Temperature regulation growth of Au nanocrystals: from concave trisoctahedron to dendritic structures and their ultrasensitive SERS-based detection of lindane

A facile temperature regulation strategy is developed for fabrication of Au concave nanocrystals with specific shapes via seed-assisted growth at 25 °C or lower. It has been found that the reaction temperature, even with minor changes, can significantly influence the shape of the nanocrystals, which...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 5; no. 39; pp. 10399 - 10405
Main Authors Zhou, Xia, Zhao, Qian, Liu, Guangqiang, Zhang, Hongwen, Li, Yue, Cai, Weiping
Format Journal Article
LanguageEnglish
Published 2017
Online AccessGet full text
ISSN2050-7526
2050-7534
DOI10.1039/C7TC03808A

Cover

Abstract A facile temperature regulation strategy is developed for fabrication of Au concave nanocrystals with specific shapes via seed-assisted growth at 25 °C or lower. It has been found that the reaction temperature, even with minor changes, can significantly influence the shape of the nanocrystals, which evolves from the concave trisoctahedral to calyptriform, coral and dendritic structures with the decrease of temperature from 25 °C to 5 °C. The size and optical absorbance spectra of the nanocrystals can be determined just by the addition amount of Au seeds. The formation of the Au concave nanocrystals is attributed to the preferential growth of the nuclei in 〈110〉 and 〈111〉 directions, along which the growth rates are of different temperature dependences. Importantly, the concave trisoctahedral and calyptriform Au nanocrystal-built films have exhibited strong surface enhanced Raman scattering (SERS) activity towards the lindane molecules, with the enhancement factor higher than 10 7 , due to their high density of sharp corners/edges or the tip effect. The Raman peak intensity versus lindane concentration is subject to a linear double logarithmic relation from 30 ppb to 300 ppm, which is attributed to the Freundlich adsorption of lindane molecules on the Au nanocrystals. This work provides not only a simple route for the fabrication of the Au nanocrystals with various specific structures but also efficient SERS substrates for trace detection of organochlorine pesticide residues.
AbstractList A facile temperature regulation strategy is developed for fabrication of Au concave nanocrystals with specific shapes via seed-assisted growth at 25 °C or lower. It has been found that the reaction temperature, even with minor changes, can significantly influence the shape of the nanocrystals, which evolves from the concave trisoctahedral to calyptriform, coral and dendritic structures with the decrease of temperature from 25 °C to 5 °C. The size and optical absorbance spectra of the nanocrystals can be determined just by the addition amount of Au seeds. The formation of the Au concave nanocrystals is attributed to the preferential growth of the nuclei in 〈110〉 and 〈111〉 directions, along which the growth rates are of different temperature dependences. Importantly, the concave trisoctahedral and calyptriform Au nanocrystal-built films have exhibited strong surface enhanced Raman scattering (SERS) activity towards the lindane molecules, with the enhancement factor higher than 10 7 , due to their high density of sharp corners/edges or the tip effect. The Raman peak intensity versus lindane concentration is subject to a linear double logarithmic relation from 30 ppb to 300 ppm, which is attributed to the Freundlich adsorption of lindane molecules on the Au nanocrystals. This work provides not only a simple route for the fabrication of the Au nanocrystals with various specific structures but also efficient SERS substrates for trace detection of organochlorine pesticide residues.
Author Li, Yue
Zhao, Qian
Zhang, Hongwen
Zhou, Xia
Liu, Guangqiang
Cai, Weiping
Author_xml – sequence: 1
  givenname: Xia
  surname: Zhou
  fullname: Zhou, Xia
  organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031
– sequence: 2
  givenname: Qian
  surname: Zhao
  fullname: Zhao, Qian
  organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031
– sequence: 3
  givenname: Guangqiang
  surname: Liu
  fullname: Liu, Guangqiang
  organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031
– sequence: 4
  givenname: Hongwen
  surname: Zhang
  fullname: Zhang, Hongwen
  organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031
– sequence: 5
  givenname: Yue
  orcidid: 0000-0002-1202-4224
  surname: Li
  fullname: Li, Yue
  organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031
– sequence: 6
  givenname: Weiping
  orcidid: 0000-0002-4515-6098
  surname: Cai
  fullname: Cai, Weiping
  organization: Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031
BookMark eNptkN9KwzAUxoNMcM7d-AS5Fqpp0qatd6PMPzAQ3LwuaZJukS4ZJ6myl_FZzaYoiOfmHA7f73yH7xyNrLMaocuUXKeEVTd1saoJK0k5O0FjSnKSFDnLRj8z5Wdo6v0riVWmvOTVGH2s9HanQYQBNAa9HnoRjLN4De49bLDr8GzAVlgnYe-D6P0t7sBtsXRWijeNAxjvZBAbrSBiwWGlrQITjMQ-wCAPhz0WVuGw0Qbw0AcQXlsfJZFfzp-XSRsXKoJBy6N5dO2NVcLqC3TaRVM9_e4T9HI3X9UPyeLp_rGeLRJJWRoSkbNKtlVZcdIJSnlRZEzKLmdtRVvGheIZoS3hLcmUTDNF01LotihEx3lFWsYmiHzdleC8B9010oRjEvFb0zcpaQ4RN78RR-TqD7IDsxWw_0_8CfjVgk8
CitedBy_id crossref_primary_10_3390_nano11020304
crossref_primary_10_1007_s11468_024_02261_0
crossref_primary_10_1016_j_jallcom_2023_169875
crossref_primary_10_1016_j_jallcom_2024_177027
crossref_primary_10_1016_j_jallcom_2024_176313
crossref_primary_10_1016_j_jcis_2018_07_038
crossref_primary_10_1016_j_optmat_2020_110788
crossref_primary_10_1016_j_aca_2020_02_034
crossref_primary_10_1016_j_jes_2024_08_022
crossref_primary_10_3390_s22072649
crossref_primary_10_1016_j_snb_2022_131762
crossref_primary_10_1002_jrs_5519
crossref_primary_10_3390_nano8070560
crossref_primary_10_1016_j_snb_2019_04_153
crossref_primary_10_1039_D1CE00894C
crossref_primary_10_1021_acssuschemeng_0c04821
crossref_primary_10_3390_ma11020239
crossref_primary_10_1016_j_apsusc_2020_147744
crossref_primary_10_1186_s11671_019_3117_5
crossref_primary_10_1039_D3CE00717K
crossref_primary_10_1039_D4TC00908H
crossref_primary_10_1039_D1DT02305E
crossref_primary_10_1016_j_jcat_2024_115588
crossref_primary_10_1021_acs_jpclett_1c03535
crossref_primary_10_1039_D1DT01167G
crossref_primary_10_1039_D0AN00999G
crossref_primary_10_1016_j_jhazmat_2019_01_070
Cites_doi 10.1021/cr100275d
10.1080/10807039.2014.883800
10.1039/b100521i
10.1557/mrs2005.100
10.1016/j.chemosphere.2006.12.021
10.1039/c1jm14296h
10.1021/acs.nanolett.5b01286
10.1002/anie.200604167
10.1002/anie.201105200
10.1021/jp000800w
10.1126/science.1077229
10.1039/C6TA07124D
10.1039/c3ta13450d
10.1002/anie.200802750
10.1002/adfm.200305068
10.1021/acsnano.5b07665
10.1039/c2jm32682e
10.1021/ja9059409
10.1021/ac503672f
10.1039/C4TA01120A
10.1021/ja106394k
10.1021/ja057946z
10.1016/j.jhazmat.2016.10.049
10.1039/C4CP00424H
10.1016/j.jhazmat.2013.01.026
10.1002/anie.201201557
10.1021/jp402833q
10.1021/ja105401p
10.1039/C4TC00078A
10.1002/anie.201205279
10.1063/1.2363193
10.1016/j.aca.2008.06.038
10.1039/C5TA08882H
10.1021/nn3048439
10.1021/am505245z
10.1002/chem.201000563
10.1039/C7TC00150A
10.1016/j.chemosphere.2013.12.022
10.1002/adma.200701293
10.1021/jp0516846
10.1021/ac102771w
10.1016/S0098-3004(00)00141-2
10.1039/C4NR01815J
10.1038/nmat2329
10.1021/ja309300d
10.1021/ar800041s
10.1021/nl3032235
10.1021/nl104347j
10.1021/ja300598u
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1039/C7TC03808A
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 10405
ExternalDocumentID 10_1039_C7TC03808A
GroupedDBID 0-7
0R~
4.4
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
ID FETCH-LOGICAL-c231t-a539cb98960fa2267743ccf53b92b36ad6402b06b04dc14d218aeb77af6690b33
ISSN 2050-7526
IngestDate Tue Jul 01 02:08:43 EDT 2025
Thu Apr 24 23:00:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c231t-a539cb98960fa2267743ccf53b92b36ad6402b06b04dc14d218aeb77af6690b33
ORCID 0000-0002-4515-6098
0000-0002-1202-4224
PageCount 7
ParticipantIDs crossref_citationtrail_10_1039_C7TC03808A
crossref_primary_10_1039_C7TC03808A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017-00-00
PublicationDecade 2010
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2017
References Butburee (C7TC03808A-(cit44)/*[position()=1]) 2014; 2
Perez-Juste (C7TC03808A-(cit29)/*[position()=1]) 2004; 14
He (C7TC03808A-(cit45)/*[position()=1]) 2013; 1
Hong (C7TC03808A-(cit10)/*[position()=1]) 2012; 134
Sun (C7TC03808A-(cit3)/*[position()=1]) 2002; 298
Li (C7TC03808A-(cit47)/*[position()=1]) 2017; 5
Xia (C7TC03808A-(cit16)/*[position()=1]) 2011; 50
Guerrini (C7TC03808A-(cit39)/*[position()=1]) 2008; 624
Proussevitch (C7TC03808A-(cit26)/*[position()=1]) 2001; 27
Jana (C7TC03808A-(cit1)/*[position()=1]) 2001
Mishra (C7TC03808A-(cit40)/*[position()=1]) 2006; 125
Camden (C7TC03808A-(cit43)/*[position()=1]) 2008; 41
Izquierdo-Lorenzo (C7TC03808A-(cit36)/*[position()=1]) 2013; 117
Lu (C7TC03808A-(cit18)/*[position()=1]) 2010; 132
Zhang (C7TC03808A-(cit20)/*[position()=1]) 2014; 6
Kang (C7TC03808A-(cit22)/*[position()=1]) 2013; 7
Zhang (C7TC03808A-(cit17)/*[position()=1]) 2011; 11
Lyu (C7TC03808A-(cit21)/*[position()=1]) 2010; 16
Murphy (C7TC03808A-(cit30)/*[position()=1]) 2005; 109
Liu (C7TC03808A-(cit19)/*[position()=1]) 2016; 4
Jang (C7TC03808A-(cit46)/*[position()=1]) 2014; 2
Zhao (C7TC03808A-(cit49)/*[position()=1]) 2017; 324
Zhang (C7TC03808A-(cit9)/*[position()=1]) 2015; 15
Xu (C7TC03808A-(cit34)/*[position()=1]) 2007; 68
Qin (C7TC03808A-(cit7)/*[position()=1]) 2012; 22
Zhang (C7TC03808A-(cit23)/*[position()=1]) 2013; 52
Ali (C7TC03808A-(cit35)/*[position()=1]) 2014; 102
Lai (C7TC03808A-(cit8)/*[position()=1]) 2016; 4
Liu (C7TC03808A-(cit48)/*[position()=1]) 2013; 248
Rycenga (C7TC03808A-(cit11)/*[position()=1]) 2011; 111
Haes (C7TC03808A-(cit12)/*[position()=1]) 2005; 30
Wang (C7TC03808A-(cit27)/*[position()=1]) 2008; 20
Kubackova (C7TC03808A-(cit37)/*[position()=1]) 2014; 16
Zhang (C7TC03808A-(cit6)/*[position()=1]) 2010; 132
Lopez-Tocon (C7TC03808A-(cit32)/*[position()=1]) 2011; 83
Li (C7TC03808A-(cit4)/*[position()=1]) 2007; 46
Wang (C7TC03808A-(cit28)/*[position()=1]) 2000; 104
Kleinman (C7TC03808A-(cit42)/*[position()=1]) 2013; 135
Peluso (C7TC03808A-(cit33)/*[position()=1]) 2014; 20
Joo (C7TC03808A-(cit14)/*[position()=1]) 2009; 8
Rycenga (C7TC03808A-(cit15)/*[position()=1]) 2012; 12
Liu (C7TC03808A-(cit50)/*[position()=1]) 2012; 22
Zhang (C7TC03808A-(cit13)/*[position()=1]) 2012; 51
Garcia-Negrete (C7TC03808A-(cit24)/*[position()=1]) 2014; 6
Zhang (C7TC03808A-(cit31)/*[position()=1]) 2016; 10
Leng (C7TC03808A-(cit41)/*[position()=1]) 2006; 128
Ma (C7TC03808A-(cit25)/*[position()=1]) 2008; 47
Huang (C7TC03808A-(cit5)/*[position()=1]) 2009; 131
Kubackova (C7TC03808A-(cit38)/*[position()=1]) 2015; 87
Zhang (C7TC03808A-(cit2)/*[position()=1]) 2013; 8
References_xml – volume: 111
  start-page: 3669
  year: 2011
  ident: C7TC03808A-(cit11)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr100275d
– volume: 20
  start-page: 1177
  year: 2014
  ident: C7TC03808A-(cit33)/*[position()=1]
  publication-title: Hum. Ecol. Risk Assess.
  doi: 10.1080/10807039.2014.883800
– start-page: 617
  year: 2001
  ident: C7TC03808A-(cit1)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b100521i
– volume: 30
  start-page: 368
  year: 2005
  ident: C7TC03808A-(cit12)/*[position()=1]
  publication-title: MRS Bull.
  doi: 10.1557/mrs2005.100
– volume: 68
  start-page: 126
  year: 2007
  ident: C7TC03808A-(cit34)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.12.021
– volume: 22
  start-page: 3177
  year: 2012
  ident: C7TC03808A-(cit50)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm14296h
– volume: 15
  start-page: 4161
  year: 2015
  ident: C7TC03808A-(cit9)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01286
– volume: 46
  start-page: 3264
  year: 2007
  ident: C7TC03808A-(cit4)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200604167
– volume: 50
  start-page: 12542
  year: 2011
  ident: C7TC03808A-(cit16)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201105200
– volume: 104
  start-page: 5417
  year: 2000
  ident: C7TC03808A-(cit28)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp000800w
– volume: 298
  start-page: 2176
  year: 2002
  ident: C7TC03808A-(cit3)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1077229
– volume: 4
  start-page: 16690
  year: 2016
  ident: C7TC03808A-(cit19)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07124D
– volume: 1
  start-page: 15010
  year: 2013
  ident: C7TC03808A-(cit45)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta13450d
– volume: 47
  start-page: 8901
  year: 2008
  ident: C7TC03808A-(cit25)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200802750
– volume: 14
  start-page: 571
  year: 2004
  ident: C7TC03808A-(cit29)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200305068
– volume: 10
  start-page: 2607
  year: 2016
  ident: C7TC03808A-(cit31)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07665
– volume: 22
  start-page: 14861
  year: 2012
  ident: C7TC03808A-(cit7)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm32682e
– volume: 131
  start-page: 13916
  year: 2009
  ident: C7TC03808A-(cit5)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9059409
– volume: 87
  start-page: 663
  year: 2015
  ident: C7TC03808A-(cit38)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac503672f
– volume: 8
  start-page: 86
  year: 2013
  ident: C7TC03808A-(cit2)/*[position()=1]
  publication-title: Nat. Nanotechnol.
– volume: 2
  start-page: 12776
  year: 2014
  ident: C7TC03808A-(cit44)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01120A
– volume: 132
  start-page: 14012
  year: 2010
  ident: C7TC03808A-(cit6)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja106394k
– volume: 128
  start-page: 3492
  year: 2006
  ident: C7TC03808A-(cit41)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja057946z
– volume: 324
  start-page: 194
  year: 2017
  ident: C7TC03808A-(cit49)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.10.049
– volume: 16
  start-page: 11461
  year: 2014
  ident: C7TC03808A-(cit37)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP00424H
– volume: 248
  start-page: 435
  year: 2013
  ident: C7TC03808A-(cit48)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.01.026
– volume: 51
  start-page: 7656
  year: 2012
  ident: C7TC03808A-(cit13)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201201557
– volume: 117
  start-page: 16203
  year: 2013
  ident: C7TC03808A-(cit36)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp402833q
– volume: 132
  start-page: 14546
  year: 2010
  ident: C7TC03808A-(cit18)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105401p
– volume: 2
  start-page: 4051
  year: 2014
  ident: C7TC03808A-(cit46)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC00078A
– volume: 52
  start-page: 645
  year: 2013
  ident: C7TC03808A-(cit23)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201205279
– volume: 125
  start-page: 164327
  year: 2006
  ident: C7TC03808A-(cit40)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2363193
– volume: 624
  start-page: 286
  year: 2008
  ident: C7TC03808A-(cit39)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2008.06.038
– volume: 4
  start-page: 807
  year: 2016
  ident: C7TC03808A-(cit8)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA08882H
– volume: 7
  start-page: 645
  year: 2013
  ident: C7TC03808A-(cit22)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn3048439
– volume: 6
  start-page: 17255
  year: 2014
  ident: C7TC03808A-(cit20)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am505245z
– volume: 16
  start-page: 14167
  year: 2010
  ident: C7TC03808A-(cit21)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201000563
– volume: 5
  start-page: 3229
  year: 2017
  ident: C7TC03808A-(cit47)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC00150A
– volume: 102
  start-page: 68
  year: 2014
  ident: C7TC03808A-(cit35)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.12.022
– volume: 20
  start-page: 820
  year: 2008
  ident: C7TC03808A-(cit27)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200701293
– volume: 109
  start-page: 13857
  year: 2005
  ident: C7TC03808A-(cit30)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0516846
– volume: 83
  start-page: 2518
  year: 2011
  ident: C7TC03808A-(cit32)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac102771w
– volume: 27
  start-page: 441
  year: 2001
  ident: C7TC03808A-(cit26)/*[position()=1]
  publication-title: Comput. Geosci.
  doi: 10.1016/S0098-3004(00)00141-2
– volume: 6
  start-page: 11090
  year: 2014
  ident: C7TC03808A-(cit24)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR01815J
– volume: 8
  start-page: 126
  year: 2009
  ident: C7TC03808A-(cit14)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2329
– volume: 135
  start-page: 301
  year: 2013
  ident: C7TC03808A-(cit42)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja309300d
– volume: 41
  start-page: 1653
  year: 2008
  ident: C7TC03808A-(cit43)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar800041s
– volume: 12
  start-page: 6218
  year: 2012
  ident: C7TC03808A-(cit15)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl3032235
– volume: 11
  start-page: 898
  year: 2011
  ident: C7TC03808A-(cit17)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl104347j
– volume: 134
  start-page: 4565
  year: 2012
  ident: C7TC03808A-(cit10)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja300598u
SSID ssj0000816869
Score 2.2794917
Snippet A facile temperature regulation strategy is developed for fabrication of Au concave nanocrystals with specific shapes via seed-assisted growth at 25 °C or...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 10399
Title Temperature regulation growth of Au nanocrystals: from concave trisoctahedron to dendritic structures and their ultrasensitive SERS-based detection of lindane
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZKV0hwQLCAWF6yBBcUZXHzDreqKipoQYLtSr1VfqVbqUqWNBWCH8Ov5AcwfiRx6R4WLlHl2o7q-WrPjGe-Qeg1EaSgPIj9HM4uP4oD6oOWIXwBZhiJaZaEUrkGPn1OZhfRx0W8GAx-O1FLu4ad8p_X5pX8j1ShDeSqsmT_QbLdpNAAn0G-8AQJw_NmMpag9BpSZK82ReWVNFdgWjeXWsfceSUtK17_ACVwo6PfdD4JGMFclR1qVAVC3tBLKWp1a1B5sA0JXf3AM8yyMPW2jbJc195u09Rw7pVbE3J0Pv167quDUMDARvJW_dwoS7_cjzLqNV9Qks3qeLwtN3fqTUzmUPuNin6srpqOy8Ap1yOk3t16l3e1U2MXa9o3Ue0B_uJg_2yte8Ffolx9g_bVgct8VpWr7zYzzvpBTMKn2SgBVMRP48BSartt1lFqd_rYAbShULLbtroPzx0dAGxUnQx-eMBAR0VcnM4nJMxI1lG09izef52uXcyjvu0P82U_9hY6CtJ0FA_R0Xg6_3DW-QZ1MRRdjbH7aS2zbpi_7SdwdClHKZrfR_esTPHYQPMBGsjyGN11OC6P0W0dY8y3D9EvB664hys2cMVVgcc77ML1HVZgxRaseB-suKlwB1bcgxUDWrAGK94HK-7BijuwqrdasD5CF--n88nMt-VBfA5GSePTOMw5yzOwwQsKVgQYMiHnRRyyPGBhQkUSkYCRhJFI8FEkQJmlkqUpLZIkJywMH6NhWZXyCcKkKITMIjAdOI-CEWMggDSVPMlpUGQkOkFv2oVecsudr0q4bJaHUj1Br7q-V4Yx5ppeT2_U6xm6o6BuXH7P0RDWUr4AJbhhLy1m_gClQrxM
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+regulation+growth+of+Au+nanocrystals%3A+from+concave+trisoctahedron+to+dendritic+structures+and+their+ultrasensitive+SERS-based+detection+of+lindane&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Zhou%2C+Xia&rft.au=Zhao%2C+Qian&rft.au=Liu%2C+Guangqiang&rft.au=Zhang%2C+Hongwen&rft.date=2017&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=5&rft.issue=39&rft.spage=10399&rft.epage=10405&rft_id=info:doi/10.1039%2FC7TC03808A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7TC03808A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon