Adaptable capacity estimation of lithium-ion battery based on short-duration random constant-current charging voltages and convolutional neural networks
The accurate lithium-ion battery capacity estimation is vital for ensuring the safe and reliable operation of battery-powered systems. Existing data-driven methods heavily rely on fixed charging stages for feature extractions, posing significant limitations in real-world applications. This paper pro...
Saved in:
Published in | Energy (Oxford) Vol. 306; p. 132541 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The accurate lithium-ion battery capacity estimation is vital for ensuring the safe and reliable operation of battery-powered systems. Existing data-driven methods heavily rely on fixed charging stages for feature extractions, posing significant limitations in real-world applications. This paper proposes an adaptable capacity estimation approach utilising short-duration random charging voltages during the constant-current charging stage and leveraging convolutional neural networks (CNNs). Based on the user-friendly “Vstart−tend” strategy, two health features including charging voltage and its increment are firstly extracted from random charging segments. Secondly, a feature evolution pattern analysis over the battery's lifespan is proposed to divide the charging voltage range for robust model development. An optimal combination of both the sampling interval and data length is determined for the feature extraction. Then, a two-dimensional CNN model is developed to effectively learn ageing-related knowledge from various random charging segments in a specific charging voltage range. The effectiveness of the proposed approach is ultimately verified using two distinct types of batteries across three operational temperatures. The results demonstrate that the proposed approach show much potential as a promising capacity estimation technique utilising a 600 s random charging segment sampled at a 20 s interval.
•Adaptable battery capacity estimation is achieved using random short-duration charging voltages.•Feature evolution analysis is proposed to guide feature extraction and model development.•2D-CNN model is developed for diverse random inputs and accurate capacity estimation.•The model's effectiveness is validated on two types of batteries at three working conditions. |
---|---|
AbstractList | The accurate lithium-ion battery capacity estimation is vital for ensuring the safe and reliable operation of battery-powered systems. Existing data-driven methods heavily rely on fixed charging stages for feature extractions, posing significant limitations in real-world applications. This paper proposes an adaptable capacity estimation approach utilising short-duration random charging voltages during the constant-current charging stage and leveraging convolutional neural networks (CNNs). Based on the user-friendly “Vstart−tend” strategy, two health features including charging voltage and its increment are firstly extracted from random charging segments. Secondly, a feature evolution pattern analysis over the battery's lifespan is proposed to divide the charging voltage range for robust model development. An optimal combination of both the sampling interval and data length is determined for the feature extraction. Then, a two-dimensional CNN model is developed to effectively learn ageing-related knowledge from various random charging segments in a specific charging voltage range. The effectiveness of the proposed approach is ultimately verified using two distinct types of batteries across three operational temperatures. The results demonstrate that the proposed approach show much potential as a promising capacity estimation technique utilising a 600 s random charging segment sampled at a 20 s interval.
•Adaptable battery capacity estimation is achieved using random short-duration charging voltages.•Feature evolution analysis is proposed to guide feature extraction and model development.•2D-CNN model is developed for diverse random inputs and accurate capacity estimation.•The model's effectiveness is validated on two types of batteries at three working conditions. |
ArticleNumber | 132541 |
Author | Gu, Fengshou Ball, Andrew Wang, Zuolu Zhen, Dong Pombo, João Zhao, Xiaoyu Yang, Wenxian |
Author_xml | – sequence: 1 givenname: Zuolu orcidid: 0000-0003-0076-613X surname: Wang fullname: Wang, Zuolu organization: Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield, HD1 3DH, UK – sequence: 2 givenname: Xiaoyu orcidid: 0000-0003-2574-2791 surname: Zhao fullname: Zhao, Xiaoyu organization: Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield, HD1 3DH, UK – sequence: 3 givenname: Dong surname: Zhen fullname: Zhen, Dong organization: Tianjin Key Laboratory of Power Transmission and Safety Technology for New Energy Vehicles, School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, PR China – sequence: 4 givenname: João orcidid: 0000-0002-5877-1989 surname: Pombo fullname: Pombo, João organization: Institute of Railway Research, University of Huddersfield, HD1 3DH, UK – sequence: 5 givenname: Wenxian orcidid: 0000-0002-1122-2990 surname: Yang fullname: Yang, Wenxian organization: Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield, HD1 3DH, UK – sequence: 6 givenname: Fengshou surname: Gu fullname: Gu, Fengshou email: f.gu@hud.ac.uk organization: Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield, HD1 3DH, UK – sequence: 7 givenname: Andrew surname: Ball fullname: Ball, Andrew organization: Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield, HD1 3DH, UK |
BookMark | eNp9kE1qwzAQhbVIoUnbG3ShCziVLNmxN4UQ-geBbrIXY3mcKHWkIMkpuUmPWxl33dVjhvceM9-CzKyzSMgjZ0vOePl0XKJFv78uc5bLJRd5IfmMzJkoWVZImd-SRQhHxlhR1fWc_KxbOEdoeqQazqBNvFIM0ZwgGmep62hv4sEMp2wcG4gR_TVpwJamRTg4H7N28JPdg23diWpnQwQbMz14jzZSfQC_N3ZPL66PsMdAk3G0pXkYk9BTi6lllPjt_Fe4Jzcd9AEf_vSO7F5fdpv3bPv59rFZbzOdCx4zwUTDy6auoWygy2XBRC2aVQnpX6k7pnlCoDterURV5DWyshKADKQs02ol7oicarV3IXjs1Nmn5_1VcaZGoOqoJqBqBKomoCn2PMUwnXYx6FXQBq3G1njUUbXO_F_wC146iNQ |
Cites_doi | 10.1016/j.energy.2023.129126 10.1016/j.energy.2021.122815 10.1016/j.est.2023.107549 10.1016/j.est.2023.107063 10.1016/j.apenergy.2023.122417 10.1016/j.jechem.2023.09.025 10.1016/j.est.2023.109248 10.1016/j.est.2023.109195 10.1016/j.apenergy.2023.121925 10.1016/j.energy.2019.03.177 10.1016/j.jpowsour.2023.233641 10.1016/j.est.2022.106052 10.1016/j.apenergy.2022.120308 10.1016/j.energy.2022.124771 10.1016/j.jpowsour.2020.228655 10.1016/j.energy.2021.120333 10.1016/j.jpowsour.2023.233139 10.1016/j.jpowsour.2023.233541 10.1016/j.energy.2019.07.059 10.1016/j.apenergy.2023.121674 10.1016/j.est.2023.107110 10.1016/j.isci.2022.104260 10.1016/j.jclepro.2023.136575 10.1016/j.est.2022.104124 10.1016/j.est.2023.108871 10.1016/j.apenergy.2022.120516 10.1109/TIE.2021.3066946 10.1016/j.ress.2022.109066 10.1016/j.apenergy.2023.120751 10.1016/j.energy.2023.128956 10.1016/j.energy.2023.128092 10.1016/j.apenergy.2023.121991 10.1016/j.energy.2023.128320 10.1016/j.est.2023.108390 10.1109/JESTPE.2021.3098836 10.1016/j.apenergy.2023.122048 10.1016/j.jpowsour.2015.12.122 10.1016/j.est.2023.107192 10.1016/j.engappai.2023.107199 10.1016/j.energy.2018.11.008 10.1016/j.ress.2023.109787 10.1016/j.est.2022.106049 10.1016/j.est.2023.109297 10.1016/j.energy.2016.08.109 10.1016/j.eswa.2023.122034 10.1016/j.apenergy.2019.113619 10.1016/j.energy.2023.129103 10.1016/j.apenergy.2020.115074 10.1016/j.egyr.2021.08.113 10.1109/JESTPE.2022.3177451 10.1016/j.energy.2022.125802 10.1016/j.energy.2023.129690 10.3390/electronics9081279 10.1016/j.apenergy.2022.119502 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.energy.2024.132541 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
ExternalDocumentID | 10_1016_j_energy_2024_132541 S0360544224023156 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAHCO AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAQXK AAXKI AAYXX ABFNM ABXDB ADMUD AFJKZ AHHHB ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 G8K HVGLF HZ~ R2- SAC WUQ |
ID | FETCH-LOGICAL-c231t-303b16b99a6baf2450393b76a3604cf0c1132cf18738529e0683ae0a44687373 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 |
IngestDate | Wed Oct 16 15:31:06 EDT 2024 Sat Aug 17 15:40:28 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion battery Random and short-duration charging voltages Convolutional neural network Capacity estimation |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c231t-303b16b99a6baf2450393b76a3604cf0c1132cf18738529e0683ae0a44687373 |
ORCID | 0000-0003-2574-2791 0000-0002-1122-2990 0000-0003-0076-613X 0000-0002-5877-1989 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0360544224023156 |
ParticipantIDs | crossref_primary_10_1016_j_energy_2024_132541 elsevier_sciencedirect_doi_10_1016_j_energy_2024_132541 |
PublicationCentury | 2000 |
PublicationDate | 2024-10-15 |
PublicationDateYYYYMMDD | 2024-10-15 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Qian (bib45) Jul. 2021; 227 Gismero, Nørregaard, Johnsen, Stenhøj, Stroe, Schaltz (bib25) Aug. 2023; 64 Wu, Su, Meng, Lin (bib39) Feb. 2023; 11 Zheng, Wang, Qin, Lu, Han, Ouyang (bib34) Oct. 2019; 185 Wang, Zeng, Guo, Qin (bib35) Jan. 2019; 167 Luo, Zheng, Shi (bib49) Aug. 2023; 576 Fu (bib24) Jan. 2024; 353 He, Wang, Lu, Chai, Yang (bib57) Jan. 2024; 353 Zhang (bib10) Aug. 2023; 64 Merla, Wu, Yufit, Brandon, Martinez-Botas, Offer (bib27) Mar. 2016; 307 Chen (bib13) Dec. 2023; 73 Zhu (bib41) Apr. 2022; 13 Peng, Sun, Liu, Yu, Kan, Pecht (bib2) Nov. 2023; 282 Xue, Li, Xiao, Chai, Liu, Chen (bib58) Apr. 2023; 397 Tian, Dong, Tian, Li, Li, Mehran (bib38) Feb. 2023; 332 Bi, Yin, Choe (bib18) Nov. 2020; 476 Liu (bib44) Dec. 2023; 351 Hong, Chen, Chai, Lin, Wang (bib51) Nov. 2023; 72 Fan, Zhang, Zou, He (bib52) 2023 Jiang, Zhu, Zhu, Wei, Dai (bib46) Jan. 2023; 263 Wang, Feng, Zhen, Gu, Ball (bib8) Nov. 2021; 7 Lin (bib54) Jan. 2024; 88 Su, Chen (bib12) Dec. 2023; 586 Jiang, Dai, Wei (bib53) Jul. 2020; 269 Ruan, Wei, Shang, Wang, He (bib36) Apr. 2023; 336 Jiang, Meng (bib14) Dec. 2023; 284 Xu, Wang, Lund, Zhang (bib16) Feb. 2022; 240 Zhang, Wang, Yang, Chen (bib19) Nov. 2016; 115 Yu, Nie, Liu, Li, Tang (bib3) Oct. 2023; 582 Zhang (bib29) Feb. 2024; 356 Wang, Zhao, Zhang, Zhen, Gu, Ball (bib6) Aug. 2023; 64 Deng (bib43) May 2022; 25 Li, Min, Zhang, Zhang, Zuo, Bai (bib30) Feb. 2024; 242 Shrivastava, Soon, Idris, Mekhilef, Adnan (bib5) Dec. 2022; 56 Jiang, Dai, Wei, Xu (bib17) Nov. 2019; 253 Piao, Sun, Chen, Liu, Wang (bib28) Dec. 2023; 73 Fan, Zhang (bib42) Jan. 2023; 330 Xiong, Wang, Li, Chen (bib48) Nov. 2023; 72 Liu (bib7) Dec. 2023; 351 Chen, Liang, Yuan, Yang, Xu, Fan (bib26) Nov. 2023; 283 Deng (bib32) Jun. 2019; 176 Yu (bib4) Nov. 2023; 349 Gao, Yang, Wang, Li, Wang, Wang (bib56) Dec. 2023; 73 Ning, Deng, Li, Liu, Guo (bib20) Dec. 2022; 56 Peng, Deng, Bao, Hu (bib9) Sep. 2023; 67 Wang, Feng, Liu, Gu, Ball (bib1) May 2022; 49 Ruan, He, Wei, Quan, Li (bib37) Aug. 2023; 11 Xiao, Xiao, Liu (bib33) Aug. 2020; 9 Shen, Ma, Shu, Shen, Chen, Liu (bib47) Sep. 2023; 279 Li, Hong, Zhang, Chen (bib21) Oct. 2022; 257 Zhao, Chen, Shu, Shen, Lei, Zhang (bib50) Apr. 2023; 232 Lu, Fei, Wang, Yang (bib40) Feb. 2024; 288 Guo, Yang, Deng, Li, Bian (bib31) 2023; 281 Cai, Lin (bib23) Mar. 2024; 238 Gao, Liu, Zhu, Zhang, Zhang (bib15) Mar. 2022; 69 Wang, Zhao, Fu, Zhen, Gu, Ball (bib22) Dec. 2023; 60 Mazzi, Ben Sassi, Errahimi (bib55) Jan. 2024; 127 Jiang, Zhu, Wang, Wei, Shang, Dai (bib11) Sep. 2022; 322 Shen (10.1016/j.energy.2024.132541_bib47) 2023; 279 Jiang (10.1016/j.energy.2024.132541_bib14) 2023; 284 Zhu (10.1016/j.energy.2024.132541_bib41) 2022; 13 Su (10.1016/j.energy.2024.132541_bib12) 2023; 586 Gao (10.1016/j.energy.2024.132541_bib15) 2022; 69 Guo (10.1016/j.energy.2024.132541_bib31) 2023; 281 Liu (10.1016/j.energy.2024.132541_bib7) 2023; 351 He (10.1016/j.energy.2024.132541_bib57) 2024; 353 Chen (10.1016/j.energy.2024.132541_bib26) 2023; 283 Peng (10.1016/j.energy.2024.132541_bib2) 2023; 282 Bi (10.1016/j.energy.2024.132541_bib18) 2020; 476 Xue (10.1016/j.energy.2024.132541_bib58) 2023; 397 Gao (10.1016/j.energy.2024.132541_bib56) 2023; 73 Xiao (10.1016/j.energy.2024.132541_bib33) 2020; 9 Qian (10.1016/j.energy.2024.132541_bib45) 2021; 227 Shrivastava (10.1016/j.energy.2024.132541_bib5) 2022; 56 Ruan (10.1016/j.energy.2024.132541_bib37) 2023; 11 Zheng (10.1016/j.energy.2024.132541_bib34) 2019; 185 Xu (10.1016/j.energy.2024.132541_bib16) 2022; 240 Fan (10.1016/j.energy.2024.132541_bib52) 2023 Fu (10.1016/j.energy.2024.132541_bib24) 2024; 353 Deng (10.1016/j.energy.2024.132541_bib32) 2019; 176 Luo (10.1016/j.energy.2024.132541_bib49) 2023; 576 Jiang (10.1016/j.energy.2024.132541_bib11) 2022; 322 Lin (10.1016/j.energy.2024.132541_bib54) 2024; 88 Wang (10.1016/j.energy.2024.132541_bib35) 2019; 167 Wang (10.1016/j.energy.2024.132541_bib6) 2023; 64 Chen (10.1016/j.energy.2024.132541_bib13) 2023; 73 Wang (10.1016/j.energy.2024.132541_bib1) 2022; 49 Zhao (10.1016/j.energy.2024.132541_bib50) 2023; 232 Jiang (10.1016/j.energy.2024.132541_bib46) 2023; 263 Wang (10.1016/j.energy.2024.132541_bib22) 2023; 60 Hong (10.1016/j.energy.2024.132541_bib51) 2023; 72 Xiong (10.1016/j.energy.2024.132541_bib48) 2023; 72 Tian (10.1016/j.energy.2024.132541_bib38) 2023; 332 Deng (10.1016/j.energy.2024.132541_bib43) 2022; 25 Gismero (10.1016/j.energy.2024.132541_bib25) 2023; 64 Jiang (10.1016/j.energy.2024.132541_bib17) 2019; 253 Jiang (10.1016/j.energy.2024.132541_bib53) 2020; 269 Piao (10.1016/j.energy.2024.132541_bib28) 2023; 73 Merla (10.1016/j.energy.2024.132541_bib27) 2016; 307 Peng (10.1016/j.energy.2024.132541_bib9) 2023; 67 Zhang (10.1016/j.energy.2024.132541_bib19) 2016; 115 Zhang (10.1016/j.energy.2024.132541_bib29) 2024; 356 Yu (10.1016/j.energy.2024.132541_bib4) 2023; 349 Yu (10.1016/j.energy.2024.132541_bib3) 2023; 582 Li (10.1016/j.energy.2024.132541_bib21) 2022; 257 Wang (10.1016/j.energy.2024.132541_bib8) 2021; 7 Ning (10.1016/j.energy.2024.132541_bib20) 2022; 56 Liu (10.1016/j.energy.2024.132541_bib44) 2023; 351 Mazzi (10.1016/j.energy.2024.132541_bib55) 2024; 127 Cai (10.1016/j.energy.2024.132541_bib23) 2024; 238 Wu (10.1016/j.energy.2024.132541_bib39) 2023; 11 Zhang (10.1016/j.energy.2024.132541_bib10) 2023; 64 Ruan (10.1016/j.energy.2024.132541_bib36) 2023; 336 Li (10.1016/j.energy.2024.132541_bib30) 2024; 242 Lu (10.1016/j.energy.2024.132541_bib40) 2024; 288 Fan (10.1016/j.energy.2024.132541_bib42) 2023; 330 |
References_xml | – volume: 476 year: Nov. 2020 ident: bib18 article-title: Online state of health and aging parameter estimation using a physics-based life model with a particle filter publication-title: J Power Sources contributor: fullname: Choe – volume: 232 year: Apr. 2023 ident: bib50 article-title: State of health estimation for lithium-ion batteries based on hybrid attention and deep learning publication-title: Reliab Eng Syst Saf contributor: fullname: Zhang – volume: 13 year: Apr. 2022 ident: bib41 article-title: Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation publication-title: Nat Commun contributor: fullname: Zhu – volume: 263 year: Jan. 2023 ident: bib46 article-title: An adaptive capacity estimation approach for lithium-ion battery using 10-min relaxation voltage within high state of charge range publication-title: Energy contributor: fullname: Dai – volume: 269 year: Jul. 2020 ident: bib53 article-title: Incremental capacity analysis based adaptive capacity estimation for lithium-ion battery considering charging condition publication-title: Appl Energy contributor: fullname: Wei – volume: 64 year: Aug. 2023 ident: bib25 article-title: Electric vehicle battery state of health estimation using Incremental Capacity Analysis publication-title: J Energy Storage contributor: fullname: Schaltz – volume: 322 year: Sep. 2022 ident: bib11 article-title: A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries publication-title: Appl Energy contributor: fullname: Dai – volume: 353 year: Jan. 2024 ident: bib24 article-title: Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method publication-title: Appl Energy contributor: fullname: Fu – volume: 227 year: Jul. 2021 ident: bib45 article-title: Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries publication-title: Energy contributor: fullname: Qian – volume: 73 year: Dec. 2023 ident: bib13 article-title: State of health estimation of lithium-ion batteries based on equivalent circuit model and data-driven method publication-title: J Energy Storage contributor: fullname: Chen – volume: 72 year: Nov. 2023 ident: bib51 article-title: State-of-health estimation of lithium-ion batteries using a novel dual-stage attention mechanism based recurrent neural network publication-title: J Energy Storage contributor: fullname: Wang – volume: 253 year: Nov. 2019 ident: bib17 article-title: Joint estimation of lithium-ion battery state of charge and capacity within an adaptive variable multi-timescale framework considering current measurement offset publication-title: Appl Energy contributor: fullname: Xu – volume: 67 year: Sep. 2023 ident: bib9 article-title: Data-driven battery capacity estimation based on partial discharging capacity curve for lithium-ion batteries publication-title: J Energy Storage contributor: fullname: Hu – volume: 349 year: Nov. 2023 ident: bib4 article-title: Evaluation of the safety standards system of power batteries for electric vehicles in China publication-title: Appl Energy contributor: fullname: Yu – volume: 176 start-page: 91 year: Jun. 2019 end-page: 102 ident: bib32 article-title: Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries publication-title: Energy contributor: fullname: Deng – volume: 60 year: Dec. 2023 ident: bib22 article-title: A review on rapid state of health estimation of lithium-ion batteries in electric vehicles publication-title: Sustain Energy Technol Assessments contributor: fullname: Ball – volume: 330 year: Jan. 2023 ident: bib42 article-title: Battery capacity estimation using 10-second relaxation voltage and a convolutional neural network publication-title: Appl Energy contributor: fullname: Zhang – volume: 25 year: May 2022 ident: bib43 article-title: Battery health evaluation using a short random segment of constant current charging publication-title: iScience contributor: fullname: Deng – volume: 397 year: Apr. 2023 ident: bib58 article-title: A Flexible deep convolutional neural network coupled with progressive training framework for online capacity estimation of lithium-ion batteries publication-title: J Clean Prod contributor: fullname: Chen – volume: 56 year: Dec. 2022 ident: bib20 article-title: Co-estimation of state of charge and state of health for 48 V battery system based on cubature Kalman filter and H-infinity publication-title: J Energy Storage contributor: fullname: Guo – volume: 73 year: Dec. 2023 ident: bib56 article-title: State of health estimation of lithium-ion batteries based on Mixers-bidirectional temporal convolutional neural network publication-title: J Energy Storage contributor: fullname: Wang – volume: 11 start-page: 4393 year: Aug. 2023 end-page: 4402 ident: bib37 article-title: State of health estimation of lithium-ion battery based on constant-voltage charging reconstruction publication-title: IEEE J. Emerg. Sel. Top. Power Electron. contributor: fullname: Li – volume: 353 year: Jan. 2024 ident: bib57 article-title: Early prediction of battery lifetime based on graphical features and convolutional neural networks publication-title: Appl Energy contributor: fullname: Yang – volume: 238 year: Mar. 2024 ident: bib23 article-title: A charging-feature-based estimation model for state of health of lithium-ion batteries publication-title: Expert Syst Appl contributor: fullname: Lin – volume: 7 start-page: 5141 year: Nov. 2021 end-page: 5161 ident: bib8 article-title: A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles publication-title: Energy Rep contributor: fullname: Ball – volume: 279 year: Sep. 2023 ident: bib47 article-title: Accurate state of health estimation for lithium-ion batteries under random charging scenarios publication-title: Energy contributor: fullname: Liu – volume: 283 year: Nov. 2023 ident: bib26 article-title: A novel state of health estimation method for lithium-ion batteries based on constant-voltage charging partial data and convolutional neural network publication-title: Energy contributor: fullname: Fan – volume: 242 year: Feb. 2024 ident: bib30 article-title: State-of-health estimation method for fast-charging lithium-ion batteries based on stacking ensemble sparse Gaussian process regression publication-title: Reliab Eng Syst Saf contributor: fullname: Bai – volume: 582 year: Oct. 2023 ident: bib3 article-title: State of health estimation method for lithium-ion batteries based on multiple dynamic operating conditions publication-title: J Power Sources contributor: fullname: Tang – volume: 356 year: Feb. 2024 ident: bib29 article-title: State-of-health estimation for lithium-ion battery via an evolutionary Stacking ensemble learning paradigm of random vector functional link and active-state-tracking long–short-term memory neural network publication-title: Appl Energy contributor: fullname: Zhang – volume: 64 year: Aug. 2023 ident: bib10 article-title: State of health estimation method for lithium-ion batteries using incremental capacity and long short-term memory network publication-title: J Energy Storage contributor: fullname: Zhang – volume: 9 year: Aug. 2020 ident: bib33 article-title: State of health estimation for lithium-ion batteries based on the constant current–constant voltage charging curve publication-title: Electronics contributor: fullname: Liu – volume: 72 year: Nov. 2023 ident: bib48 article-title: State of health estimation for lithium-ion batteries using Gaussian process regression-based data reconstruction method during random charging process publication-title: J Energy Storage contributor: fullname: Chen – volume: 49 year: May 2022 ident: bib1 article-title: A novel method of parameter identification and state of charge estimation for lithium-ion battery energy storage system publication-title: J Energy Storage contributor: fullname: Ball – volume: 127 year: Jan. 2024 ident: bib55 article-title: Lithium-ion battery state of health estimation using a hybrid model based on a convolutional neural network and bidirectional gated recurrent unit publication-title: Eng Appl Artif Intell contributor: fullname: Errahimi – volume: 332 year: Feb. 2023 ident: bib38 article-title: Capacity estimation of lithium-ion batteries based on optimized charging voltage section and virtual sample generation publication-title: Appl Energy contributor: fullname: Mehran – volume: 115 start-page: 219 year: Nov. 2016 end-page: 229 ident: bib19 article-title: An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model publication-title: Energy contributor: fullname: Chen – volume: 307 start-page: 308 year: Mar. 2016 end-page: 319 ident: bib27 article-title: Novel application of differential thermal voltammetry as an in-depth state-of-health diagnosis method for lithium-ion batteries publication-title: J Power Sources contributor: fullname: Offer – volume: 56 year: Dec. 2022 ident: bib5 article-title: Comprehensive co-estimation of lithium-ion battery state of charge, state of energy, state of power, maximum available capacity, and maximum available energy publication-title: J Energy Storage contributor: fullname: Adnan – volume: 167 start-page: 661 year: Jan. 2019 end-page: 669 ident: bib35 article-title: State of health estimation of lithium-ion batteries based on the constant voltage charging curve publication-title: Energy contributor: fullname: Qin – volume: 336 year: Apr. 2023 ident: bib36 article-title: Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging publication-title: Appl Energy contributor: fullname: He – volume: 586 year: Dec. 2023 ident: bib12 article-title: Rapid monitor of states of lithium-ion batteries through non-quasi-static electrochemical impedance spectroscopy and terminal voltage publication-title: J Power Sources contributor: fullname: Chen – volume: 257 year: Oct. 2022 ident: bib21 article-title: Data-driven battery state of health estimation based on interval capacity for real-world electric vehicles publication-title: Energy contributor: fullname: Chen – volume: 288 year: Feb. 2024 ident: bib40 article-title: A feature fusion-based convolutional neural network for battery state-of-health estimation with mining of partial voltage curve publication-title: Energy contributor: fullname: Yang – volume: 88 start-page: 409 year: Jan. 2024 end-page: 420 ident: bib54 article-title: A comparative study of data-driven battery capacity estimation based on partial charging curves publication-title: J Energy Chem contributor: fullname: Lin – volume: 240 year: Feb. 2022 ident: bib16 article-title: Co-estimating the state of charge and health of lithium batteries through combining a minimalist electrochemical model and an equivalent circuit model publication-title: Energy contributor: fullname: Zhang – year: 2023 ident: bib52 article-title: Multi-timescale feature extraction from multi-sensor data using deep neural network for battery state-of-charge and state-of-health Co-estimation publication-title: IEEE Trans. Transp. Electrification contributor: fullname: He – volume: 64 year: Aug. 2023 ident: bib6 article-title: Active acoustic emission sensing for fast co-estimation of state of charge and state of health of the lithium-ion battery publication-title: J Energy Storage contributor: fullname: Ball – volume: 281 year: 2023 ident: bib31 article-title: Rapid online health estimation for lithium-ion batteries based on partial constant-voltage charging segment publication-title: Energy contributor: fullname: Bian – volume: 11 start-page: 131 year: Feb. 2023 end-page: 142 ident: bib39 article-title: State of health estimation for lithium-ion battery via recursive feature elimination on partial charging curves publication-title: IEEE J. Emerg. Sel. Top. Power Electron. contributor: fullname: Lin – volume: 351 year: Dec. 2023 ident: bib44 article-title: Rapid and flexible battery capacity estimation using random short-time charging segments based on residual convolutional networks publication-title: Appl Energy contributor: fullname: Liu – volume: 576 year: Aug. 2023 ident: bib49 article-title: A simple feature extraction method for estimating the whole life cycle state of health of lithium-ion batteries using transformer-based neural network publication-title: J Power Sources contributor: fullname: Shi – volume: 73 year: Dec. 2023 ident: bib28 article-title: A feature extraction approach for state-of-health estimation of lithium-ion battery publication-title: J Energy Storage contributor: fullname: Wang – volume: 284 year: Dec. 2023 ident: bib14 article-title: A battery capacity estimation method based on the equivalent circuit model and quantile regression using vehicle real-world operation data publication-title: Energy contributor: fullname: Meng – volume: 69 start-page: 2684 year: Mar. 2022 end-page: 2696 ident: bib15 article-title: Co-estimation of state-of-charge and state-of- health for lithium-ion batteries using an enhanced electrochemical model publication-title: IEEE Trans Ind Electron contributor: fullname: Zhang – volume: 351 year: Dec. 2023 ident: bib7 article-title: Rapid and flexible battery capacity estimation using random short-time charging segments based on residual convolutional networks publication-title: Appl Energy contributor: fullname: Liu – volume: 185 start-page: 361 year: Oct. 2019 end-page: 371 ident: bib34 article-title: A novel capacity estimation method based on charging curve sections for lithium-ion batteries in electric vehicles publication-title: Energy contributor: fullname: Ouyang – volume: 282 year: Nov. 2023 ident: bib2 article-title: State of health estimation of lithium-ion batteries based on multi-health features extraction and improved long short-term memory neural network publication-title: Energy contributor: fullname: Pecht – volume: 284 year: 2023 ident: 10.1016/j.energy.2024.132541_bib14 article-title: A battery capacity estimation method based on the equivalent circuit model and quantile regression using vehicle real-world operation data publication-title: Energy doi: 10.1016/j.energy.2023.129126 contributor: fullname: Jiang – volume: 240 year: 2022 ident: 10.1016/j.energy.2024.132541_bib16 article-title: Co-estimating the state of charge and health of lithium batteries through combining a minimalist electrochemical model and an equivalent circuit model publication-title: Energy doi: 10.1016/j.energy.2021.122815 contributor: fullname: Xu – volume: 67 year: 2023 ident: 10.1016/j.energy.2024.132541_bib9 article-title: Data-driven battery capacity estimation based on partial discharging capacity curve for lithium-ion batteries publication-title: J Energy Storage doi: 10.1016/j.est.2023.107549 contributor: fullname: Peng – volume: 64 year: 2023 ident: 10.1016/j.energy.2024.132541_bib10 article-title: State of health estimation method for lithium-ion batteries using incremental capacity and long short-term memory network publication-title: J Energy Storage doi: 10.1016/j.est.2023.107063 contributor: fullname: Zhang – volume: 356 year: 2024 ident: 10.1016/j.energy.2024.132541_bib29 article-title: State-of-health estimation for lithium-ion battery via an evolutionary Stacking ensemble learning paradigm of random vector functional link and active-state-tracking long–short-term memory neural network publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.122417 contributor: fullname: Zhang – volume: 88 start-page: 409 year: 2024 ident: 10.1016/j.energy.2024.132541_bib54 article-title: A comparative study of data-driven battery capacity estimation based on partial charging curves publication-title: J Energy Chem doi: 10.1016/j.jechem.2023.09.025 contributor: fullname: Lin – volume: 73 year: 2023 ident: 10.1016/j.energy.2024.132541_bib56 article-title: State of health estimation of lithium-ion batteries based on Mixers-bidirectional temporal convolutional neural network publication-title: J Energy Storage doi: 10.1016/j.est.2023.109248 contributor: fullname: Gao – volume: 73 year: 2023 ident: 10.1016/j.energy.2024.132541_bib13 article-title: State of health estimation of lithium-ion batteries based on equivalent circuit model and data-driven method publication-title: J Energy Storage doi: 10.1016/j.est.2023.109195 contributor: fullname: Chen – volume: 351 year: 2023 ident: 10.1016/j.energy.2024.132541_bib44 article-title: Rapid and flexible battery capacity estimation using random short-time charging segments based on residual convolutional networks publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.121925 contributor: fullname: Liu – volume: 176 start-page: 91 year: 2019 ident: 10.1016/j.energy.2024.132541_bib32 article-title: Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries publication-title: Energy doi: 10.1016/j.energy.2019.03.177 contributor: fullname: Deng – year: 2023 ident: 10.1016/j.energy.2024.132541_bib52 article-title: Multi-timescale feature extraction from multi-sensor data using deep neural network for battery state-of-charge and state-of-health Co-estimation publication-title: IEEE Trans. Transp. Electrification contributor: fullname: Fan – volume: 586 year: 2023 ident: 10.1016/j.energy.2024.132541_bib12 article-title: Rapid monitor of states of lithium-ion batteries through non-quasi-static electrochemical impedance spectroscopy and terminal voltage publication-title: J Power Sources doi: 10.1016/j.jpowsour.2023.233641 contributor: fullname: Su – volume: 56 year: 2022 ident: 10.1016/j.energy.2024.132541_bib20 article-title: Co-estimation of state of charge and state of health for 48 V battery system based on cubature Kalman filter and H-infinity publication-title: J Energy Storage doi: 10.1016/j.est.2022.106052 contributor: fullname: Ning – volume: 330 year: 2023 ident: 10.1016/j.energy.2024.132541_bib42 article-title: Battery capacity estimation using 10-second relaxation voltage and a convolutional neural network publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.120308 contributor: fullname: Fan – volume: 257 year: 2022 ident: 10.1016/j.energy.2024.132541_bib21 article-title: Data-driven battery state of health estimation based on interval capacity for real-world electric vehicles publication-title: Energy doi: 10.1016/j.energy.2022.124771 contributor: fullname: Li – volume: 476 year: 2020 ident: 10.1016/j.energy.2024.132541_bib18 article-title: Online state of health and aging parameter estimation using a physics-based life model with a particle filter publication-title: J Power Sources doi: 10.1016/j.jpowsour.2020.228655 contributor: fullname: Bi – volume: 227 year: 2021 ident: 10.1016/j.energy.2024.132541_bib45 article-title: Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries publication-title: Energy doi: 10.1016/j.energy.2021.120333 contributor: fullname: Qian – volume: 576 year: 2023 ident: 10.1016/j.energy.2024.132541_bib49 article-title: A simple feature extraction method for estimating the whole life cycle state of health of lithium-ion batteries using transformer-based neural network publication-title: J Power Sources doi: 10.1016/j.jpowsour.2023.233139 contributor: fullname: Luo – volume: 582 year: 2023 ident: 10.1016/j.energy.2024.132541_bib3 article-title: State of health estimation method for lithium-ion batteries based on multiple dynamic operating conditions publication-title: J Power Sources doi: 10.1016/j.jpowsour.2023.233541 contributor: fullname: Yu – volume: 351 year: 2023 ident: 10.1016/j.energy.2024.132541_bib7 article-title: Rapid and flexible battery capacity estimation using random short-time charging segments based on residual convolutional networks publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.121925 contributor: fullname: Liu – volume: 185 start-page: 361 year: 2019 ident: 10.1016/j.energy.2024.132541_bib34 article-title: A novel capacity estimation method based on charging curve sections for lithium-ion batteries in electric vehicles publication-title: Energy doi: 10.1016/j.energy.2019.07.059 contributor: fullname: Zheng – volume: 349 year: 2023 ident: 10.1016/j.energy.2024.132541_bib4 article-title: Evaluation of the safety standards system of power batteries for electric vehicles in China publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.121674 contributor: fullname: Yu – volume: 64 year: 2023 ident: 10.1016/j.energy.2024.132541_bib25 article-title: Electric vehicle battery state of health estimation using Incremental Capacity Analysis publication-title: J Energy Storage doi: 10.1016/j.est.2023.107110 contributor: fullname: Gismero – volume: 25 issue: 5 year: 2022 ident: 10.1016/j.energy.2024.132541_bib43 article-title: Battery health evaluation using a short random segment of constant current charging publication-title: iScience doi: 10.1016/j.isci.2022.104260 contributor: fullname: Deng – volume: 397 year: 2023 ident: 10.1016/j.energy.2024.132541_bib58 article-title: A Flexible deep convolutional neural network coupled with progressive training framework for online capacity estimation of lithium-ion batteries publication-title: J Clean Prod doi: 10.1016/j.jclepro.2023.136575 contributor: fullname: Xue – volume: 49 year: 2022 ident: 10.1016/j.energy.2024.132541_bib1 article-title: A novel method of parameter identification and state of charge estimation for lithium-ion battery energy storage system publication-title: J Energy Storage doi: 10.1016/j.est.2022.104124 contributor: fullname: Wang – volume: 73 year: 2023 ident: 10.1016/j.energy.2024.132541_bib28 article-title: A feature extraction approach for state-of-health estimation of lithium-ion battery publication-title: J Energy Storage doi: 10.1016/j.est.2023.108871 contributor: fullname: Piao – volume: 332 year: 2023 ident: 10.1016/j.energy.2024.132541_bib38 article-title: Capacity estimation of lithium-ion batteries based on optimized charging voltage section and virtual sample generation publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.120516 contributor: fullname: Tian – volume: 69 start-page: 2684 issue: 3 year: 2022 ident: 10.1016/j.energy.2024.132541_bib15 article-title: Co-estimation of state-of-charge and state-of- health for lithium-ion batteries using an enhanced electrochemical model publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2021.3066946 contributor: fullname: Gao – volume: 232 year: 2023 ident: 10.1016/j.energy.2024.132541_bib50 article-title: State of health estimation for lithium-ion batteries based on hybrid attention and deep learning publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2022.109066 contributor: fullname: Zhao – volume: 336 year: 2023 ident: 10.1016/j.energy.2024.132541_bib36 article-title: Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.120751 contributor: fullname: Ruan – volume: 282 year: 2023 ident: 10.1016/j.energy.2024.132541_bib2 article-title: State of health estimation of lithium-ion batteries based on multi-health features extraction and improved long short-term memory neural network publication-title: Energy doi: 10.1016/j.energy.2023.128956 contributor: fullname: Peng – volume: 279 year: 2023 ident: 10.1016/j.energy.2024.132541_bib47 article-title: Accurate state of health estimation for lithium-ion batteries under random charging scenarios publication-title: Energy doi: 10.1016/j.energy.2023.128092 contributor: fullname: Shen – volume: 353 year: 2024 ident: 10.1016/j.energy.2024.132541_bib24 article-title: Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.121991 contributor: fullname: Fu – volume: 281 year: 2023 ident: 10.1016/j.energy.2024.132541_bib31 article-title: Rapid online health estimation for lithium-ion batteries based on partial constant-voltage charging segment publication-title: Energy doi: 10.1016/j.energy.2023.128320 contributor: fullname: Guo – volume: 72 year: 2023 ident: 10.1016/j.energy.2024.132541_bib48 article-title: State of health estimation for lithium-ion batteries using Gaussian process regression-based data reconstruction method during random charging process publication-title: J Energy Storage doi: 10.1016/j.est.2023.108390 contributor: fullname: Xiong – volume: 13 issue: 1 year: 2022 ident: 10.1016/j.energy.2024.132541_bib41 article-title: Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation publication-title: Nat Commun contributor: fullname: Zhu – volume: 11 start-page: 4393 issue: 4 year: 2023 ident: 10.1016/j.energy.2024.132541_bib37 article-title: State of health estimation of lithium-ion battery based on constant-voltage charging reconstruction publication-title: IEEE J. Emerg. Sel. Top. Power Electron. doi: 10.1109/JESTPE.2021.3098836 contributor: fullname: Ruan – volume: 353 year: 2024 ident: 10.1016/j.energy.2024.132541_bib57 article-title: Early prediction of battery lifetime based on graphical features and convolutional neural networks publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.122048 contributor: fullname: He – volume: 307 start-page: 308 year: 2016 ident: 10.1016/j.energy.2024.132541_bib27 article-title: Novel application of differential thermal voltammetry as an in-depth state-of-health diagnosis method for lithium-ion batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.12.122 contributor: fullname: Merla – volume: 64 year: 2023 ident: 10.1016/j.energy.2024.132541_bib6 article-title: Active acoustic emission sensing for fast co-estimation of state of charge and state of health of the lithium-ion battery publication-title: J Energy Storage doi: 10.1016/j.est.2023.107192 contributor: fullname: Wang – volume: 60 year: 2023 ident: 10.1016/j.energy.2024.132541_bib22 article-title: A review on rapid state of health estimation of lithium-ion batteries in electric vehicles publication-title: Sustain Energy Technol Assessments contributor: fullname: Wang – volume: 127 year: 2024 ident: 10.1016/j.energy.2024.132541_bib55 article-title: Lithium-ion battery state of health estimation using a hybrid model based on a convolutional neural network and bidirectional gated recurrent unit publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.107199 contributor: fullname: Mazzi – volume: 167 start-page: 661 year: 2019 ident: 10.1016/j.energy.2024.132541_bib35 article-title: State of health estimation of lithium-ion batteries based on the constant voltage charging curve publication-title: Energy doi: 10.1016/j.energy.2018.11.008 contributor: fullname: Wang – volume: 242 year: 2024 ident: 10.1016/j.energy.2024.132541_bib30 article-title: State-of-health estimation method for fast-charging lithium-ion batteries based on stacking ensemble sparse Gaussian process regression publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2023.109787 contributor: fullname: Li – volume: 56 year: 2022 ident: 10.1016/j.energy.2024.132541_bib5 article-title: Comprehensive co-estimation of lithium-ion battery state of charge, state of energy, state of power, maximum available capacity, and maximum available energy publication-title: J Energy Storage doi: 10.1016/j.est.2022.106049 contributor: fullname: Shrivastava – volume: 72 year: 2023 ident: 10.1016/j.energy.2024.132541_bib51 article-title: State-of-health estimation of lithium-ion batteries using a novel dual-stage attention mechanism based recurrent neural network publication-title: J Energy Storage doi: 10.1016/j.est.2023.109297 contributor: fullname: Hong – volume: 115 start-page: 219 year: 2016 ident: 10.1016/j.energy.2024.132541_bib19 article-title: An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model publication-title: Energy doi: 10.1016/j.energy.2016.08.109 contributor: fullname: Zhang – volume: 238 year: 2024 ident: 10.1016/j.energy.2024.132541_bib23 article-title: A charging-feature-based estimation model for state of health of lithium-ion batteries publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.122034 contributor: fullname: Cai – volume: 253 year: 2019 ident: 10.1016/j.energy.2024.132541_bib17 article-title: Joint estimation of lithium-ion battery state of charge and capacity within an adaptive variable multi-timescale framework considering current measurement offset publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113619 contributor: fullname: Jiang – volume: 283 year: 2023 ident: 10.1016/j.energy.2024.132541_bib26 article-title: A novel state of health estimation method for lithium-ion batteries based on constant-voltage charging partial data and convolutional neural network publication-title: Energy doi: 10.1016/j.energy.2023.129103 contributor: fullname: Chen – volume: 269 year: 2020 ident: 10.1016/j.energy.2024.132541_bib53 article-title: Incremental capacity analysis based adaptive capacity estimation for lithium-ion battery considering charging condition publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115074 contributor: fullname: Jiang – volume: 7 start-page: 5141 year: 2021 ident: 10.1016/j.energy.2024.132541_bib8 article-title: A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles publication-title: Energy Rep doi: 10.1016/j.egyr.2021.08.113 contributor: fullname: Wang – volume: 11 start-page: 131 issue: 1 year: 2023 ident: 10.1016/j.energy.2024.132541_bib39 article-title: State of health estimation for lithium-ion battery via recursive feature elimination on partial charging curves publication-title: IEEE J. Emerg. Sel. Top. Power Electron. doi: 10.1109/JESTPE.2022.3177451 contributor: fullname: Wu – volume: 263 year: 2023 ident: 10.1016/j.energy.2024.132541_bib46 article-title: An adaptive capacity estimation approach for lithium-ion battery using 10-min relaxation voltage within high state of charge range publication-title: Energy doi: 10.1016/j.energy.2022.125802 contributor: fullname: Jiang – volume: 288 year: 2024 ident: 10.1016/j.energy.2024.132541_bib40 article-title: A feature fusion-based convolutional neural network for battery state-of-health estimation with mining of partial voltage curve publication-title: Energy doi: 10.1016/j.energy.2023.129690 contributor: fullname: Lu – volume: 9 issue: 8 year: 2020 ident: 10.1016/j.energy.2024.132541_bib33 article-title: State of health estimation for lithium-ion batteries based on the constant current–constant voltage charging curve publication-title: Electronics doi: 10.3390/electronics9081279 contributor: fullname: Xiao – volume: 322 year: 2022 ident: 10.1016/j.energy.2024.132541_bib11 article-title: A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.119502 contributor: fullname: Jiang |
SSID | ssj0005899 |
Score | 2.5002902 |
Snippet | The accurate lithium-ion battery capacity estimation is vital for ensuring the safe and reliable operation of battery-powered systems. Existing data-driven... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 132541 |
SubjectTerms | Capacity estimation Convolutional neural network Lithium-ion battery Random and short-duration charging voltages |
Title | Adaptable capacity estimation of lithium-ion battery based on short-duration random constant-current charging voltages and convolutional neural networks |
URI | https://dx.doi.org/10.1016/j.energy.2024.132541 |
Volume | 306 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FD3oRrYr1UXLwGruP7OtYSktV6MUKvS2bF63QB-5W8OLv8Oc6k-xiBfHgaUmYQJiZnW8GZr4QcouM4qkxGfNSxRmPTMxEUoBBUhWpMBSeMbbbYhKPn_nDLJq1yKCZhcG2yjr2u5huo3W906u12dssFr0niL2Qb3DEJEhSIqTd5gB_4NN3HzttHql9QxKFGUo343O2x0vb-TqoEgN-B2VZxP3f4WkHckbH5KjOFWnfXeeEtPSqTQ6aUeKyTc6H32NqIFj_p-Up-eyrYlPhVBSVgIYSUm2KdBpuTpGuDYXse77YLhkuheXYfKeIaIrCRjmHpJyprfMOCnCm1ksqXSpZMek4nahlWQLooxDiKohLJQVBFHur_RnuhHyZ9mO7zcszMh0Np4Mxq99gYBKUWjFAOOHHIsuKWBQmAAWHWSiSuAB9cmk8iS_VS-OnyIoTZNqL07DQXgFVJmwl4TnZW61X-oLQwigvNIHmUknOhRaJwEF8nvqehpop6BDWaD7fOKaNvGlBe8mdpXK0VO4s1SFJY578h8fkAAZ_nrz898krcogrxC4_uiZ71etW30BSUomu9bou2e_fP44nXyAI5Vw |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgQxEC1cDnoRV9zNwWucXtLbcRBl3ObiCN6azoYjODPYPYJ_4udalXSjgnjw1HS6Ak0qqfcK6lUATqmjeG5twYNcCy4Sm3KZVeiQXCc6jmVgrau2GKaDB3H9mDwuwHmnhaGyyjb2-5juonU70mtXszcbj3v3GHuRbwjCJCQpSboIy8gGCjydy_2rm8Hwq9Ijd9dIkj2nCZ2CzpV5GSexw0QxEmeYmSUi_B2hvqHO5TqstXSR9f0fbcCCmWzCSqcmrjdh5-JLqYaG7VGtt-Cjr6tZQ8IophAQFbJtRh01vFSRTS1DAv40nr9wepWuzeY7I1DTDAfqJ-TlXM_9BmGIaHr6wpRnkw1Xvq0Tc42WEP0YRrkGQ1PN0JDM3totjf9ELTPdwxWc19swurwYnQ94ew0DV7iuDUeQk2Eqi6JKZWUjkZCcV2ZphesplA0UXVavbJhTY5yoMEGax5UJKkw0cSiLd2BpMp2YXWCV1UFsIyOUVkJIIzNJWnyRh4HBtCnaA96tfDnzzTbKrgrtufSeKslTpffUHmSde8ofm6ZEPPhz5v6_Z57AymB0d1veXg1vDmCVvhCUhckhLDWvc3OEHKWRx-0e_AQAt-gQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptable+capacity+estimation+of+lithium-ion+battery+based+on+short-duration+random+constant-current+charging+voltages+and+convolutional+neural+networks&rft.jtitle=Energy+%28Oxford%29&rft.au=Wang%2C+Zuolu&rft.au=Zhao%2C+Xiaoyu&rft.au=Zhen%2C+Dong&rft.au=Pombo%2C+Jo%C3%A3o&rft.date=2024-10-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=306&rft_id=info:doi/10.1016%2Fj.energy.2024.132541&rft.externalDocID=S0360544224023156 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |