 10.1557/mrs2005.100 10.1016/j.chemosphere.2006.12.021 10.1039/c1jm14296h 10.1021/acs.nanolett.5b01286 10.1002/anie.200604167 10.1002/anie.201105200 10.1021/jp000800w 10.1126/science.1077229 10.1039/C6TA07124D 10.1039/c3ta13450d 10.1002/anie.200802750 10.1002/adfm.200305068 10.1021/acsnano.5b07665 10.1039/c2jm32682e 10.1021/ja9059409 10.1021/ac503672f 10.1039/C4TA01120A 10.1021/ja106394k 10.1021/ja057946z 10.1016/j.jhazmat.2016.10.049 10.1039/C4CP00424H 10.1016/j.jhazmat.2013.01.026 10.1002/anie.201201557 10.1021/jp402833q 10.1021/ja105401p 10.1039/C4TC00078A 10.1002/anie.201205279 10.1063/1.2363193 10.1016/j.aca.2008.06.038 10.1039/C5TA08882H 10.1021/nn3048439 10.1021/am505245z 10.1002/chem.201000563 10.1039/C7TC00150A 10.1016/j.chemosphere.2013.12.022 10.1002/adma.200701293 10.1021/jp0516846 10.1021/ac102771w 10.1016/S0098-3004(00)00141-2 10.1039/C4NR01815J 10.1038/nmat2329 10.1021/ja309300d 10.1021/ar800041s 10.1021/nl3032235 10.1021/nl104347j 10.1021/ja300598u |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1039/C7TC03808A |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2050-7534 |
EndPage | 10405 |
ExternalDocumentID | 10_1039_C7TC03808A |
GroupedDBID | 0-7 0R~ 4.4 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH |
ID | FETCH-LOGICAL-c231t-a539cb98960fa2267743ccf53b92b36ad6402b06b04dc14d218aeb77af6690b33 |
ISSN | 2050-7526 |
IngestDate | Tue Jul 01 02:08:43 EDT 2025 Thu Apr 24 23:00:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c231t-a539cb98960fa2267743ccf53b92b36ad6402b06b04dc14d218aeb77af6690b33 |
ORCID | 0000-0002-4515-6098 0000-0002-1202-4224 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1039_C7TC03808A crossref_primary_10_1039_C7TC03808A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-00-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017-00-00 |
PublicationDecade | 2010 |
PublicationTitle | Journal of materials chemistry. C, Materials for optical and electronic devices |
PublicationYear | 2017 |
References | Butburee (C7TC03808A-(cit44)/*[position()=1]) 2014; 2 Perez-Juste (C7TC03808A-(cit29)/*[position()=1]) 2004; 14 He (C7TC03808A-(cit45)/*[position()=1]) 2013; 1 Hong (C7TC03808A-(cit10)/*[position()=1]) 2012; 134 Sun (C7TC03808A-(cit3)/*[position()=1]) 2002; 298 Li (C7TC03808A-(cit47)/*[position()=1]) 2017; 5 Xia (C7TC03808A-(cit16)/*[position()=1]) 2011; 50 Guerrini (C7TC03808A-(cit39)/*[position()=1]) 2008; 624 Proussevitch (C7TC03808A-(cit26)/*[position()=1]) 2001; 27 Jana (C7TC03808A-(cit1)/*[position()=1]) 2001 Mishra (C7TC03808A-(cit40)/*[position()=1]) 2006; 125 Camden (C7TC03808A-(cit43)/*[position()=1]) 2008; 41 Izquierdo-Lorenzo (C7TC03808A-(cit36)/*[position()=1]) 2013; 117 Lu (C7TC03808A-(cit18)/*[position()=1]) 2010; 132 Zhang (C7TC03808A-(cit20)/*[position()=1]) 2014; 6 Kang (C7TC03808A-(cit22)/*[position()=1]) 2013; 7 Zhang (C7TC03808A-(cit17)/*[position()=1]) 2011; 11 Lyu (C7TC03808A-(cit21)/*[position()=1]) 2010; 16 Murphy (C7TC03808A-(cit30)/*[position()=1]) 2005; 109 Liu (C7TC03808A-(cit19)/*[position()=1]) 2016; 4 Jang (C7TC03808A-(cit46)/*[position()=1]) 2014; 2 Zhao (C7TC03808A-(cit49)/*[position()=1]) 2017; 324 Zhang (C7TC03808A-(cit9)/*[position()=1]) 2015; 15 Xu (C7TC03808A-(cit34)/*[position()=1]) 2007; 68 Qin (C7TC03808A-(cit7)/*[position()=1]) 2012; 22 Zhang (C7TC03808A-(cit23)/*[position()=1]) 2013; 52 Ali (C7TC03808A-(cit35)/*[position()=1]) 2014; 102 Lai (C7TC03808A-(cit8)/*[position()=1]) 2016; 4 Liu (C7TC03808A-(cit48)/*[position()=1]) 2013; 248 Rycenga (C7TC03808A-(cit11)/*[position()=1]) 2011; 111 Haes (C7TC03808A-(cit12)/*[position()=1]) 2005; 30 Wang (C7TC03808A-(cit27)/*[position()=1]) 2008; 20 Kubackova (C7TC03808A-(cit37)/*[position()=1]) 2014; 16 Zhang (C7TC03808A-(cit6)/*[position()=1]) 2010; 132 Lopez-Tocon (C7TC03808A-(cit32)/*[position()=1]) 2011; 83 Li (C7TC03808A-(cit4)/*[position()=1]) 2007; 46 Wang (C7TC03808A-(cit28)/*[position()=1]) 2000; 104 Kleinman (C7TC03808A-(cit42)/*[position()=1]) 2013; 135 Peluso (C7TC03808A-(cit33)/*[position()=1]) 2014; 20 Joo (C7TC03808A-(cit14)/*[position()=1]) 2009; 8 Rycenga (C7TC03808A-(cit15)/*[position()=1]) 2012; 12 Liu (C7TC03808A-(cit50)/*[position()=1]) 2012; 22 Zhang (C7TC03808A-(cit13)/*[position()=1]) 2012; 51 Garcia-Negrete (C7TC03808A-(cit24)/*[position()=1]) 2014; 6 Zhang (C7TC03808A-(cit31)/*[position()=1]) 2016; 10 Leng (C7TC03808A-(cit41)/*[position()=1]) 2006; 128 Ma (C7TC03808A-(cit25)/*[position()=1]) 2008; 47 Huang (C7TC03808A-(cit5)/*[position()=1]) 2009; 131 Kubackova (C7TC03808A-(cit38)/*[position()=1]) 2015; 87 Zhang (C7TC03808A-(cit2)/*[position()=1]) 2013; 8 |
References_xml | – volume: 111 start-page: 3669 year: 2011 ident: C7TC03808A-(cit11)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr100275d – volume: 20 start-page: 1177 year: 2014 ident: C7TC03808A-(cit33)/*[position()=1] publication-title: Hum. Ecol. Risk Assess. doi: 10.1080/10807039.2014.883800 – start-page: 617 year: 2001 ident: C7TC03808A-(cit1)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b100521i – volume: 30 start-page: 368 year: 2005 ident: C7TC03808A-(cit12)/*[position()=1] publication-title: MRS Bull. doi: 10.1557/mrs2005.100 – volume: 68 start-page: 126 year: 2007 ident: C7TC03808A-(cit34)/*[position()=1] publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.12.021 – volume: 22 start-page: 3177 year: 2012 ident: C7TC03808A-(cit50)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c1jm14296h – volume: 15 start-page: 4161 year: 2015 ident: C7TC03808A-(cit9)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01286 – volume: 46 start-page: 3264 year: 2007 ident: C7TC03808A-(cit4)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200604167 – volume: 50 start-page: 12542 year: 2011 ident: C7TC03808A-(cit16)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201105200 – volume: 104 start-page: 5417 year: 2000 ident: C7TC03808A-(cit28)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp000800w – volume: 298 start-page: 2176 year: 2002 ident: C7TC03808A-(cit3)/*[position()=1] publication-title: Science doi: 10.1126/science.1077229 – volume: 4 start-page: 16690 year: 2016 ident: C7TC03808A-(cit19)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07124D – volume: 1 start-page: 15010 year: 2013 ident: C7TC03808A-(cit45)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta13450d – volume: 47 start-page: 8901 year: 2008 ident: C7TC03808A-(cit25)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200802750 – volume: 14 start-page: 571 year: 2004 ident: C7TC03808A-(cit29)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200305068 – volume: 10 start-page: 2607 year: 2016 ident: C7TC03808A-(cit31)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b07665 – volume: 22 start-page: 14861 year: 2012 ident: C7TC03808A-(cit7)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm32682e – volume: 131 start-page: 13916 year: 2009 ident: C7TC03808A-(cit5)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9059409 – volume: 87 start-page: 663 year: 2015 ident: C7TC03808A-(cit38)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac503672f – volume: 8 start-page: 86 year: 2013 ident: C7TC03808A-(cit2)/*[position()=1] publication-title: Nat. Nanotechnol. – volume: 2 start-page: 12776 year: 2014 ident: C7TC03808A-(cit44)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01120A – volume: 132 start-page: 14012 year: 2010 ident: C7TC03808A-(cit6)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja106394k – volume: 128 start-page: 3492 year: 2006 ident: C7TC03808A-(cit41)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja057946z – volume: 324 start-page: 194 year: 2017 ident: C7TC03808A-(cit49)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.10.049 – volume: 16 start-page: 11461 year: 2014 ident: C7TC03808A-(cit37)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP00424H – volume: 248 start-page: 435 year: 2013 ident: C7TC03808A-(cit48)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.01.026 – volume: 51 start-page: 7656 year: 2012 ident: C7TC03808A-(cit13)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201201557 – volume: 117 start-page: 16203 year: 2013 ident: C7TC03808A-(cit36)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp402833q – volume: 132 start-page: 14546 year: 2010 ident: C7TC03808A-(cit18)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105401p – volume: 2 start-page: 4051 year: 2014 ident: C7TC03808A-(cit46)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C4TC00078A – volume: 52 start-page: 645 year: 2013 ident: C7TC03808A-(cit23)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201205279 – volume: 125 start-page: 164327 year: 2006 ident: C7TC03808A-(cit40)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2363193 – volume: 624 start-page: 286 year: 2008 ident: C7TC03808A-(cit39)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2008.06.038 – volume: 4 start-page: 807 year: 2016 ident: C7TC03808A-(cit8)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08882H – volume: 7 start-page: 645 year: 2013 ident: C7TC03808A-(cit22)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn3048439 – volume: 6 start-page: 17255 year: 2014 ident: C7TC03808A-(cit20)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am505245z – volume: 16 start-page: 14167 year: 2010 ident: C7TC03808A-(cit21)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201000563 – volume: 5 start-page: 3229 year: 2017 ident: C7TC03808A-(cit47)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C7TC00150A – volume: 102 start-page: 68 year: 2014 ident: C7TC03808A-(cit35)/*[position()=1] publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.12.022 – volume: 20 start-page: 820 year: 2008 ident: C7TC03808A-(cit27)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200701293 – volume: 109 start-page: 13857 year: 2005 ident: C7TC03808A-(cit30)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp0516846 – volume: 83 start-page: 2518 year: 2011 ident: C7TC03808A-(cit32)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac102771w – volume: 27 start-page: 441 year: 2001 ident: C7TC03808A-(cit26)/*[position()=1] publication-title: Comput. Geosci. doi: 10.1016/S0098-3004(00)00141-2 – volume: 6 start-page: 11090 year: 2014 ident: C7TC03808A-(cit24)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR01815J – volume: 8 start-page: 126 year: 2009 ident: C7TC03808A-(cit14)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2329 – volume: 135 start-page: 301 year: 2013 ident: C7TC03808A-(cit42)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309300d – volume: 41 start-page: 1653 year: 2008 ident: C7TC03808A-(cit43)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar800041s – volume: 12 start-page: 6218 year: 2012 ident: C7TC03808A-(cit15)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl3032235 – volume: 11 start-page: 898 year: 2011 ident: C7TC03808A-(cit17)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl104347j – volume: 134 start-page: 4565 year: 2012 ident: C7TC03808A-(cit10)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja300598u |
SSID | ssj0000816869 |
Score | 2.2794917 |
Snippet | A facile temperature regulation strategy is developed for fabrication of Au concave nanocrystals with specific shapes
via
seed-assisted growth at 25 °C or... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 10399 |
Title | Temperature regulation growth of Au nanocrystals: from concave trisoctahedron to dendritic structures and their ultrasensitive SERS-based detection of lindane |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZKV0hwQLCAWF6yBBcUZXHzDreqKipoQYLtSr1VfqVbqUqWNBWCH8Ov5AcwfiRx6R4WLlHl2o7q-WrPjGe-Qeg1EaSgPIj9HM4uP4oD6oOWIXwBZhiJaZaEUrkGPn1OZhfRx0W8GAx-O1FLu4ad8p_X5pX8j1ShDeSqsmT_QbLdpNAAn0G-8AQJw_NmMpag9BpSZK82ReWVNFdgWjeXWsfceSUtK17_ACVwo6PfdD4JGMFclR1qVAVC3tBLKWp1a1B5sA0JXf3AM8yyMPW2jbJc195u09Rw7pVbE3J0Pv167quDUMDARvJW_dwoS7_cjzLqNV9Qks3qeLwtN3fqTUzmUPuNin6srpqOy8Ap1yOk3t16l3e1U2MXa9o3Ue0B_uJg_2yte8Ffolx9g_bVgct8VpWr7zYzzvpBTMKn2SgBVMRP48BSartt1lFqd_rYAbShULLbtroPzx0dAGxUnQx-eMBAR0VcnM4nJMxI1lG09izef52uXcyjvu0P82U_9hY6CtJ0FA_R0Xg6_3DW-QZ1MRRdjbH7aS2zbpi_7SdwdClHKZrfR_esTPHYQPMBGsjyGN11OC6P0W0dY8y3D9EvB664hys2cMVVgcc77ML1HVZgxRaseB-suKlwB1bcgxUDWrAGK94HK-7BijuwqrdasD5CF--n88nMt-VBfA5GSePTOMw5yzOwwQsKVgQYMiHnRRyyPGBhQkUSkYCRhJFI8FEkQJmlkqUpLZIkJywMH6NhWZXyCcKkKITMIjAdOI-CEWMggDSVPMlpUGQkOkFv2oVecsudr0q4bJaHUj1Br7q-V4Yx5ppeT2_U6xm6o6BuXH7P0RDWUr4AJbhhLy1m_gClQrxM |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+regulation+growth+of+Au+nanocrystals%3A+from+concave+trisoctahedron+to+dendritic+structures+and+their+ultrasensitive+SERS-based+detection+of+lindane&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Zhou%2C+Xia&rft.au=Zhao%2C+Qian&rft.au=Liu%2C+Guangqiang&rft.au=Zhang%2C+Hongwen&rft.date=2017&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=5&rft.issue=39&rft.spage=10399&rft.epage=10405&rft_id=info:doi/10.1039%2FC7TC03808A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7TC03808A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon |