Time, temperature and concentration resolved Yb3+ luminescence study in co-sputtered Cu2-xGaxS2 (0.1 < x < 1.6) thin films with a Cu–Ga composition gradient
The broad class of Cu(Al,Ga,In) (S,Se,Te)2 solar absorber materials when doped with Yb3+ are interesting for thin film based luminescent solar concentrator (LSC's) application. In this work the strong and broad absorption properties of co-sputtered CuGaS2 (CGS) thin films combined with the lumi...
Saved in:
Published in | Optical materials Vol. 157; p. 116220 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0925-3467 |
DOI | 10.1016/j.optmat.2024.116220 |
Cover
Abstract | The broad class of Cu(Al,Ga,In) (S,Se,Te)2 solar absorber materials when doped with Yb3+ are interesting for thin film based luminescent solar concentrator (LSC's) application. In this work the strong and broad absorption properties of co-sputtered CuGaS2 (CGS) thin films combined with the luminescent properties of Yb are reported. Energy-dispersive x-ray spectroscopy (EDS), x-ray diffraction, transmission, excitation, and temperature dependent emission as well as radiative lifetime measurements are performed on thin films with varying Cu:Ga ratios and Yb3+ concentrations. It is found that Yb3+ emission can be broadly sensitized by the host in the range of 200–600 nm. A lower Cu:Ga ratio, crystallinity and post annealing in air provides a positive impact on the sensitization of Yb3+ emission. The temperature dependent time integrated decay curves show a clear thermal energy barrier of about 0.2 eV. Because the exponential tail, with a lifetime of 110 μs, is constant with temperature, we conclude that the barrier is connected to the thermal release of electrons trapped at the Yb2+ ground state. The low energy transfer efficiency from the host to the Yb dopant is attributed to efficient non-radiative electron-hole pair recombination. The prospects and design criteria of Cu(Al,Ga,In) (S,Se,Te)2 solar absorber materials for LSC applications is the further subject of the discussion.
[Display omitted]
•CuGaS2 host sensitized Yb3+ emission in sputtered thin films have less than 0.01 % IQE.•Yb3+ ions excited in the 2F5/2 state are not thermally quenched up to 550 K.•Time- and temperature dependent CuGaS2 to Yb3+ energy transfer is reported.•Increased Ga/Cu ratio and O content boost Yb3+ intensity by 25 and 375, respectively.•The lifetime of Yb3+ in CuGaS2 is 110 μs. |
---|---|
AbstractList | The broad class of Cu(Al,Ga,In) (S,Se,Te)2 solar absorber materials when doped with Yb3+ are interesting for thin film based luminescent solar concentrator (LSC's) application. In this work the strong and broad absorption properties of co-sputtered CuGaS2 (CGS) thin films combined with the luminescent properties of Yb are reported. Energy-dispersive x-ray spectroscopy (EDS), x-ray diffraction, transmission, excitation, and temperature dependent emission as well as radiative lifetime measurements are performed on thin films with varying Cu:Ga ratios and Yb3+ concentrations. It is found that Yb3+ emission can be broadly sensitized by the host in the range of 200–600 nm. A lower Cu:Ga ratio, crystallinity and post annealing in air provides a positive impact on the sensitization of Yb3+ emission. The temperature dependent time integrated decay curves show a clear thermal energy barrier of about 0.2 eV. Because the exponential tail, with a lifetime of 110 μs, is constant with temperature, we conclude that the barrier is connected to the thermal release of electrons trapped at the Yb2+ ground state. The low energy transfer efficiency from the host to the Yb dopant is attributed to efficient non-radiative electron-hole pair recombination. The prospects and design criteria of Cu(Al,Ga,In) (S,Se,Te)2 solar absorber materials for LSC applications is the further subject of the discussion.
[Display omitted]
•CuGaS2 host sensitized Yb3+ emission in sputtered thin films have less than 0.01 % IQE.•Yb3+ ions excited in the 2F5/2 state are not thermally quenched up to 550 K.•Time- and temperature dependent CuGaS2 to Yb3+ energy transfer is reported.•Increased Ga/Cu ratio and O content boost Yb3+ intensity by 25 and 375, respectively.•The lifetime of Yb3+ in CuGaS2 is 110 μs. |
ArticleNumber | 116220 |
Author | Derksen, Max van der Kolk, Erik Bergkamp, Sem Kohnstamm, Olivia |
Author_xml | – sequence: 1 givenname: Max orcidid: 0009-0006-1917-9612 surname: Derksen fullname: Derksen, Max email: m.derksen-2@tudelft.nl – sequence: 2 givenname: Sem surname: Bergkamp fullname: Bergkamp, Sem email: sembergkamp@gmail.com – sequence: 3 givenname: Olivia surname: Kohnstamm fullname: Kohnstamm, Olivia email: oliviakohnstamm@gmail.com – sequence: 4 givenname: Erik surname: van der Kolk fullname: van der Kolk, Erik email: E.vanderKolk@tudelft.nl |
BookMark | eNp9kL1OwzAUhT0UibbwBgweQZBgO4lTJISEKihIlRgoA5Pl2DfUVf5kO6XdeAd2Ho4nwaXMDL6WfM85PvpGaNC0DSB0QklMCeWXq7jtfC19zAhLY0o5Y2SAhuSKZVGS8vwQjZxbEUJYxvkQfS1MDRfYQ92Blb63gGWjsWobBY0PL6ZtsAXXVmvQ-LVIznHV16YBF_YKsPO93mLTBEfkut57sEE37Vm0mcnNM8OnoRe-xptwaMzPsF8GcWmq2uF345dYBvH3x-dMhoS6a535_fHNSm1CgSN0UMrKwfHfPUYv93eL6UM0f5o9Tm_nkWIJ9RGHScKByEnKuMx1mkNWsjxVqiRpkRHNQHEl87wIMyuKnMikJEozpWiZpKxIxijd5yrbOmehFJ01tbRbQYnYcRUrsecqdlzFnmuw3extELqtDVjhlNlx0caC8kK35v-AH7mEiQA |
Cites_doi | 10.1016/j.optmat.2007.05.019 10.1016/j.rinp.2018.12.043 10.1103/PhysRevB.55.4382 10.7567/JJAP.55.04ES15 10.1364/AO.15.002299 10.1016/j.jlumin.2004.01.064 10.1063/1.2336716 10.1109/JSTQE.2008.920282 10.1021/ja4077414 10.1088/0953-8984/15/49/018 10.1016/j.jiec.2012.12.035 10.1088/0022-3735/16/12/023 10.1021/acsaem.9b00774 10.1021/jacs.7b04938 10.1016/0025-5408(68)90023-8 10.1016/j.optcom.2007.11.031 10.1021/jp901862k 10.1016/j.jlumin.2004.07.003 10.1016/j.jlumin.2020.117164 10.1016/j.optcom.2006.12.035 10.1021/ja0511725 10.1021/acs.jpcc.0c07548 10.1063/1.89041 10.1016/S0927-0248(02)00110-1 10.1016/j.jallcom.2008.09.059 10.1039/D2TC04439K 10.1002/adom.201900753 10.1002/pssa.200622132 10.1021/jp109786w 10.1021/acscombsci.8b00068 10.1063/1.1699044 10.1016/j.jcis.2019.01.034 10.1016/j.optmat.2019.01.007 10.1016/j.msec.2009.03.013 10.1002/andp.19484370105 10.1039/D0EE02397C 10.1063/1.347131 10.1016/j.rser.2016.12.028 10.1016/j.jlumin.2018.01.013 10.1063/1.1663076 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.optmat.2024.116220 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
ExternalDocumentID | 10_1016_j_optmat_2024_116220 S0925346724014034 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JN AABXZ AAEDT AAEDW AAEPC AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ACDAQ ACFVG ACGFS ACNNM ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFFNX AFJKZ AFPUW AFRZQ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SMS SPC SPCBC SPD SPG SSH SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZY4 ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c231t-6e836e0a8426a7d47e5f274ccf04b50d2ec6ca77b6ca5bb70a3f0cd2cc1f342b3 |
IEDL.DBID | AIKHN |
ISSN | 0925-3467 |
IngestDate | Thu Jul 03 08:31:05 EDT 2025 Sat Jul 05 17:12:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Charge trapping mediated energy transfer Host sensitized emission Thin film luminescent solar concentrator Combinatorial sputtering CuGaS2:Yb3+ photoluminescence |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c231t-6e836e0a8426a7d47e5f274ccf04b50d2ec6ca77b6ca5bb70a3f0cd2cc1f342b3 |
ORCID | 0009-0006-1917-9612 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0925346724014034 |
ParticipantIDs | crossref_primary_10_1016_j_optmat_2024_116220 elsevier_sciencedirect_doi_10_1016_j_optmat_2024_116220 |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationTitle | Optical materials |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Debnath, Mukherjee, Waldeck (bib15) 2020; 124 Swanepoel (bib28) 1983/12/01 1983; 16 Creutz, Fainblat, Kim, De Siena, Gamelin (bib34) 2017; 139 Förster (bib11) 1948; 437 Dorenbos, van der Kolk (bib20) 2008/03/01/2008; 30 Dorenbos (bib21) 2009/12/04/2009; 488 Yang, Ding, Zhang, Xu (bib37) 2007/05/01/2007; 273 Guillén, Herrero (bib24) 2006; 203 Shay, Bridenbaugh, Kasper (bib40) 1974; 45 Dorenbos (bib32) 2023 Rowan, Wilson, Richards (bib6) 2008; 14 Heitz (bib23) 1997; 55 Maeda, Gong, Wada (bib31) 2016; 55 Lee, Ebong (bib3) 2017; 70 Jeong, Park (bib26) 2003/01/01/2003; 75 Kazmerski, White, Morgan (bib1) 1976; 29 Weber, Lambe (bib4) 1976/10/01 1976; 15 Luo, Li, Chen (bib9) 2009/05/21 2009; 113 Dorenbos (bib22) 2018; 197 Chengelis, Yingling, Badger, Shade, Petoud (bib8) 2005/12/01 2005; 127 Dorenbos (bib17) 2004; 108 Martin-Rodriguez, Geitenbeek, Meijerink (bib10) Sep 18 2013; 135 Dorenbos, van der Kolk (bib19) 2006; 89 Li, He, Xiao, Li, Delaunay (bib38) 2020; 13 Dexter (bib12) 1953; 21 Merkx, van der Kolk (bib27) 2018/11/12 2018; 20 Mukherjee, Shade, Yingling, Lamont, Waldeck, Petoud (bib13) Apr 28 2011; 115 Debnath, Rudra, Bhattacharyya, Guchhait, Mukherjee (bib14) Mar 22 2019; 540 Nishimura, Nakada, Yamada (bib30) 2019/07/22 2019; 2 Gifford (bib2) 2015; 12 Tauc (bib29) 1968; 3 Dorenbos (bib39) 2020/06/01/2020; 222 Smaïli, Kanzari (bib33) 2009/08/01/2009; 29 Maddi (bib35) 2019; 7 Rafiee, Chandra, Ahmed, McCormack (bib5) 2019; 91 Kong, Fan, Jung, Chung (bib25) 2013/07/25/2013; 19 Shirakata, Saiki, Isomura (bib36) 1990; 68 Caglar, Ilican, Caglar (bib41) 2008; 281 Li (bib7) 2019; 12 Dorenbos (bib16) 2003; 15 Dorenbos (bib18) 2005/01/01/2005; 111 Maeda (10.1016/j.optmat.2024.116220_bib31) 2016; 55 Lee (10.1016/j.optmat.2024.116220_bib3) 2017; 70 Rafiee (10.1016/j.optmat.2024.116220_bib5) 2019; 91 Dorenbos (10.1016/j.optmat.2024.116220_bib19) 2006; 89 Rowan (10.1016/j.optmat.2024.116220_bib6) 2008; 14 Kazmerski (10.1016/j.optmat.2024.116220_bib1) 1976; 29 Gifford (10.1016/j.optmat.2024.116220_bib2) 2015; 12 Chengelis (10.1016/j.optmat.2024.116220_bib8) 2005; 127 Dexter (10.1016/j.optmat.2024.116220_bib12) 1953; 21 Kong (10.1016/j.optmat.2024.116220_bib25) 2013; 19 Luo (10.1016/j.optmat.2024.116220_bib9) 2009; 113 Tauc (10.1016/j.optmat.2024.116220_bib29) 1968; 3 Dorenbos (10.1016/j.optmat.2024.116220_bib18) 2005; 111 Creutz (10.1016/j.optmat.2024.116220_bib34) 2017; 139 Dorenbos (10.1016/j.optmat.2024.116220_bib22) 2018; 197 Mukherjee (10.1016/j.optmat.2024.116220_bib13) 2011; 115 Martin-Rodriguez (10.1016/j.optmat.2024.116220_bib10) 2013; 135 Dorenbos (10.1016/j.optmat.2024.116220_bib16) 2003; 15 Shirakata (10.1016/j.optmat.2024.116220_bib36) 1990; 68 Merkx (10.1016/j.optmat.2024.116220_bib27) 2018; 20 Maddi (10.1016/j.optmat.2024.116220_bib35) 2019; 7 Li (10.1016/j.optmat.2024.116220_bib7) 2019; 12 Caglar (10.1016/j.optmat.2024.116220_bib41) 2008; 281 Smaïli (10.1016/j.optmat.2024.116220_bib33) 2009; 29 Debnath (10.1016/j.optmat.2024.116220_bib15) 2020; 124 Förster (10.1016/j.optmat.2024.116220_bib11) 1948; 437 Heitz (10.1016/j.optmat.2024.116220_bib23) 1997; 55 Weber (10.1016/j.optmat.2024.116220_bib4) 1976; 15 Debnath (10.1016/j.optmat.2024.116220_bib14) 2019; 540 Yang (10.1016/j.optmat.2024.116220_bib37) 2007; 273 Dorenbos (10.1016/j.optmat.2024.116220_bib17) 2004; 108 Dorenbos (10.1016/j.optmat.2024.116220_bib20) 2008; 30 Dorenbos (10.1016/j.optmat.2024.116220_bib21) 2009; 488 Dorenbos (10.1016/j.optmat.2024.116220_bib39) 2020; 222 Guillén (10.1016/j.optmat.2024.116220_bib24) 2006; 203 Swanepoel (10.1016/j.optmat.2024.116220_bib28) 1983; 16 Li (10.1016/j.optmat.2024.116220_bib38) 2020; 13 Nishimura (10.1016/j.optmat.2024.116220_bib30) 2019; 2 Dorenbos (10.1016/j.optmat.2024.116220_bib32) 2023 Shay (10.1016/j.optmat.2024.116220_bib40) 1974; 45 Jeong (10.1016/j.optmat.2024.116220_bib26) 2003; 75 |
References_xml | – volume: 124 start-page: 26495 year: 2020 end-page: 26517 ident: bib15 article-title: Optimizing the key variables to generate host sensitized lanthanide doped semiconductor nanoparticle luminophores publication-title: J. Phys. Chem. C – volume: 488 start-page: 568 year: 2009/12/04/2009 end-page: 573 ident: bib21 article-title: Lanthanide charge transfer energies and related luminescence, charge carrier trapping, and redox phenomena publication-title: J. Alloys Compd. – volume: 7 year: 2019 ident: bib35 article-title: Structural, spectroscopic, and excitonic dynamic characterization in atomically thin Yb3+‐doped MoS2, fabricated by femtosecond pulsed laser deposition publication-title: Adv. Opt. Mater. – volume: 20 start-page: 595 year: 2018/11/12 2018 end-page: 601 ident: bib27 article-title: Method for the detailed characterization of cosputtered inorganic luminescent material libraries publication-title: ACS Comb. Sci. – volume: 197 start-page: 62 year: 2018 end-page: 65 ident: bib22 article-title: The hole picture as alternative for the common electron picture to describe hole trapping and luminescence quenching publication-title: J. Lumin. – volume: 222 year: 2020/06/01/2020 ident: bib39 article-title: [INVITED] Improved parameters for the lanthanide 4f and 4f−5d curves in HRBE and VRBE schemes that takes the nephelauxetic effect into account publication-title: J. Lumin. – volume: 29 start-page: 268 year: 1976 end-page: 270 ident: bib1 article-title: Thin‐film CuInSe2/CdS heterojunction solar cells publication-title: Appl. Phys. Lett. – volume: 45 start-page: 4491 year: 1974 end-page: 4494 ident: bib40 article-title: Luminescent properties of CuGaS2 doped with Cd or Zn publication-title: J. Appl. Phys. – volume: 15 start-page: 2299 year: 1976/10/01 1976 end-page: 2300 ident: bib4 article-title: Luminescent greenhouse collector for solar radiation publication-title: Appl. Opt. – volume: 16 start-page: 1214 year: 1983/12/01 1983 ident: bib28 article-title: Determination of the thickness and optical constants of amorphous silicon publication-title: J. Phys. E Sci. Instrum. – volume: 21 start-page: 836 year: 1953 end-page: 850 ident: bib12 article-title: A theory of sensitized luminescence in solids publication-title: J. Chem. Phys. – volume: 30 start-page: 1052 year: 2008/03/01/2008 end-page: 1057 ident: bib20 article-title: Location of lanthanide impurity energy levels in the III–V semiconductor AlxGa1−xN (0⩽x⩽1) publication-title: Opt. Mater. – volume: 135 start-page: 13668 year: Sep 18 2013 end-page: 13671 ident: bib10 article-title: Incorporation and luminescence of Yb3+ in CdSe nanocrystals publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 4382 year: 1997 ident: bib23 article-title: Excited states of Fe 3+ in GaN publication-title: Phys. Rev. B – volume: 19 start-page: 1320 year: 2013/07/25/2013 end-page: 1324 ident: bib25 article-title: Characterization of Cu(In,Ga)Se2 thin films prepared by RF magnetron sputtering using a single target without selenization publication-title: J. Ind. Eng. Chem. – volume: 12 year: 2015 ident: bib2 article-title: Solar Frontier hits 22.3% on CIGS cell publication-title: PV Magazine – volume: 281 start-page: 1615 year: 2008 end-page: 1624 ident: bib41 article-title: Structural, morphological and optical properties of CuAlS2 films deposited by spray pyrolysis method publication-title: Opt Commun. – volume: 108 start-page: 301 year: 2004 end-page: 305 ident: bib17 article-title: Locating lanthanide impurity levels in the forbidden band of host crystals publication-title: J. Lumin. – volume: 12 start-page: 704 year: 2019 end-page: 711 ident: bib7 article-title: Engineering CIGS grains qualities to achieve high efficiency in ultrathin Cu(InxGa1−x)Se2 solar cells with a single-gradient band gap profile publication-title: Results Phys. – volume: 113 start-page: 8772 year: 2009/05/21 2009 end-page: 8777 ident: bib9 article-title: Host-sensitized luminescence of Nd3+ and Sm3+ ions incorporated in anatase titania nanocrystals publication-title: J. Phys. Chem. C – volume: 15 start-page: 8417 year: 2003 ident: bib16 article-title: Systematic behaviour in trivalent lanthanide charge transfer energies publication-title: J. Phys. Condens. Matter – volume: 111 start-page: 89 year: 2005/01/01/2005 end-page: 104 ident: bib18 article-title: The Eu3+ charge transfer energy and the relation with the band gap of compounds publication-title: J. Lumin. – volume: 75 start-page: 93 year: 2003/01/01/2003 end-page: 100 ident: bib26 article-title: Structural and electrical properties of CuGaS2 thin films by electron beam evaporation publication-title: Sol. Energy Mater. Sol. Cell. – volume: 13 start-page: 3269 year: 2020 end-page: 3306 ident: bib38 article-title: Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting publication-title: Energy Environ. Sci. – volume: 2 start-page: 5103 year: 2019/07/22 2019 end-page: 5108 ident: bib30 article-title: Examination of a Cu-deficient layer on Cu(In, Ga)Se2 films fabricated by a three-stage process for highly efficient solar cells publication-title: ACS Appl. Energy Mater. – volume: 68 start-page: 291 year: 1990 end-page: 297 ident: bib36 article-title: Excitonic photoluminescence in CuGaS2 crystals publication-title: J. Appl. Phys. – volume: 203 start-page: 2438 year: 2006 end-page: 2443 ident: bib24 article-title: CuInS2 and CuGaS2 thin films grown by modulated flux deposition with various Cu contents publication-title: Phys. Status Solidi – year: 2023 ident: bib32 article-title: Thermal quenching of lanthanide luminescence via charge transfer states in inorganic materials publication-title: J. Mater. Chem. C – volume: 115 start-page: 4031 year: Apr 28 2011 end-page: 4041 ident: bib13 article-title: Lanthanide sensitization in II-VI semiconductor materials: a case study with terbium(III) and europium(III) in zinc sulfide nanoparticles publication-title: J. Phys. Chem. A – volume: 70 start-page: 1286 year: 2017 end-page: 1297 ident: bib3 article-title: A review of thin film solar cell technologies and challenges publication-title: Renew. Sustain. Energy Rev. – volume: 91 start-page: 212 year: 2019 end-page: 227 ident: bib5 article-title: An overview of various configurations of Luminescent Solar Concentrators for photovoltaic applications publication-title: Opt. Mater. – volume: 540 start-page: 448 year: Mar 22 2019 end-page: 465 ident: bib14 article-title: Host sensitized lanthanide photoluminescence from post-synthetically modified semiconductor nanoparticles depends on reactant identity publication-title: J. Colloid Interface Sci. – volume: 55 year: 2016 ident: bib31 article-title: Crystallographic and optical properties and band structures of CuInSe 2 , CuIn 3 Se 5 , and CuIn 5 Se 8 phases in Cu-poor Cu 2 Se–In 2 Se 3 pseudo-binary system publication-title: Jpn. J. Appl. Phys. – volume: 29 start-page: 1969 year: 2009/08/01/2009 end-page: 1973 ident: bib33 article-title: Effect of oxygen on the surface morphology of CuGaS2 thin films publication-title: Mater. Sci. Eng. C – volume: 273 start-page: 238 year: 2007/05/01/2007 end-page: 241 ident: bib37 article-title: Investigation of the spectroscopic properties of Yb3+-doped yttrium lanthanum oxide transparent ceramic publication-title: Opt Commun. – volume: 89 year: 2006 ident: bib19 article-title: Location of lanthanide impurity levels in the III-V semiconductor GaN publication-title: Appl. Phys. Lett. – volume: 127 start-page: 16752 year: 2005/12/01 2005 end-page: 16753 ident: bib8 article-title: Incorporating lanthanide cations with cadmium selenide nanocrystals: a strategy to sensitize and protect Tb(III) publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 37 year: 1968 end-page: 46 ident: bib29 article-title: Optical properties and electronic structure of amorphous Ge and Si publication-title: Mater. Res. Bull. – volume: 437 start-page: 55 year: 1948 end-page: 75 ident: bib11 article-title: Zwischenmolekulare Energiewanderung und Fluoreszenz publication-title: Ann. Phys. – volume: 14 start-page: 1312 year: 2008 end-page: 1322 ident: bib6 article-title: Advanced material concepts for luminescent solar concentrators publication-title: IEEE J. Sel. Top. Quant. Electron. – volume: 139 start-page: 11814 year: 2017 end-page: 11824 ident: bib34 article-title: A selective cation exchange strategy for the synthesis of colloidal Yb3+-doped chalcogenide nanocrystals with strong broadband visible absorption and long-lived near-infrared emission publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 1052 issue: 7 year: 2008 ident: 10.1016/j.optmat.2024.116220_bib20 article-title: Location of lanthanide impurity energy levels in the III–V semiconductor AlxGa1−xN (0⩽x⩽1) publication-title: Opt. Mater. doi: 10.1016/j.optmat.2007.05.019 – volume: 12 start-page: 704 year: 2019 ident: 10.1016/j.optmat.2024.116220_bib7 article-title: Engineering CIGS grains qualities to achieve high efficiency in ultrathin Cu(InxGa1−x)Se2 solar cells with a single-gradient band gap profile publication-title: Results Phys. doi: 10.1016/j.rinp.2018.12.043 – volume: 55 start-page: 4382 issue: 7 year: 1997 ident: 10.1016/j.optmat.2024.116220_bib23 article-title: Excited states of Fe 3+ in GaN publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.55.4382 – volume: 55 year: 2016 ident: 10.1016/j.optmat.2024.116220_bib31 article-title: Crystallographic and optical properties and band structures of CuInSe 2 , CuIn 3 Se 5 , and CuIn 5 Se 8 phases in Cu-poor Cu 2 Se–In 2 Se 3 pseudo-binary system publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.55.04ES15 – volume: 15 start-page: 2299 issue: 10 year: 1976 ident: 10.1016/j.optmat.2024.116220_bib4 article-title: Luminescent greenhouse collector for solar radiation publication-title: Appl. Opt. doi: 10.1364/AO.15.002299 – volume: 108 start-page: 301 issue: 1–4 year: 2004 ident: 10.1016/j.optmat.2024.116220_bib17 article-title: Locating lanthanide impurity levels in the forbidden band of host crystals publication-title: J. Lumin. doi: 10.1016/j.jlumin.2004.01.064 – volume: 89 issue: 6 year: 2006 ident: 10.1016/j.optmat.2024.116220_bib19 article-title: Location of lanthanide impurity levels in the III-V semiconductor GaN publication-title: Appl. Phys. Lett. doi: 10.1063/1.2336716 – volume: 14 start-page: 1312 issue: 5 year: 2008 ident: 10.1016/j.optmat.2024.116220_bib6 article-title: Advanced material concepts for luminescent solar concentrators publication-title: IEEE J. Sel. Top. Quant. Electron. doi: 10.1109/JSTQE.2008.920282 – volume: 135 start-page: 13668 issue: 37 year: 2013 ident: 10.1016/j.optmat.2024.116220_bib10 article-title: Incorporation and luminescence of Yb3+ in CdSe nanocrystals publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4077414 – volume: 15 start-page: 8417 issue: 49 year: 2003 ident: 10.1016/j.optmat.2024.116220_bib16 article-title: Systematic behaviour in trivalent lanthanide charge transfer energies publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/15/49/018 – volume: 19 start-page: 1320 issue: 4 year: 2013 ident: 10.1016/j.optmat.2024.116220_bib25 article-title: Characterization of Cu(In,Ga)Se2 thin films prepared by RF magnetron sputtering using a single target without selenization publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2012.12.035 – volume: 16 start-page: 1214 issue: 12 year: 1983 ident: 10.1016/j.optmat.2024.116220_bib28 article-title: Determination of the thickness and optical constants of amorphous silicon publication-title: J. Phys. E Sci. Instrum. doi: 10.1088/0022-3735/16/12/023 – volume: 2 start-page: 5103 issue: 7 year: 2019 ident: 10.1016/j.optmat.2024.116220_bib30 article-title: Examination of a Cu-deficient layer on Cu(In, Ga)Se2 films fabricated by a three-stage process for highly efficient solar cells publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00774 – volume: 139 start-page: 11814 issue: 34 year: 2017 ident: 10.1016/j.optmat.2024.116220_bib34 article-title: A selective cation exchange strategy for the synthesis of colloidal Yb3+-doped chalcogenide nanocrystals with strong broadband visible absorption and long-lived near-infrared emission publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04938 – volume: 3 start-page: 37 issue: 1 year: 1968 ident: 10.1016/j.optmat.2024.116220_bib29 article-title: Optical properties and electronic structure of amorphous Ge and Si publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(68)90023-8 – volume: 281 start-page: 1615 issue: 6 year: 2008 ident: 10.1016/j.optmat.2024.116220_bib41 article-title: Structural, morphological and optical properties of CuAlS2 films deposited by spray pyrolysis method publication-title: Opt Commun. doi: 10.1016/j.optcom.2007.11.031 – volume: 113 start-page: 8772 issue: 20 year: 2009 ident: 10.1016/j.optmat.2024.116220_bib9 article-title: Host-sensitized luminescence of Nd3+ and Sm3+ ions incorporated in anatase titania nanocrystals publication-title: J. Phys. Chem. C doi: 10.1021/jp901862k – volume: 111 start-page: 89 issue: 1 year: 2005 ident: 10.1016/j.optmat.2024.116220_bib18 article-title: The Eu3+ charge transfer energy and the relation with the band gap of compounds publication-title: J. Lumin. doi: 10.1016/j.jlumin.2004.07.003 – volume: 222 year: 2020 ident: 10.1016/j.optmat.2024.116220_bib39 article-title: [INVITED] Improved parameters for the lanthanide 4f and 4f−5d curves in HRBE and VRBE schemes that takes the nephelauxetic effect into account publication-title: J. Lumin. doi: 10.1016/j.jlumin.2020.117164 – volume: 273 start-page: 238 issue: 1 year: 2007 ident: 10.1016/j.optmat.2024.116220_bib37 article-title: Investigation of the spectroscopic properties of Yb3+-doped yttrium lanthanum oxide transparent ceramic publication-title: Opt Commun. doi: 10.1016/j.optcom.2006.12.035 – volume: 127 start-page: 16752 issue: 48 year: 2005 ident: 10.1016/j.optmat.2024.116220_bib8 article-title: Incorporating lanthanide cations with cadmium selenide nanocrystals: a strategy to sensitize and protect Tb(III) publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0511725 – volume: 124 start-page: 26495 issue: 49 year: 2020 ident: 10.1016/j.optmat.2024.116220_bib15 article-title: Optimizing the key variables to generate host sensitized lanthanide doped semiconductor nanoparticle luminophores publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c07548 – volume: 29 start-page: 268 issue: 4 year: 1976 ident: 10.1016/j.optmat.2024.116220_bib1 article-title: Thin‐film CuInSe2/CdS heterojunction solar cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.89041 – volume: 75 start-page: 93 issue: 1 year: 2003 ident: 10.1016/j.optmat.2024.116220_bib26 article-title: Structural and electrical properties of CuGaS2 thin films by electron beam evaporation publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/S0927-0248(02)00110-1 – volume: 488 start-page: 568 issue: 2 year: 2009 ident: 10.1016/j.optmat.2024.116220_bib21 article-title: Lanthanide charge transfer energies and related luminescence, charge carrier trapping, and redox phenomena publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2008.09.059 – year: 2023 ident: 10.1016/j.optmat.2024.116220_bib32 article-title: Thermal quenching of lanthanide luminescence via charge transfer states in inorganic materials publication-title: J. Mater. Chem. C doi: 10.1039/D2TC04439K – volume: 7 issue: 21 year: 2019 ident: 10.1016/j.optmat.2024.116220_bib35 article-title: Structural, spectroscopic, and excitonic dynamic characterization in atomically thin Yb3+‐doped MoS2, fabricated by femtosecond pulsed laser deposition publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900753 – volume: 203 start-page: 2438 issue: 10 year: 2006 ident: 10.1016/j.optmat.2024.116220_bib24 article-title: CuInS2 and CuGaS2 thin films grown by modulated flux deposition with various Cu contents publication-title: Phys. Status Solidi doi: 10.1002/pssa.200622132 – volume: 115 start-page: 4031 issue: 16 year: 2011 ident: 10.1016/j.optmat.2024.116220_bib13 article-title: Lanthanide sensitization in II-VI semiconductor materials: a case study with terbium(III) and europium(III) in zinc sulfide nanoparticles publication-title: J. Phys. Chem. A doi: 10.1021/jp109786w – volume: 20 start-page: 595 issue: 11 year: 2018 ident: 10.1016/j.optmat.2024.116220_bib27 article-title: Method for the detailed characterization of cosputtered inorganic luminescent material libraries publication-title: ACS Comb. Sci. doi: 10.1021/acscombsci.8b00068 – volume: 21 start-page: 836 issue: 5 year: 1953 ident: 10.1016/j.optmat.2024.116220_bib12 article-title: A theory of sensitized luminescence in solids publication-title: J. Chem. Phys. doi: 10.1063/1.1699044 – volume: 12 issue: 08 year: 2015 ident: 10.1016/j.optmat.2024.116220_bib2 article-title: Solar Frontier hits 22.3% on CIGS cell publication-title: PV Magazine – volume: 540 start-page: 448 year: 2019 ident: 10.1016/j.optmat.2024.116220_bib14 article-title: Host sensitized lanthanide photoluminescence from post-synthetically modified semiconductor nanoparticles depends on reactant identity publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.01.034 – volume: 91 start-page: 212 year: 2019 ident: 10.1016/j.optmat.2024.116220_bib5 article-title: An overview of various configurations of Luminescent Solar Concentrators for photovoltaic applications publication-title: Opt. Mater. doi: 10.1016/j.optmat.2019.01.007 – volume: 29 start-page: 1969 issue: 6 year: 2009 ident: 10.1016/j.optmat.2024.116220_bib33 article-title: Effect of oxygen on the surface morphology of CuGaS2 thin films publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2009.03.013 – volume: 437 start-page: 55 issue: 1–2 year: 1948 ident: 10.1016/j.optmat.2024.116220_bib11 article-title: Zwischenmolekulare Energiewanderung und Fluoreszenz publication-title: Ann. Phys. doi: 10.1002/andp.19484370105 – volume: 13 start-page: 3269 issue: 10 year: 2020 ident: 10.1016/j.optmat.2024.116220_bib38 article-title: Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02397C – volume: 68 start-page: 291 issue: 1 year: 1990 ident: 10.1016/j.optmat.2024.116220_bib36 article-title: Excitonic photoluminescence in CuGaS2 crystals publication-title: J. Appl. Phys. doi: 10.1063/1.347131 – volume: 70 start-page: 1286 year: 2017 ident: 10.1016/j.optmat.2024.116220_bib3 article-title: A review of thin film solar cell technologies and challenges publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.12.028 – volume: 197 start-page: 62 year: 2018 ident: 10.1016/j.optmat.2024.116220_bib22 article-title: The hole picture as alternative for the common electron picture to describe hole trapping and luminescence quenching publication-title: J. Lumin. doi: 10.1016/j.jlumin.2018.01.013 – volume: 45 start-page: 4491 issue: 10 year: 1974 ident: 10.1016/j.optmat.2024.116220_bib40 article-title: Luminescent properties of CuGaS2 doped with Cd or Zn publication-title: J. Appl. Phys. doi: 10.1063/1.1663076 |
SSID | ssj0002566 |
Score | 2.4220412 |
Snippet | The broad class of Cu(Al,Ga,In) (S,Se,Te)2 solar absorber materials when doped with Yb3+ are interesting for thin film based luminescent solar concentrator... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 116220 |
SubjectTerms | Charge trapping mediated energy transfer Combinatorial sputtering CuGaS2:Yb3+ photoluminescence Host sensitized emission Thin film luminescent solar concentrator |
Title | Time, temperature and concentration resolved Yb3+ luminescence study in co-sputtered Cu2-xGaxS2 (0.1 < x < 1.6) thin films with a Cu–Ga composition gradient |
URI | https://dx.doi.org/10.1016/j.optmat.2024.116220 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WyFxqXiKFqjmwAEE7nptx24kLtWKdgHRS6lUTpHjBywq2VU3RXtC_Afu_Dh-CePEQSAhDhwSKdGMFHs8L-ebMcAjYZVRkQcWOWmTioJUyqjA9IHUNpScdD1tDbw50bMz9eq8ON-A6VALk2CV2fb3Nr2z1vnNOM_meDmfj095KQpJek4-KTWdU5uwJWSpixFsHb58PTv5ZZDJq3e_LImeJYahgq6DeS2WLYWGlCgKReZDi3Tw99881G9e5-gGbOdwEQ_7L7oJG6G5Bdc62KZb3YbvqYLjGab-Urk5MtrGo0u1iE1uiIuUUC8uPgeP72r5FMkYJaS7SyPFrrkszhviYKtld2Y10U2vBFsf2_WpwMc0AnyOa7om-_oJth-IOM4vPq0w7eCiJeIfX78dW0zY9AwAw_eXHZCsvQNnRy_eTmcsn7jAHMV5LdOBRBS4PSC_bY1XJhSR0lbnIld1wb0ITjtrTE33oq4NtzJy54VzkyiVqOVdGDWLJtwDjIXkFOyVtZe0GDS3lJd5G3002ttSiB1gwyxXy76xRjUgzj5WvVSqJJWql8oOmEEU1R8LpCLb_0_O3f_mvA_X01NfevgARu3lVXhIMUhb78Hm_pfJXl5pPwGNhNyb |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoFYILoqWId-fQAwjMGtuxWYlLtSoszwsg0VPk-AGLILtiA9oT6n_onR_HL-k4D5VKiEMPySEZS7HH83K-mSHkGzdSy8A8DQylSQaOIqWlp2pHKOPbDGU9Hg2cnKruhTy8TC7HSKfJhYmwylr3Vzq91Nb1k1a9mq1Br9c6Y22eCJRztEmx6Jz8QD7KROiI69t6-ovzQJte_rBEahrJm_y5EuTVHxToGGKYyCUqD8Vj2--37NMrm7M3Q6ZrZxG-V9_ziYz5_DOZKEGbdjhLnmP-xibE6lJ1aWQwuQMbMxHzuhwuYDjdv330Dn5mYgNQFUWcu43zhLK0LPRyHEGHg7JjNdJ1Hjgd7ZvRGYc1nAHswgiv7S21DsU1Eofe7d0Q4vktGCR--fV730BEptfwL7i6L2FkxRdysffjvNOldb8FatHLK6jyyCDPzA5abaOd1D4JGLRaG5jMEua4t8oarTO8J1mmmRGBWcet3Q5C8kzMkfG8n_t5AiERDF29duYEbgXFDEZlzgQXtHKmzfkCoc0qp4OqrEba4M1u0ooraeRKWnFlgeiGFek_2yNFzf_uyMX_HvmVTHbPT47T44PToyUyFd9USYjLZLy4f_Ar6I0U2Wq52_4AaqvdZg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time%2C+temperature+and+concentration+resolved+Yb3%2B+luminescence+study+in+co-sputtered+Cu2-xGaxS2+%280.1+%3C+x+%3C+1.6%29+thin+films+with+a+Cu%E2%80%93Ga+composition+gradient&rft.jtitle=Optical+materials&rft.au=Derksen%2C+Max&rft.au=Bergkamp%2C+Sem&rft.au=Kohnstamm%2C+Olivia&rft.au=van+der+Kolk%2C+Erik&rft.date=2024-11-01&rft.issn=0925-3467&rft.volume=157&rft.spage=116220&rft_id=info:doi/10.1016%2Fj.optmat.2024.116220&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optmat_2024_116220 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-3467&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-3467&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-3467&client=summon |