Adaptable capacity estimation of lithium-ion battery based on short-duration random constant-current charging voltages and convolutional neural networks

The accurate lithium-ion battery capacity estimation is vital for ensuring the safe and reliable operation of battery-powered systems. Existing data-driven methods heavily rely on fixed charging stages for feature extractions, posing significant limitations in real-world applications. This paper pro...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 306; p. 132541
Main Authors Wang, Zuolu, Zhao, Xiaoyu, Zhen, Dong, Pombo, João, Yang, Wenxian, Gu, Fengshou, Ball, Andrew
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The accurate lithium-ion battery capacity estimation is vital for ensuring the safe and reliable operation of battery-powered systems. Existing data-driven methods heavily rely on fixed charging stages for feature extractions, posing significant limitations in real-world applications. This paper proposes an adaptable capacity estimation approach utilising short-duration random charging voltages during the constant-current charging stage and leveraging convolutional neural networks (CNNs). Based on the user-friendly “Vstart−tend” strategy, two health features including charging voltage and its increment are firstly extracted from random charging segments. Secondly, a feature evolution pattern analysis over the battery's lifespan is proposed to divide the charging voltage range for robust model development. An optimal combination of both the sampling interval and data length is determined for the feature extraction. Then, a two-dimensional CNN model is developed to effectively learn ageing-related knowledge from various random charging segments in a specific charging voltage range. The effectiveness of the proposed approach is ultimately verified using two distinct types of batteries across three operational temperatures. The results demonstrate that the proposed approach show much potential as a promising capacity estimation technique utilising a 600 s random charging segment sampled at a 20 s interval. •Adaptable battery capacity estimation is achieved using random short-duration charging voltages.•Feature evolution analysis is proposed to guide feature extraction and model development.•2D-CNN model is developed for diverse random inputs and accurate capacity estimation.•The model's effectiveness is validated on two types of batteries at three working conditions.
AbstractList The accurate lithium-ion battery capacity estimation is vital for ensuring the safe and reliable operation of battery-powered systems. Existing data-driven methods heavily rely on fixed charging stages for feature extractions, posing significant limitations in real-world applications. This paper proposes an adaptable capacity estimation approach utilising short-duration random charging voltages during the constant-current charging stage and leveraging convolutional neural networks (CNNs). Based on the user-friendly “Vstart−tend” strategy, two health features including charging voltage and its increment are firstly extracted from random charging segments. Secondly, a feature evolution pattern analysis over the battery's lifespan is proposed to divide the charging voltage range for robust model development. An optimal combination of both the sampling interval and data length is determined for the feature extraction. Then, a two-dimensional CNN model is developed to effectively learn ageing-related knowledge from various random charging segments in a specific charging voltage range. The effectiveness of the proposed approach is ultimately verified using two distinct types of batteries across three operational temperatures. The results demonstrate that the proposed approach show much potential as a promising capacity estimation technique utilising a 600 s random charging segment sampled at a 20 s interval. •Adaptable battery capacity estimation is achieved using random short-duration charging voltages.•Feature evolution analysis is proposed to guide feature extraction and model development.•2D-CNN model is developed for diverse random inputs and accurate capacity estimation.•The model's effectiveness is validated on two types of batteries at three working conditions.
ArticleNumber 132541
Author Gu, Fengshou
Ball, Andrew
Wang, Zuolu
Zhen, Dong
Pombo, João
Zhao, Xiaoyu
Yang, Wenxian
Author_xml – sequence: 1
  givenname: Zuolu
  orcidid: 0000-0003-0076-613X
  surname: Wang
  fullname: Wang, Zuolu
  organization: Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield, HD1 3DH, UK
– sequence: 2
  givenname: Xiaoyu
  orcidid: 0000-0003-2574-2791
  surname: Zhao
  fullname: Zhao, Xiaoyu
  organization: Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield, HD1 3DH, UK
– sequence: 3
  givenname: Dong
  surname: Zhen
  fullname: Zhen, Dong
  organization: Tianjin Key Laboratory of Power Transmission and Safety Technology for New Energy Vehicles, School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, PR China
– sequence: 4
  givenname: João
  orcidid: 0000-0002-5877-1989
  surname: Pombo
  fullname: Pombo, João
  organization: Institute of Railway Research, University of Huddersfield, HD1 3DH, UK
– sequence: 5
  givenname: Wenxian
  orcidid: 0000-0002-1122-2990
  surname: Yang
  fullname: Yang, Wenxian
  organization: Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield, HD1 3DH, UK
– sequence: 6
  givenname: Fengshou
  surname: Gu
  fullname: Gu, Fengshou
  email: f.gu@hud.ac.uk
  organization: Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield, HD1 3DH, UK
– sequence: 7
  givenname: Andrew
  surname: Ball
  fullname: Ball, Andrew
  organization: Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield, HD1 3DH, UK
BookMark eNp9kE1qwzAQhbVIoUnbG3ShCziVLNmxN4UQ-geBbrIXY3mcKHWkIMkpuUmPWxl33dVjhvceM9-CzKyzSMgjZ0vOePl0XKJFv78uc5bLJRd5IfmMzJkoWVZImd-SRQhHxlhR1fWc_KxbOEdoeqQazqBNvFIM0ZwgGmep62hv4sEMp2wcG4gR_TVpwJamRTg4H7N28JPdg23diWpnQwQbMz14jzZSfQC_N3ZPL66PsMdAk3G0pXkYk9BTi6lllPjt_Fe4Jzcd9AEf_vSO7F5fdpv3bPv59rFZbzOdCx4zwUTDy6auoWygy2XBRC2aVQnpX6k7pnlCoDterURV5DWyshKADKQs02ol7oicarV3IXjs1Nmn5_1VcaZGoOqoJqBqBKomoCn2PMUwnXYx6FXQBq3G1njUUbXO_F_wC146iNQ
Cites_doi 10.1016/j.energy.2023.129126
10.1016/j.energy.2021.122815
10.1016/j.est.2023.107549
10.1016/j.est.2023.107063
10.1016/j.apenergy.2023.122417
10.1016/j.jechem.2023.09.025
10.1016/j.est.2023.109248
10.1016/j.est.2023.109195
10.1016/j.apenergy.2023.121925
10.1016/j.energy.2019.03.177
10.1016/j.jpowsour.2023.233641
10.1016/j.est.2022.106052
10.1016/j.apenergy.2022.120308
10.1016/j.energy.2022.124771
10.1016/j.jpowsour.2020.228655
10.1016/j.energy.2021.120333
10.1016/j.jpowsour.2023.233139
10.1016/j.jpowsour.2023.233541
10.1016/j.energy.2019.07.059
10.1016/j.apenergy.2023.121674
10.1016/j.est.2023.107110
10.1016/j.isci.2022.104260
10.1016/j.jclepro.2023.136575
10.1016/j.est.2022.104124
10.1016/j.est.2023.108871
10.1016/j.apenergy.2022.120516
10.1109/TIE.2021.3066946
10.1016/j.ress.2022.109066
10.1016/j.apenergy.2023.120751
10.1016/j.energy.2023.128956
10.1016/j.energy.2023.128092
10.1016/j.apenergy.2023.121991
10.1016/j.energy.2023.128320
10.1016/j.est.2023.108390
10.1109/JESTPE.2021.3098836
10.1016/j.apenergy.2023.122048
10.1016/j.jpowsour.2015.12.122
10.1016/j.est.2023.107192
10.1016/j.engappai.2023.107199
10.1016/j.energy.2018.11.008
10.1016/j.ress.2023.109787
10.1016/j.est.2022.106049
10.1016/j.est.2023.109297
10.1016/j.energy.2016.08.109
10.1016/j.eswa.2023.122034
10.1016/j.apenergy.2019.113619
10.1016/j.energy.2023.129103
10.1016/j.apenergy.2020.115074
10.1016/j.egyr.2021.08.113
10.1109/JESTPE.2022.3177451
10.1016/j.energy.2022.125802
10.1016/j.energy.2023.129690
10.3390/electronics9081279
10.1016/j.apenergy.2022.119502
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.energy.2024.132541
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2024_132541
S0360544224023156
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAQXK
AAXKI
AAYXX
ABFNM
ABXDB
ADMUD
AFJKZ
AHHHB
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
G8K
HVGLF
HZ~
R2-
SAC
WUQ
ID FETCH-LOGICAL-c231t-303b16b99a6baf2450393b76a3604cf0c1132cf18738529e0683ae0a44687373
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Wed Oct 16 15:31:06 EDT 2024
Sat Aug 17 15:40:28 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion battery
Random and short-duration charging voltages
Convolutional neural network
Capacity estimation
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c231t-303b16b99a6baf2450393b76a3604cf0c1132cf18738529e0683ae0a44687373
ORCID 0000-0003-2574-2791
0000-0002-1122-2990
0000-0003-0076-613X
0000-0002-5877-1989
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0360544224023156
ParticipantIDs crossref_primary_10_1016_j_energy_2024_132541
elsevier_sciencedirect_doi_10_1016_j_energy_2024_132541
PublicationCentury 2000
PublicationDate 2024-10-15
PublicationDateYYYYMMDD 2024-10-15
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Qian (bib45) Jul. 2021; 227
Gismero, Nørregaard, Johnsen, Stenhøj, Stroe, Schaltz (bib25) Aug. 2023; 64
Wu, Su, Meng, Lin (bib39) Feb. 2023; 11
Zheng, Wang, Qin, Lu, Han, Ouyang (bib34) Oct. 2019; 185
Wang, Zeng, Guo, Qin (bib35) Jan. 2019; 167
Luo, Zheng, Shi (bib49) Aug. 2023; 576
Fu (bib24) Jan. 2024; 353
He, Wang, Lu, Chai, Yang (bib57) Jan. 2024; 353
Zhang (bib10) Aug. 2023; 64
Merla, Wu, Yufit, Brandon, Martinez-Botas, Offer (bib27) Mar. 2016; 307
Chen (bib13) Dec. 2023; 73
Zhu (bib41) Apr. 2022; 13
Peng, Sun, Liu, Yu, Kan, Pecht (bib2) Nov. 2023; 282
Xue, Li, Xiao, Chai, Liu, Chen (bib58) Apr. 2023; 397
Tian, Dong, Tian, Li, Li, Mehran (bib38) Feb. 2023; 332
Bi, Yin, Choe (bib18) Nov. 2020; 476
Liu (bib44) Dec. 2023; 351
Hong, Chen, Chai, Lin, Wang (bib51) Nov. 2023; 72
Fan, Zhang, Zou, He (bib52) 2023
Jiang, Zhu, Zhu, Wei, Dai (bib46) Jan. 2023; 263
Wang, Feng, Zhen, Gu, Ball (bib8) Nov. 2021; 7
Lin (bib54) Jan. 2024; 88
Su, Chen (bib12) Dec. 2023; 586
Jiang, Dai, Wei (bib53) Jul. 2020; 269
Ruan, Wei, Shang, Wang, He (bib36) Apr. 2023; 336
Jiang, Meng (bib14) Dec. 2023; 284
Xu, Wang, Lund, Zhang (bib16) Feb. 2022; 240
Zhang, Wang, Yang, Chen (bib19) Nov. 2016; 115
Yu, Nie, Liu, Li, Tang (bib3) Oct. 2023; 582
Zhang (bib29) Feb. 2024; 356
Wang, Zhao, Zhang, Zhen, Gu, Ball (bib6) Aug. 2023; 64
Deng (bib43) May 2022; 25
Li, Min, Zhang, Zhang, Zuo, Bai (bib30) Feb. 2024; 242
Shrivastava, Soon, Idris, Mekhilef, Adnan (bib5) Dec. 2022; 56
Jiang, Dai, Wei, Xu (bib17) Nov. 2019; 253
Piao, Sun, Chen, Liu, Wang (bib28) Dec. 2023; 73
Fan, Zhang (bib42) Jan. 2023; 330
Xiong, Wang, Li, Chen (bib48) Nov. 2023; 72
Liu (bib7) Dec. 2023; 351
Chen, Liang, Yuan, Yang, Xu, Fan (bib26) Nov. 2023; 283
Deng (bib32) Jun. 2019; 176
Yu (bib4) Nov. 2023; 349
Gao, Yang, Wang, Li, Wang, Wang (bib56) Dec. 2023; 73
Ning, Deng, Li, Liu, Guo (bib20) Dec. 2022; 56
Peng, Deng, Bao, Hu (bib9) Sep. 2023; 67
Wang, Feng, Liu, Gu, Ball (bib1) May 2022; 49
Ruan, He, Wei, Quan, Li (bib37) Aug. 2023; 11
Xiao, Xiao, Liu (bib33) Aug. 2020; 9
Shen, Ma, Shu, Shen, Chen, Liu (bib47) Sep. 2023; 279
Li, Hong, Zhang, Chen (bib21) Oct. 2022; 257
Zhao, Chen, Shu, Shen, Lei, Zhang (bib50) Apr. 2023; 232
Lu, Fei, Wang, Yang (bib40) Feb. 2024; 288
Guo, Yang, Deng, Li, Bian (bib31) 2023; 281
Cai, Lin (bib23) Mar. 2024; 238
Gao, Liu, Zhu, Zhang, Zhang (bib15) Mar. 2022; 69
Wang, Zhao, Fu, Zhen, Gu, Ball (bib22) Dec. 2023; 60
Mazzi, Ben Sassi, Errahimi (bib55) Jan. 2024; 127
Jiang, Zhu, Wang, Wei, Shang, Dai (bib11) Sep. 2022; 322
Shen (10.1016/j.energy.2024.132541_bib47) 2023; 279
Jiang (10.1016/j.energy.2024.132541_bib14) 2023; 284
Zhu (10.1016/j.energy.2024.132541_bib41) 2022; 13
Su (10.1016/j.energy.2024.132541_bib12) 2023; 586
Gao (10.1016/j.energy.2024.132541_bib15) 2022; 69
Guo (10.1016/j.energy.2024.132541_bib31) 2023; 281
Liu (10.1016/j.energy.2024.132541_bib7) 2023; 351
He (10.1016/j.energy.2024.132541_bib57) 2024; 353
Chen (10.1016/j.energy.2024.132541_bib26) 2023; 283
Peng (10.1016/j.energy.2024.132541_bib2) 2023; 282
Bi (10.1016/j.energy.2024.132541_bib18) 2020; 476
Xue (10.1016/j.energy.2024.132541_bib58) 2023; 397
Gao (10.1016/j.energy.2024.132541_bib56) 2023; 73
Xiao (10.1016/j.energy.2024.132541_bib33) 2020; 9
Qian (10.1016/j.energy.2024.132541_bib45) 2021; 227
Shrivastava (10.1016/j.energy.2024.132541_bib5) 2022; 56
Ruan (10.1016/j.energy.2024.132541_bib37) 2023; 11
Zheng (10.1016/j.energy.2024.132541_bib34) 2019; 185
Xu (10.1016/j.energy.2024.132541_bib16) 2022; 240
Fan (10.1016/j.energy.2024.132541_bib52) 2023
Fu (10.1016/j.energy.2024.132541_bib24) 2024; 353
Deng (10.1016/j.energy.2024.132541_bib32) 2019; 176
Luo (10.1016/j.energy.2024.132541_bib49) 2023; 576
Jiang (10.1016/j.energy.2024.132541_bib11) 2022; 322
Lin (10.1016/j.energy.2024.132541_bib54) 2024; 88
Wang (10.1016/j.energy.2024.132541_bib35) 2019; 167
Wang (10.1016/j.energy.2024.132541_bib6) 2023; 64
Chen (10.1016/j.energy.2024.132541_bib13) 2023; 73
Wang (10.1016/j.energy.2024.132541_bib1) 2022; 49
Zhao (10.1016/j.energy.2024.132541_bib50) 2023; 232
Jiang (10.1016/j.energy.2024.132541_bib46) 2023; 263
Wang (10.1016/j.energy.2024.132541_bib22) 2023; 60
Hong (10.1016/j.energy.2024.132541_bib51) 2023; 72
Xiong (10.1016/j.energy.2024.132541_bib48) 2023; 72
Tian (10.1016/j.energy.2024.132541_bib38) 2023; 332
Deng (10.1016/j.energy.2024.132541_bib43) 2022; 25
Gismero (10.1016/j.energy.2024.132541_bib25) 2023; 64
Jiang (10.1016/j.energy.2024.132541_bib17) 2019; 253
Jiang (10.1016/j.energy.2024.132541_bib53) 2020; 269
Piao (10.1016/j.energy.2024.132541_bib28) 2023; 73
Merla (10.1016/j.energy.2024.132541_bib27) 2016; 307
Peng (10.1016/j.energy.2024.132541_bib9) 2023; 67
Zhang (10.1016/j.energy.2024.132541_bib19) 2016; 115
Zhang (10.1016/j.energy.2024.132541_bib29) 2024; 356
Yu (10.1016/j.energy.2024.132541_bib4) 2023; 349
Yu (10.1016/j.energy.2024.132541_bib3) 2023; 582
Li (10.1016/j.energy.2024.132541_bib21) 2022; 257
Wang (10.1016/j.energy.2024.132541_bib8) 2021; 7
Ning (10.1016/j.energy.2024.132541_bib20) 2022; 56
Liu (10.1016/j.energy.2024.132541_bib44) 2023; 351
Mazzi (10.1016/j.energy.2024.132541_bib55) 2024; 127
Cai (10.1016/j.energy.2024.132541_bib23) 2024; 238
Wu (10.1016/j.energy.2024.132541_bib39) 2023; 11
Zhang (10.1016/j.energy.2024.132541_bib10) 2023; 64
Ruan (10.1016/j.energy.2024.132541_bib36) 2023; 336
Li (10.1016/j.energy.2024.132541_bib30) 2024; 242
Lu (10.1016/j.energy.2024.132541_bib40) 2024; 288
Fan (10.1016/j.energy.2024.132541_bib42) 2023; 330
References_xml – volume: 476
  year: Nov. 2020
  ident: bib18
  article-title: Online state of health and aging parameter estimation using a physics-based life model with a particle filter
  publication-title: J Power Sources
  contributor:
    fullname: Choe
– volume: 232
  year: Apr. 2023
  ident: bib50
  article-title: State of health estimation for lithium-ion batteries based on hybrid attention and deep learning
  publication-title: Reliab Eng Syst Saf
  contributor:
    fullname: Zhang
– volume: 13
  year: Apr. 2022
  ident: bib41
  article-title: Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation
  publication-title: Nat Commun
  contributor:
    fullname: Zhu
– volume: 263
  year: Jan. 2023
  ident: bib46
  article-title: An adaptive capacity estimation approach for lithium-ion battery using 10-min relaxation voltage within high state of charge range
  publication-title: Energy
  contributor:
    fullname: Dai
– volume: 269
  year: Jul. 2020
  ident: bib53
  article-title: Incremental capacity analysis based adaptive capacity estimation for lithium-ion battery considering charging condition
  publication-title: Appl Energy
  contributor:
    fullname: Wei
– volume: 64
  year: Aug. 2023
  ident: bib25
  article-title: Electric vehicle battery state of health estimation using Incremental Capacity Analysis
  publication-title: J Energy Storage
  contributor:
    fullname: Schaltz
– volume: 322
  year: Sep. 2022
  ident: bib11
  article-title: A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries
  publication-title: Appl Energy
  contributor:
    fullname: Dai
– volume: 353
  year: Jan. 2024
  ident: bib24
  article-title: Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method
  publication-title: Appl Energy
  contributor:
    fullname: Fu
– volume: 227
  year: Jul. 2021
  ident: bib45
  article-title: Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries
  publication-title: Energy
  contributor:
    fullname: Qian
– volume: 73
  year: Dec. 2023
  ident: bib13
  article-title: State of health estimation of lithium-ion batteries based on equivalent circuit model and data-driven method
  publication-title: J Energy Storage
  contributor:
    fullname: Chen
– volume: 72
  year: Nov. 2023
  ident: bib51
  article-title: State-of-health estimation of lithium-ion batteries using a novel dual-stage attention mechanism based recurrent neural network
  publication-title: J Energy Storage
  contributor:
    fullname: Wang
– volume: 253
  year: Nov. 2019
  ident: bib17
  article-title: Joint estimation of lithium-ion battery state of charge and capacity within an adaptive variable multi-timescale framework considering current measurement offset
  publication-title: Appl Energy
  contributor:
    fullname: Xu
– volume: 67
  year: Sep. 2023
  ident: bib9
  article-title: Data-driven battery capacity estimation based on partial discharging capacity curve for lithium-ion batteries
  publication-title: J Energy Storage
  contributor:
    fullname: Hu
– volume: 349
  year: Nov. 2023
  ident: bib4
  article-title: Evaluation of the safety standards system of power batteries for electric vehicles in China
  publication-title: Appl Energy
  contributor:
    fullname: Yu
– volume: 176
  start-page: 91
  year: Jun. 2019
  end-page: 102
  ident: bib32
  article-title: Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries
  publication-title: Energy
  contributor:
    fullname: Deng
– volume: 60
  year: Dec. 2023
  ident: bib22
  article-title: A review on rapid state of health estimation of lithium-ion batteries in electric vehicles
  publication-title: Sustain Energy Technol Assessments
  contributor:
    fullname: Ball
– volume: 330
  year: Jan. 2023
  ident: bib42
  article-title: Battery capacity estimation using 10-second relaxation voltage and a convolutional neural network
  publication-title: Appl Energy
  contributor:
    fullname: Zhang
– volume: 25
  year: May 2022
  ident: bib43
  article-title: Battery health evaluation using a short random segment of constant current charging
  publication-title: iScience
  contributor:
    fullname: Deng
– volume: 397
  year: Apr. 2023
  ident: bib58
  article-title: A Flexible deep convolutional neural network coupled with progressive training framework for online capacity estimation of lithium-ion batteries
  publication-title: J Clean Prod
  contributor:
    fullname: Chen
– volume: 56
  year: Dec. 2022
  ident: bib20
  article-title: Co-estimation of state of charge and state of health for 48 V battery system based on cubature Kalman filter and H-infinity
  publication-title: J Energy Storage
  contributor:
    fullname: Guo
– volume: 73
  year: Dec. 2023
  ident: bib56
  article-title: State of health estimation of lithium-ion batteries based on Mixers-bidirectional temporal convolutional neural network
  publication-title: J Energy Storage
  contributor:
    fullname: Wang
– volume: 11
  start-page: 4393
  year: Aug. 2023
  end-page: 4402
  ident: bib37
  article-title: State of health estimation of lithium-ion battery based on constant-voltage charging reconstruction
  publication-title: IEEE J. Emerg. Sel. Top. Power Electron.
  contributor:
    fullname: Li
– volume: 353
  year: Jan. 2024
  ident: bib57
  article-title: Early prediction of battery lifetime based on graphical features and convolutional neural networks
  publication-title: Appl Energy
  contributor:
    fullname: Yang
– volume: 238
  year: Mar. 2024
  ident: bib23
  article-title: A charging-feature-based estimation model for state of health of lithium-ion batteries
  publication-title: Expert Syst Appl
  contributor:
    fullname: Lin
– volume: 7
  start-page: 5141
  year: Nov. 2021
  end-page: 5161
  ident: bib8
  article-title: A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles
  publication-title: Energy Rep
  contributor:
    fullname: Ball
– volume: 279
  year: Sep. 2023
  ident: bib47
  article-title: Accurate state of health estimation for lithium-ion batteries under random charging scenarios
  publication-title: Energy
  contributor:
    fullname: Liu
– volume: 283
  year: Nov. 2023
  ident: bib26
  article-title: A novel state of health estimation method for lithium-ion batteries based on constant-voltage charging partial data and convolutional neural network
  publication-title: Energy
  contributor:
    fullname: Fan
– volume: 242
  year: Feb. 2024
  ident: bib30
  article-title: State-of-health estimation method for fast-charging lithium-ion batteries based on stacking ensemble sparse Gaussian process regression
  publication-title: Reliab Eng Syst Saf
  contributor:
    fullname: Bai
– volume: 582
  year: Oct. 2023
  ident: bib3
  article-title: State of health estimation method for lithium-ion batteries based on multiple dynamic operating conditions
  publication-title: J Power Sources
  contributor:
    fullname: Tang
– volume: 356
  year: Feb. 2024
  ident: bib29
  article-title: State-of-health estimation for lithium-ion battery via an evolutionary Stacking ensemble learning paradigm of random vector functional link and active-state-tracking long–short-term memory neural network
  publication-title: Appl Energy
  contributor:
    fullname: Zhang
– volume: 64
  year: Aug. 2023
  ident: bib10
  article-title: State of health estimation method for lithium-ion batteries using incremental capacity and long short-term memory network
  publication-title: J Energy Storage
  contributor:
    fullname: Zhang
– volume: 9
  year: Aug. 2020
  ident: bib33
  article-title: State of health estimation for lithium-ion batteries based on the constant current–constant voltage charging curve
  publication-title: Electronics
  contributor:
    fullname: Liu
– volume: 72
  year: Nov. 2023
  ident: bib48
  article-title: State of health estimation for lithium-ion batteries using Gaussian process regression-based data reconstruction method during random charging process
  publication-title: J Energy Storage
  contributor:
    fullname: Chen
– volume: 49
  year: May 2022
  ident: bib1
  article-title: A novel method of parameter identification and state of charge estimation for lithium-ion battery energy storage system
  publication-title: J Energy Storage
  contributor:
    fullname: Ball
– volume: 127
  year: Jan. 2024
  ident: bib55
  article-title: Lithium-ion battery state of health estimation using a hybrid model based on a convolutional neural network and bidirectional gated recurrent unit
  publication-title: Eng Appl Artif Intell
  contributor:
    fullname: Errahimi
– volume: 332
  year: Feb. 2023
  ident: bib38
  article-title: Capacity estimation of lithium-ion batteries based on optimized charging voltage section and virtual sample generation
  publication-title: Appl Energy
  contributor:
    fullname: Mehran
– volume: 115
  start-page: 219
  year: Nov. 2016
  end-page: 229
  ident: bib19
  article-title: An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model
  publication-title: Energy
  contributor:
    fullname: Chen
– volume: 307
  start-page: 308
  year: Mar. 2016
  end-page: 319
  ident: bib27
  article-title: Novel application of differential thermal voltammetry as an in-depth state-of-health diagnosis method for lithium-ion batteries
  publication-title: J Power Sources
  contributor:
    fullname: Offer
– volume: 56
  year: Dec. 2022
  ident: bib5
  article-title: Comprehensive co-estimation of lithium-ion battery state of charge, state of energy, state of power, maximum available capacity, and maximum available energy
  publication-title: J Energy Storage
  contributor:
    fullname: Adnan
– volume: 167
  start-page: 661
  year: Jan. 2019
  end-page: 669
  ident: bib35
  article-title: State of health estimation of lithium-ion batteries based on the constant voltage charging curve
  publication-title: Energy
  contributor:
    fullname: Qin
– volume: 336
  year: Apr. 2023
  ident: bib36
  article-title: Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging
  publication-title: Appl Energy
  contributor:
    fullname: He
– volume: 586
  year: Dec. 2023
  ident: bib12
  article-title: Rapid monitor of states of lithium-ion batteries through non-quasi-static electrochemical impedance spectroscopy and terminal voltage
  publication-title: J Power Sources
  contributor:
    fullname: Chen
– volume: 257
  year: Oct. 2022
  ident: bib21
  article-title: Data-driven battery state of health estimation based on interval capacity for real-world electric vehicles
  publication-title: Energy
  contributor:
    fullname: Chen
– volume: 288
  year: Feb. 2024
  ident: bib40
  article-title: A feature fusion-based convolutional neural network for battery state-of-health estimation with mining of partial voltage curve
  publication-title: Energy
  contributor:
    fullname: Yang
– volume: 88
  start-page: 409
  year: Jan. 2024
  end-page: 420
  ident: bib54
  article-title: A comparative study of data-driven battery capacity estimation based on partial charging curves
  publication-title: J Energy Chem
  contributor:
    fullname: Lin
– volume: 240
  year: Feb. 2022
  ident: bib16
  article-title: Co-estimating the state of charge and health of lithium batteries through combining a minimalist electrochemical model and an equivalent circuit model
  publication-title: Energy
  contributor:
    fullname: Zhang
– year: 2023
  ident: bib52
  article-title: Multi-timescale feature extraction from multi-sensor data using deep neural network for battery state-of-charge and state-of-health Co-estimation
  publication-title: IEEE Trans. Transp. Electrification
  contributor:
    fullname: He
– volume: 64
  year: Aug. 2023
  ident: bib6
  article-title: Active acoustic emission sensing for fast co-estimation of state of charge and state of health of the lithium-ion battery
  publication-title: J Energy Storage
  contributor:
    fullname: Ball
– volume: 281
  year: 2023
  ident: bib31
  article-title: Rapid online health estimation for lithium-ion batteries based on partial constant-voltage charging segment
  publication-title: Energy
  contributor:
    fullname: Bian
– volume: 11
  start-page: 131
  year: Feb. 2023
  end-page: 142
  ident: bib39
  article-title: State of health estimation for lithium-ion battery via recursive feature elimination on partial charging curves
  publication-title: IEEE J. Emerg. Sel. Top. Power Electron.
  contributor:
    fullname: Lin
– volume: 351
  year: Dec. 2023
  ident: bib44
  article-title: Rapid and flexible battery capacity estimation using random short-time charging segments based on residual convolutional networks
  publication-title: Appl Energy
  contributor:
    fullname: Liu
– volume: 576
  year: Aug. 2023
  ident: bib49
  article-title: A simple feature extraction method for estimating the whole life cycle state of health of lithium-ion batteries using transformer-based neural network
  publication-title: J Power Sources
  contributor:
    fullname: Shi
– volume: 73
  year: Dec. 2023
  ident: bib28
  article-title: A feature extraction approach for state-of-health estimation of lithium-ion battery
  publication-title: J Energy Storage
  contributor:
    fullname: Wang
– volume: 284
  year: Dec. 2023
  ident: bib14
  article-title: A battery capacity estimation method based on the equivalent circuit model and quantile regression using vehicle real-world operation data
  publication-title: Energy
  contributor:
    fullname: Meng
– volume: 69
  start-page: 2684
  year: Mar. 2022
  end-page: 2696
  ident: bib15
  article-title: Co-estimation of state-of-charge and state-of- health for lithium-ion batteries using an enhanced electrochemical model
  publication-title: IEEE Trans Ind Electron
  contributor:
    fullname: Zhang
– volume: 351
  year: Dec. 2023
  ident: bib7
  article-title: Rapid and flexible battery capacity estimation using random short-time charging segments based on residual convolutional networks
  publication-title: Appl Energy
  contributor:
    fullname: Liu
– volume: 185
  start-page: 361
  year: Oct. 2019
  end-page: 371
  ident: bib34
  article-title: A novel capacity estimation method based on charging curve sections for lithium-ion batteries in electric vehicles
  publication-title: Energy
  contributor:
    fullname: Ouyang
– volume: 282
  year: Nov. 2023
  ident: bib2
  article-title: State of health estimation of lithium-ion batteries based on multi-health features extraction and improved long short-term memory neural network
  publication-title: Energy
  contributor:
    fullname: Pecht
– volume: 284
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib14
  article-title: A battery capacity estimation method based on the equivalent circuit model and quantile regression using vehicle real-world operation data
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129126
  contributor:
    fullname: Jiang
– volume: 240
  year: 2022
  ident: 10.1016/j.energy.2024.132541_bib16
  article-title: Co-estimating the state of charge and health of lithium batteries through combining a minimalist electrochemical model and an equivalent circuit model
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122815
  contributor:
    fullname: Xu
– volume: 67
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib9
  article-title: Data-driven battery capacity estimation based on partial discharging capacity curve for lithium-ion batteries
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.107549
  contributor:
    fullname: Peng
– volume: 64
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib10
  article-title: State of health estimation method for lithium-ion batteries using incremental capacity and long short-term memory network
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.107063
  contributor:
    fullname: Zhang
– volume: 356
  year: 2024
  ident: 10.1016/j.energy.2024.132541_bib29
  article-title: State-of-health estimation for lithium-ion battery via an evolutionary Stacking ensemble learning paradigm of random vector functional link and active-state-tracking long–short-term memory neural network
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.122417
  contributor:
    fullname: Zhang
– volume: 88
  start-page: 409
  year: 2024
  ident: 10.1016/j.energy.2024.132541_bib54
  article-title: A comparative study of data-driven battery capacity estimation based on partial charging curves
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2023.09.025
  contributor:
    fullname: Lin
– volume: 73
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib56
  article-title: State of health estimation of lithium-ion batteries based on Mixers-bidirectional temporal convolutional neural network
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.109248
  contributor:
    fullname: Gao
– volume: 73
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib13
  article-title: State of health estimation of lithium-ion batteries based on equivalent circuit model and data-driven method
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.109195
  contributor:
    fullname: Chen
– volume: 351
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib44
  article-title: Rapid and flexible battery capacity estimation using random short-time charging segments based on residual convolutional networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121925
  contributor:
    fullname: Liu
– volume: 176
  start-page: 91
  year: 2019
  ident: 10.1016/j.energy.2024.132541_bib32
  article-title: Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.177
  contributor:
    fullname: Deng
– year: 2023
  ident: 10.1016/j.energy.2024.132541_bib52
  article-title: Multi-timescale feature extraction from multi-sensor data using deep neural network for battery state-of-charge and state-of-health Co-estimation
  publication-title: IEEE Trans. Transp. Electrification
  contributor:
    fullname: Fan
– volume: 586
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib12
  article-title: Rapid monitor of states of lithium-ion batteries through non-quasi-static electrochemical impedance spectroscopy and terminal voltage
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2023.233641
  contributor:
    fullname: Su
– volume: 56
  year: 2022
  ident: 10.1016/j.energy.2024.132541_bib20
  article-title: Co-estimation of state of charge and state of health for 48 V battery system based on cubature Kalman filter and H-infinity
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.106052
  contributor:
    fullname: Ning
– volume: 330
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib42
  article-title: Battery capacity estimation using 10-second relaxation voltage and a convolutional neural network
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120308
  contributor:
    fullname: Fan
– volume: 257
  year: 2022
  ident: 10.1016/j.energy.2024.132541_bib21
  article-title: Data-driven battery state of health estimation based on interval capacity for real-world electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124771
  contributor:
    fullname: Li
– volume: 476
  year: 2020
  ident: 10.1016/j.energy.2024.132541_bib18
  article-title: Online state of health and aging parameter estimation using a physics-based life model with a particle filter
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.228655
  contributor:
    fullname: Bi
– volume: 227
  year: 2021
  ident: 10.1016/j.energy.2024.132541_bib45
  article-title: Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120333
  contributor:
    fullname: Qian
– volume: 576
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib49
  article-title: A simple feature extraction method for estimating the whole life cycle state of health of lithium-ion batteries using transformer-based neural network
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2023.233139
  contributor:
    fullname: Luo
– volume: 582
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib3
  article-title: State of health estimation method for lithium-ion batteries based on multiple dynamic operating conditions
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2023.233541
  contributor:
    fullname: Yu
– volume: 351
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib7
  article-title: Rapid and flexible battery capacity estimation using random short-time charging segments based on residual convolutional networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121925
  contributor:
    fullname: Liu
– volume: 185
  start-page: 361
  year: 2019
  ident: 10.1016/j.energy.2024.132541_bib34
  article-title: A novel capacity estimation method based on charging curve sections for lithium-ion batteries in electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2019.07.059
  contributor:
    fullname: Zheng
– volume: 349
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib4
  article-title: Evaluation of the safety standards system of power batteries for electric vehicles in China
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121674
  contributor:
    fullname: Yu
– volume: 64
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib25
  article-title: Electric vehicle battery state of health estimation using Incremental Capacity Analysis
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.107110
  contributor:
    fullname: Gismero
– volume: 25
  issue: 5
  year: 2022
  ident: 10.1016/j.energy.2024.132541_bib43
  article-title: Battery health evaluation using a short random segment of constant current charging
  publication-title: iScience
  doi: 10.1016/j.isci.2022.104260
  contributor:
    fullname: Deng
– volume: 397
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib58
  article-title: A Flexible deep convolutional neural network coupled with progressive training framework for online capacity estimation of lithium-ion batteries
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2023.136575
  contributor:
    fullname: Xue
– volume: 49
  year: 2022
  ident: 10.1016/j.energy.2024.132541_bib1
  article-title: A novel method of parameter identification and state of charge estimation for lithium-ion battery energy storage system
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.104124
  contributor:
    fullname: Wang
– volume: 73
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib28
  article-title: A feature extraction approach for state-of-health estimation of lithium-ion battery
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.108871
  contributor:
    fullname: Piao
– volume: 332
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib38
  article-title: Capacity estimation of lithium-ion batteries based on optimized charging voltage section and virtual sample generation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120516
  contributor:
    fullname: Tian
– volume: 69
  start-page: 2684
  issue: 3
  year: 2022
  ident: 10.1016/j.energy.2024.132541_bib15
  article-title: Co-estimation of state-of-charge and state-of- health for lithium-ion batteries using an enhanced electrochemical model
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2021.3066946
  contributor:
    fullname: Gao
– volume: 232
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib50
  article-title: State of health estimation for lithium-ion batteries based on hybrid attention and deep learning
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.109066
  contributor:
    fullname: Zhao
– volume: 336
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib36
  article-title: Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.120751
  contributor:
    fullname: Ruan
– volume: 282
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib2
  article-title: State of health estimation of lithium-ion batteries based on multi-health features extraction and improved long short-term memory neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128956
  contributor:
    fullname: Peng
– volume: 279
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib47
  article-title: Accurate state of health estimation for lithium-ion batteries under random charging scenarios
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128092
  contributor:
    fullname: Shen
– volume: 353
  year: 2024
  ident: 10.1016/j.energy.2024.132541_bib24
  article-title: Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121991
  contributor:
    fullname: Fu
– volume: 281
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib31
  article-title: Rapid online health estimation for lithium-ion batteries based on partial constant-voltage charging segment
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128320
  contributor:
    fullname: Guo
– volume: 72
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib48
  article-title: State of health estimation for lithium-ion batteries using Gaussian process regression-based data reconstruction method during random charging process
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.108390
  contributor:
    fullname: Xiong
– volume: 13
  issue: 1
  year: 2022
  ident: 10.1016/j.energy.2024.132541_bib41
  article-title: Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation
  publication-title: Nat Commun
  contributor:
    fullname: Zhu
– volume: 11
  start-page: 4393
  issue: 4
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib37
  article-title: State of health estimation of lithium-ion battery based on constant-voltage charging reconstruction
  publication-title: IEEE J. Emerg. Sel. Top. Power Electron.
  doi: 10.1109/JESTPE.2021.3098836
  contributor:
    fullname: Ruan
– volume: 353
  year: 2024
  ident: 10.1016/j.energy.2024.132541_bib57
  article-title: Early prediction of battery lifetime based on graphical features and convolutional neural networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.122048
  contributor:
    fullname: He
– volume: 307
  start-page: 308
  year: 2016
  ident: 10.1016/j.energy.2024.132541_bib27
  article-title: Novel application of differential thermal voltammetry as an in-depth state-of-health diagnosis method for lithium-ion batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.12.122
  contributor:
    fullname: Merla
– volume: 64
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib6
  article-title: Active acoustic emission sensing for fast co-estimation of state of charge and state of health of the lithium-ion battery
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.107192
  contributor:
    fullname: Wang
– volume: 60
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib22
  article-title: A review on rapid state of health estimation of lithium-ion batteries in electric vehicles
  publication-title: Sustain Energy Technol Assessments
  contributor:
    fullname: Wang
– volume: 127
  year: 2024
  ident: 10.1016/j.energy.2024.132541_bib55
  article-title: Lithium-ion battery state of health estimation using a hybrid model based on a convolutional neural network and bidirectional gated recurrent unit
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.107199
  contributor:
    fullname: Mazzi
– volume: 167
  start-page: 661
  year: 2019
  ident: 10.1016/j.energy.2024.132541_bib35
  article-title: State of health estimation of lithium-ion batteries based on the constant voltage charging curve
  publication-title: Energy
  doi: 10.1016/j.energy.2018.11.008
  contributor:
    fullname: Wang
– volume: 242
  year: 2024
  ident: 10.1016/j.energy.2024.132541_bib30
  article-title: State-of-health estimation method for fast-charging lithium-ion batteries based on stacking ensemble sparse Gaussian process regression
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109787
  contributor:
    fullname: Li
– volume: 56
  year: 2022
  ident: 10.1016/j.energy.2024.132541_bib5
  article-title: Comprehensive co-estimation of lithium-ion battery state of charge, state of energy, state of power, maximum available capacity, and maximum available energy
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.106049
  contributor:
    fullname: Shrivastava
– volume: 72
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib51
  article-title: State-of-health estimation of lithium-ion batteries using a novel dual-stage attention mechanism based recurrent neural network
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.109297
  contributor:
    fullname: Hong
– volume: 115
  start-page: 219
  year: 2016
  ident: 10.1016/j.energy.2024.132541_bib19
  article-title: An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model
  publication-title: Energy
  doi: 10.1016/j.energy.2016.08.109
  contributor:
    fullname: Zhang
– volume: 238
  year: 2024
  ident: 10.1016/j.energy.2024.132541_bib23
  article-title: A charging-feature-based estimation model for state of health of lithium-ion batteries
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.122034
  contributor:
    fullname: Cai
– volume: 253
  year: 2019
  ident: 10.1016/j.energy.2024.132541_bib17
  article-title: Joint estimation of lithium-ion battery state of charge and capacity within an adaptive variable multi-timescale framework considering current measurement offset
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113619
  contributor:
    fullname: Jiang
– volume: 283
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib26
  article-title: A novel state of health estimation method for lithium-ion batteries based on constant-voltage charging partial data and convolutional neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129103
  contributor:
    fullname: Chen
– volume: 269
  year: 2020
  ident: 10.1016/j.energy.2024.132541_bib53
  article-title: Incremental capacity analysis based adaptive capacity estimation for lithium-ion battery considering charging condition
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115074
  contributor:
    fullname: Jiang
– volume: 7
  start-page: 5141
  year: 2021
  ident: 10.1016/j.energy.2024.132541_bib8
  article-title: A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2021.08.113
  contributor:
    fullname: Wang
– volume: 11
  start-page: 131
  issue: 1
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib39
  article-title: State of health estimation for lithium-ion battery via recursive feature elimination on partial charging curves
  publication-title: IEEE J. Emerg. Sel. Top. Power Electron.
  doi: 10.1109/JESTPE.2022.3177451
  contributor:
    fullname: Wu
– volume: 263
  year: 2023
  ident: 10.1016/j.energy.2024.132541_bib46
  article-title: An adaptive capacity estimation approach for lithium-ion battery using 10-min relaxation voltage within high state of charge range
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125802
  contributor:
    fullname: Jiang
– volume: 288
  year: 2024
  ident: 10.1016/j.energy.2024.132541_bib40
  article-title: A feature fusion-based convolutional neural network for battery state-of-health estimation with mining of partial voltage curve
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129690
  contributor:
    fullname: Lu
– volume: 9
  issue: 8
  year: 2020
  ident: 10.1016/j.energy.2024.132541_bib33
  article-title: State of health estimation for lithium-ion batteries based on the constant current–constant voltage charging curve
  publication-title: Electronics
  doi: 10.3390/electronics9081279
  contributor:
    fullname: Xiao
– volume: 322
  year: 2022
  ident: 10.1016/j.energy.2024.132541_bib11
  article-title: A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.119502
  contributor:
    fullname: Jiang
SSID ssj0005899
Score 2.5002902
Snippet The accurate lithium-ion battery capacity estimation is vital for ensuring the safe and reliable operation of battery-powered systems. Existing data-driven...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 132541
SubjectTerms Capacity estimation
Convolutional neural network
Lithium-ion battery
Random and short-duration charging voltages
Title Adaptable capacity estimation of lithium-ion battery based on short-duration random constant-current charging voltages and convolutional neural networks
URI https://dx.doi.org/10.1016/j.energy.2024.132541
Volume 306
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FD3oRrYr1UXLwGruP7OtYSktV6MUKvS2bF63QB-5W8OLv8Oc6k-xiBfHgaUmYQJiZnW8GZr4QcouM4qkxGfNSxRmPTMxEUoBBUhWpMBSeMbbbYhKPn_nDLJq1yKCZhcG2yjr2u5huo3W906u12dssFr0niL2Qb3DEJEhSIqTd5gB_4NN3HzttHql9QxKFGUo343O2x0vb-TqoEgN-B2VZxP3f4WkHckbH5KjOFWnfXeeEtPSqTQ6aUeKyTc6H32NqIFj_p-Up-eyrYlPhVBSVgIYSUm2KdBpuTpGuDYXse77YLhkuheXYfKeIaIrCRjmHpJyprfMOCnCm1ksqXSpZMek4nahlWQLooxDiKohLJQVBFHur_RnuhHyZ9mO7zcszMh0Np4Mxq99gYBKUWjFAOOHHIsuKWBQmAAWHWSiSuAB9cmk8iS_VS-OnyIoTZNqL07DQXgFVJmwl4TnZW61X-oLQwigvNIHmUknOhRaJwEF8nvqehpop6BDWaD7fOKaNvGlBe8mdpXK0VO4s1SFJY578h8fkAAZ_nrz898krcogrxC4_uiZ71etW30BSUomu9bou2e_fP44nXyAI5Vw
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgQxEC1cDnoRV9zNwWucXtLbcRBl3ObiCN6azoYjODPYPYJ_4udalXSjgnjw1HS6Ak0qqfcK6lUATqmjeG5twYNcCy4Sm3KZVeiQXCc6jmVgrau2GKaDB3H9mDwuwHmnhaGyyjb2-5juonU70mtXszcbj3v3GHuRbwjCJCQpSboIy8gGCjydy_2rm8Hwq9Ijd9dIkj2nCZ2CzpV5GSexw0QxEmeYmSUi_B2hvqHO5TqstXSR9f0fbcCCmWzCSqcmrjdh5-JLqYaG7VGtt-Cjr6tZQ8IophAQFbJtRh01vFSRTS1DAv40nr9wepWuzeY7I1DTDAfqJ-TlXM_9BmGIaHr6wpRnkw1Xvq0Tc42WEP0YRrkGQ1PN0JDM3totjf9ELTPdwxWc19swurwYnQ94ew0DV7iuDUeQk2Eqi6JKZWUjkZCcV2ZphesplA0UXVavbJhTY5yoMEGax5UJKkw0cSiLd2BpMp2YXWCV1UFsIyOUVkJIIzNJWnyRh4HBtCnaA96tfDnzzTbKrgrtufSeKslTpffUHmSde8ofm6ZEPPhz5v6_Z57AymB0d1veXg1vDmCVvhCUhckhLDWvc3OEHKWRx-0e_AQAt-gQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptable+capacity+estimation+of+lithium-ion+battery+based+on+short-duration+random+constant-current+charging+voltages+and+convolutional+neural+networks&rft.jtitle=Energy+%28Oxford%29&rft.au=Wang%2C+Zuolu&rft.au=Zhao%2C+Xiaoyu&rft.au=Zhen%2C+Dong&rft.au=Pombo%2C+Jo%C3%A3o&rft.date=2024-10-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=306&rft_id=info:doi/10.1016%2Fj.energy.2024.132541&rft.externalDocID=S0360544224023156
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon