Tailoring activation sites of metastable distorted 1T′-phase MoS2 by Ni doping for enhanced hydrogen evolution
Heteroatom doping is a promising approach to enhance catalytic activity by modulating physical properties, electronic structure, and reaction pathway. Herein, we demonstrate that appropriate Ni-doping could trigger a preferential transition of the basal plane from 2H (trigonal prismatic) to 1T′ (clu...
Saved in:
Published in | Nano research Vol. 15; no. 7; pp. 5946 - 5952 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Tsinghua University Press
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heteroatom doping is a promising approach to enhance catalytic activity by modulating physical properties, electronic structure, and reaction pathway. Herein, we demonstrate that appropriate Ni-doping could trigger a preferential transition of the basal plane from 2H (trigonal prismatic) to 1T′ (clustered Mo) by inducing lattice distortion and S vacancy (SV) and thus dramatically facilitate its catalytic hydrogen evolution activity. It is noteworthy that the unique catalysts did possess superior catalytic performance of hydrogen evolution reaction (HER). The rate of photocatalytic hydrogen evolution could reach 20.45 mmol·g
−1
·h
−1
and reduced only slightly in the long period of the photocatalytic process. First-principles calculations reveal that the distorted Ni-1T′-MoS
2
with SV could generate favorable water adsorption energy (
E
ad
(H
2
O)) and Gibbs free energy of hydrogen adsorption (Δ
G
H
). This work exhibits a facile and promising pathway for synergistically regulating physical properties, electronic structure, or wettability based on the doping strategy for designing HER electrocatalysts. |
---|---|
AbstractList | Heteroatom doping is a promising approach to enhance catalytic activity by modulating physical properties, electronic structure, and reaction pathway. Herein, we demonstrate that appropriate Ni-doping could trigger a preferential transition of the basal plane from 2H (trigonal prismatic) to 1T′ (clustered Mo) by inducing lattice distortion and S vacancy (SV) and thus dramatically facilitate its catalytic hydrogen evolution activity. It is noteworthy that the unique catalysts did possess superior catalytic performance of hydrogen evolution reaction (HER). The rate of photocatalytic hydrogen evolution could reach 20.45 mmol·g−1·h−1 and reduced only slightly in the long period of the photocatalytic process. First-principles calculations reveal that the distorted Ni-1T′-MoS2 with SV could generate favorable water adsorption energy (Ead(H2O)) and Gibbs free energy of hydrogen adsorption (ΔGH). This work exhibits a facile and promising pathway for synergistically regulating physical properties, electronic structure, or wettability based on the doping strategy for designing HER electrocatalysts. Heteroatom doping is a promising approach to enhance catalytic activity by modulating physical properties, electronic structure, and reaction pathway. Herein, we demonstrate that appropriate Ni-doping could trigger a preferential transition of the basal plane from 2H (trigonal prismatic) to 1T′ (clustered Mo) by inducing lattice distortion and S vacancy (SV) and thus dramatically facilitate its catalytic hydrogen evolution activity. It is noteworthy that the unique catalysts did possess superior catalytic performance of hydrogen evolution reaction (HER). The rate of photocatalytic hydrogen evolution could reach 20.45 mmol·g −1 ·h −1 and reduced only slightly in the long period of the photocatalytic process. First-principles calculations reveal that the distorted Ni-1T′-MoS 2 with SV could generate favorable water adsorption energy ( E ad (H 2 O)) and Gibbs free energy of hydrogen adsorption (Δ G H ). This work exhibits a facile and promising pathway for synergistically regulating physical properties, electronic structure, or wettability based on the doping strategy for designing HER electrocatalysts. |
Author | Sun, Chun Zhao, Qiang Liu, Mingming Wang, Longlu Zhuang, Zechao Wang, Jin Xie, Lingbin Tang, Meng Liu, Shijie Li, Hengxu Sun, Shujiang Liu, Shujuan |
Author_xml | – sequence: 1 givenname: Mingming surname: Liu fullname: Liu, Mingming organization: College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications – sequence: 2 givenname: Hengxu surname: Li fullname: Li, Hengxu organization: College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications – sequence: 3 givenname: Shijie surname: Liu fullname: Liu, Shijie organization: College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications – sequence: 4 givenname: Longlu surname: Wang fullname: Wang, Longlu email: wanglonglu@njupt.edu.cn organization: College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications – sequence: 5 givenname: Lingbin surname: Xie fullname: Xie, Lingbin organization: State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications – sequence: 6 givenname: Zechao surname: Zhuang fullname: Zhuang, Zechao organization: Department of Chemistry, Tsinghua University – sequence: 7 givenname: Chun surname: Sun fullname: Sun, Chun organization: College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications – sequence: 8 givenname: Jin surname: Wang fullname: Wang, Jin email: jin@njupt.edu.cn organization: College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications – sequence: 9 givenname: Meng surname: Tang fullname: Tang, Meng organization: College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications – sequence: 10 givenname: Shujiang surname: Sun fullname: Sun, Shujiang organization: College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications – sequence: 11 givenname: Shujuan surname: Liu fullname: Liu, Shujuan organization: State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications – sequence: 12 givenname: Qiang surname: Zhao fullname: Zhao, Qiang email: iamqzhao@njupt.edu.cn organization: College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications |
BookMark | eNp9kM1OAyEURonRxLb6AO5IXI8CZQZYmsa_pOrC2ROYgZamHUagTbrzmXwkn8QZR2Niomwui-989-aMwWHjGwPAGUYXGCF2GTEhjGaIkIySgmXiAIywEDxD3Tv8_mNCj8E4xhVCBcGUj0BbKrf2wTULqKrkdio538DokonQW7gxScWk9NrA2sXkQzI1xOX761vWLlU08ME_E6j38NHB2rd9jfUBmmapmqqLLvd18AvTQLPz623ffQKOrFpHc_o1J6C8uS5nd9n86fZ-djXPKjLFIjO0YNRYpGpVGV7nqspxXQuNNCk000JTa6kQeUEFZlZzwYRlmuQMW13x6XQCzofaNviXrYlJrvw2NN1GSQrOCc9zQroUHlJV8DEGY2Ub3EaFvcRI9l7l4FV2XmXvVYqOYb-YyqVPbSl0Lv8lyUDGthduws9Nf0MfMsSQvQ |
CitedBy_id | crossref_primary_10_1039_D3QI00885A crossref_primary_10_1016_j_apsusc_2023_157447 crossref_primary_10_1016_j_envres_2022_115166 crossref_primary_10_1039_D3TA03788F crossref_primary_10_1016_j_fuel_2024_133743 crossref_primary_10_1016_j_mser_2024_100838 crossref_primary_10_1007_s12274_023_5390_y crossref_primary_10_3390_catal15010038 crossref_primary_10_1021_acsanm_3c04026 crossref_primary_10_1007_s12274_022_4507_z crossref_primary_10_1007_s12274_023_6374_7 crossref_primary_10_1016_j_cclet_2023_108246 crossref_primary_10_3390_nano13182522 crossref_primary_10_1016_j_ijhydene_2024_12_151 crossref_primary_10_1016_j_inoche_2022_110277 crossref_primary_10_1016_j_jclepro_2023_137589 crossref_primary_10_1002_adfm_202301526 crossref_primary_10_1007_s12274_022_5133_5 crossref_primary_10_1016_j_seppur_2022_122848 crossref_primary_10_1007_s12274_022_4901_6 crossref_primary_10_1016_j_seppur_2022_122920 crossref_primary_10_1088_2053_1591_ad5f09 crossref_primary_10_1016_j_jcis_2023_08_123 crossref_primary_10_1016_j_cplett_2023_140633 crossref_primary_10_1021_acs_inorgchem_4c01963 crossref_primary_10_1016_j_diamond_2023_109841 crossref_primary_10_1016_j_cclet_2023_108351 crossref_primary_10_1021_acsami_3c11802 crossref_primary_10_1016_j_materresbull_2023_112301 crossref_primary_10_34133_energymatadv_0006 crossref_primary_10_1007_s40820_023_01251_x crossref_primary_10_1016_j_jcis_2023_04_095 crossref_primary_10_3390_catal13081148 crossref_primary_10_1021_acs_energyfuels_3c02929 crossref_primary_10_1016_j_cclet_2023_108226 crossref_primary_10_1016_j_cej_2024_157963 crossref_primary_10_1016_j_jhazmat_2023_131441 crossref_primary_10_1016_j_jcis_2023_01_072 crossref_primary_10_3389_fchem_2023_1132233 crossref_primary_10_3389_fchem_2022_959414 crossref_primary_10_1016_j_cclet_2023_108628 crossref_primary_10_1016_j_cclet_2023_108705 crossref_primary_10_1039_D3NR00092C crossref_primary_10_1016_j_jclepro_2022_135499 crossref_primary_10_1021_acsnano_4c18256 crossref_primary_10_1016_j_ijhydene_2023_05_139 crossref_primary_10_1016_j_inoche_2023_110901 crossref_primary_10_1016_j_optmat_2022_112737 crossref_primary_10_3390_nano13020230 crossref_primary_10_1016_j_envres_2022_114130 crossref_primary_10_1016_j_ijhydene_2023_11_123 crossref_primary_10_1021_acs_inorgchem_3c03206 crossref_primary_10_1016_j_ijhydene_2023_11_242 crossref_primary_10_1016_j_seppur_2022_122580 crossref_primary_10_1016_j_jallcom_2023_172607 crossref_primary_10_1016_j_envres_2023_115460 crossref_primary_10_3390_catal13030517 crossref_primary_10_1007_s12274_022_5246_x crossref_primary_10_1007_s12274_022_4802_8 crossref_primary_10_1016_j_jclepro_2023_136636 crossref_primary_10_1016_j_cclet_2022_07_052 crossref_primary_10_1016_j_jhazmat_2023_131894 crossref_primary_10_1007_s12274_023_5610_5 crossref_primary_10_1039_D3CC02843G crossref_primary_10_1016_j_materresbull_2022_112085 crossref_primary_10_1016_j_inoche_2023_110857 crossref_primary_10_1007_s12274_024_6430_y crossref_primary_10_1039_D4DT00788C crossref_primary_10_1016_j_cej_2024_150725 crossref_primary_10_1016_j_ccr_2024_215715 crossref_primary_10_1016_j_carbpol_2022_120471 crossref_primary_10_1016_j_colsurfa_2023_131003 crossref_primary_10_1016_j_envpol_2024_124083 crossref_primary_10_1016_j_jcis_2023_03_123 crossref_primary_10_1016_j_matchemphys_2022_126870 crossref_primary_10_1016_j_colsurfa_2023_131000 crossref_primary_10_1016_j_electacta_2022_141478 crossref_primary_10_3390_molecules27175660 crossref_primary_10_1016_j_materresbull_2023_112404 crossref_primary_10_3390_ma16020470 crossref_primary_10_1016_j_cclet_2023_108724 crossref_primary_10_1016_j_cclet_2024_109515 crossref_primary_10_1039_D4CC02012J crossref_primary_10_1016_j_jhazmat_2023_131024 crossref_primary_10_1016_j_seppur_2023_123560 crossref_primary_10_3390_su15065258 crossref_primary_10_1007_s12274_022_5287_1 crossref_primary_10_1186_s12951_022_01516_4 crossref_primary_10_1016_j_seppur_2023_123167 crossref_primary_10_1002_adfm_202501720 crossref_primary_10_1016_j_est_2023_108624 |
Cites_doi | 10.1038/s41467-020-17121-8 10.1016/j.nanoen.2021.105898 10.1149/1.1856988 10.1039/C8CS00846A 10.1038/s41467-021-21742-y 10.1002/smtd.201900653 10.1016/j.cej.2021.131210 10.1038/nchem.2740 10.1002/aenm.202100141 10.1021/acsnano.9b05714 10.1039/C9NR06541E 10.1039/D0EE03701J 10.1007/s12274-021-3794-0 10.1016/j.matt.2021.07.019 10.1038/s41563-021-00971-y 10.1021/acscatal.6b01211 10.1021/nn302422x 10.1016/j.cej.2020.127028 10.1016/j.apsusc.2019.01.276 10.1016/j.nanoen.2018.12.045 10.1126/sciadv.1500259 10.1002/anie.201909879 10.1021/acs.jpcc.6b04692 10.1016/j.cej.2021.128567 10.1038/s41467-020-17904-z 10.1038/s41467-021-20951-9 10.1039/D1CS00330E 10.1002/adma.201700311 10.1007/s12274-022-4158-0 10.1016/j.apcatb.2020.118773 10.1002/ange.202014968 10.1038/s41467-021-25647-8 10.1002/smll.202102496 10.1002/adfm.201802744 10.1038/s41467-021-21526-4 10.1038/s41467-019-08877-9 10.1016/j.comptc.2018.08.019 10.1016/j.mtnano.2021.100111 10.1002/anie.202109116 10.1016/j.nanoen.2018.09.003 10.1016/j.apmate.2021.10.004 10.1038/ncomms9311 10.1007/s12274-021-4035-2 10.1016/j.scib.2019.04.005 |
ContentType | Journal Article |
Copyright | Tsinghua University Press 2022 Tsinghua University Press 2022. |
Copyright_xml | – notice: Tsinghua University Press 2022 – notice: Tsinghua University Press 2022. |
DBID | AAYXX CITATION 3V. 7QF 7QO 7QQ 7SE 7SR 7U5 7X7 7XB 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H8G HCIFZ JG9 K9. KB. L7M LK8 M0S M7P P64 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s12274-022-4267-9 |
DatabaseName | CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Corrosion Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection (ProQuest) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Materials Research Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Central (New) Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Copper Technical Reference Library Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection METADEX Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1998-0000 |
EndPage | 5952 |
ExternalDocumentID | 10_1007_s12274_022_4267_9 |
GroupedDBID | -58 -5G -BR -EM -~C 06C 06D 0R~ 0VY 123 1N0 29M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 6NX 7X7 8AO 8FE 8FG 8FH 8FI 8FJ 95- 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACCUX ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADFRT ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP CW9 D1I DDRTE DNIVK DPUIP DU5 E3Z EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRJ FRP FRRFC FSGXE FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HH5 HMCUK HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD J-C JBSCW JZLTJ KB. KOV LK8 LLZTM M4Y M7P N2Q NPVJJ NQJWS NU0 O9- O9J OK1 P2P P9N PDBOC PQQKQ PROAC PT4 Q2X QOR R89 R9I RNS ROL RSV S1Z S27 S3B SCL SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABFSG ACMFV ACSTC ADHKG AEZWR AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT TGP 7QF 7QO 7QQ 7SE 7SR 7U5 7XB 8BQ 8FD 8FK AZQEC DWQXO FR3 GNUQQ H8G JG9 K9. L7M P64 PKEHL PQEST PQGLB PQUKI PRINS |
ID | FETCH-LOGICAL-c2319-e4674ef0adace8d5ac51dd9b0b26b7b9b4ff499564917fb8979f7b2571fbc833 |
IEDL.DBID | 7X7 |
ISSN | 1998-0124 |
IngestDate | Tue Aug 19 13:11:02 EDT 2025 Tue Jul 01 01:47:03 EDT 2025 Thu Apr 24 23:05:46 EDT 2025 Fri Feb 21 02:44:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | hydrogen evolution Ni doping S vacancy phase transformation electronic structure |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2319-e4674ef0adace8d5ac51dd9b0b26b7b9b4ff499564917fb8979f7b2571fbc833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2688285522 |
PQPubID | 326270 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2688285522 crossref_primary_10_1007_s12274_022_4267_9 crossref_citationtrail_10_1007_s12274_022_4267_9 springer_journals_10_1007_s12274_022_4267_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220700 2022-07-00 20220701 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 7 year: 2022 text: 20220700 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Nano research |
PublicationTitleAbbrev | Nano Res |
PublicationYear | 2022 |
Publisher | Tsinghua University Press |
Publisher_xml | – name: Tsinghua University Press |
References | Liu, Du, Zhang, Zhuang, Wang (CR6) 2021; 4 Liu, Wang, Klysubun, Wang, Sattayaporn, Li, Cai, Zhang, Yu, Yang (CR38) 2021; 12 Lai, He, Tran, Repaka, Zhou, Sun, Xi, Li, Chaturvedi, Tan (CR27) 2021; 20 Han, Zhou, Wang, Liu, Xiong, Zhang, Gu, Zhuang, Zhang, Li (CR24) 2021; 12 Zhuang, Li, Li, Huang, Wei, Sun, Ren, Ding, Zhu, Lang (CR11) 2021; 14 Xu, Liang, Kong, Wang, Zhi (CR5) 2021; 14 Zhang, Liang, Zhang, Geng, Zeng (CR17) 2021; 50 Duan, Wang, Li, Tan, Hu, Cai, Liu, Li, Ji, Wang (CR39) 2021; 133 CR32 Zhang, Luo, Tan, Yu, Yang, Zhang, Yang, Cheng, Liu (CR2) 2020; 11 Wang, Xie, Zhao, Liu, Zhao (CR15) 2021; 405 Cai, Ding, Wei, Xie, Li, Lu, Zhang, Liu, Cai, Zang (CR16) 2021; 11 Xin, Song, Guo, Zhang, Wang, Yu, Li (CR43) 2020; 269 Xia, Guo (CR4) 2019; 48 Chou, Sai, Lu, Coker, Liu, Artyushkova, Luk, Kaehr, Brinker (CR21) 2015; 6 Ji, Lin, Zeng, Ren, Lin, Mu, Qiu, Yu (CR10) 2021; 12 Zhuang, Li, Huang, Li, Zhao, Zhao, Xu, Zhou, Moskaleva, Mai (CR36) 2019; 64 Guo, Li, Li, Wei (CR42) 2021; 12 Liang, Zhang, Lu, Yu (CR44) 2019; 11 Li, Gu, Johannessen, Zheng, Li, Luo, Zhang, Zhang, Fan, Luo (CR1) 2021; 84 Liu, Robertson, Li, Kuo, Darby, Muhieddine, Lin, Suenaga, Stamatakis, Warner (CR12) 2017; 9 Yin, Zhang, Gao, Yao, Zhang, Han, Wang, Zhang, Xu, Zhang (CR20) 2017; 29 Tang, Jiang (CR18) 2016; 6 Hu, Zhang, Yu (CR34) 2019; 478 Pattengale, Huang, Yan, Yang, Younan, Hu, Li, Lee, Pan, Gu (CR9) 2020; 11 Gao, Zhao, Du, Li, Ding, Li, Xiao, Song (CR31) 2021; 411 Wang, Zhao, Dong, He, Lawrence, Han, Cai, Xiang, Rodriguez, Xiang (CR7) 2018; 53 Gao, Sun, Du (CR37) 2016; 120 CR3 Huang, Sun, Zheng, Aoki, Pattengale, Huang, He, Bian, Younan, Williams (CR8) 2019; 10 Sun, Li, Zhang, Xu, Yang, Chen, Li, Xie (CR13) 2021; 60 Han, Kong, Hou, Wu, Zhang, Geng (CR25) 2018; 1142 Zhou, Jiang, Chen, Li, Luo, Guo, Yang, Yu, Yuan, Wang (CR35) 2022; 428 Nørskov, Bligaard, Logadottir, Kitchin, Chen, Pandelov, Stimming (CR33) 2005; 152 Liu, Li, Feng, Jia, Li, Sun, Zhou (CR40) 2021; 17 Zhang, Xu, Yang, Cheng, Cao (CR26) 2019; 3 Zhang, Xiang, Tao, Dong, Zhou, Hu, Chen, Liu, Wang, Garaj (CR41) 2019; 57 CR23 Miao, Xiao, Yang, Khoo, Chen, Fan, Hsu, Chen, Zhang, Liu (CR19) 2015; 7 Wang, Zheng, Wang (CR14) 2022; 15 Ekspong, Sandström, Rajukumar, Terrones, Wågberg, Gracia-Espino (CR28) 2018; 28 Cao, Ye, Moses, Xu, Liu, Song, Wu, Wang, Ding, Chen (CR30) 2019; 13 Eda, Fujita, Yamaguchi, Voiry, Chen, Chhowalla (CR22) 2012; 6 Chen, Wang, Wei, Zhang, Zhang, Gu, Zhang, Yang, Yu (CR29) 2019; 58 W D Zhou (4267_CR35) 2022; 428 Z L Liu (4267_CR40) 2021; 17 C Zhang (4267_CR2) 2020; 11 Y Q Sun (4267_CR13) 2021; 60 D Liang (4267_CR44) 2019; 11 J W Miao (4267_CR19) 2015; 7 D F Cao (4267_CR30) 2019; 13 Y Yin (4267_CR20) 2017; 29 J Ekspong (4267_CR28) 2018; 28 Y Wang (4267_CR14) 2022; 15 X Xu (4267_CR5) 2021; 14 4267_CR23 X Y Chen (4267_CR29) 2019; 58 G L Liu (4267_CR12) 2017; 9 L L Wang (4267_CR15) 2021; 405 B Gao (4267_CR31) 2021; 411 Y Li (4267_CR1) 2021; 84 Z H Xia (4267_CR4) 2019; 48 X Xin (4267_CR43) 2020; 269 J K Nørskov (4267_CR33) 2005; 152 Z H Liu (4267_CR6) 2021; 4 G P Gao (4267_CR37) 2016; 120 4267_CR32 4267_CR3 X X Ji (4267_CR10) 2021; 12 M Q Liu (4267_CR38) 2021; 12 Z C Zhuang (4267_CR11) 2021; 14 X Y Hu (4267_CR34) 2019; 478 Z C Zhuang (4267_CR36) 2019; 64 Y X Han (4267_CR25) 2018; 1142 P Zhang (4267_CR41) 2019; 57 A L Han (4267_CR24) 2021; 12 Q Tang (4267_CR18) 2016; 6 H L Duan (4267_CR39) 2021; 133 Y C Huang (4267_CR8) 2019; 10 Q Wang (4267_CR7) 2018; 53 J L Cai (4267_CR16) 2021; 11 J M Zhang (4267_CR26) 2019; 3 S H Guo (4267_CR42) 2021; 12 A Zhang (4267_CR17) 2021; 50 S S Chou (4267_CR21) 2015; 6 G Eda (4267_CR22) 2012; 6 B Pattengale (4267_CR9) 2020; 11 Z C Lai (4267_CR27) 2021; 20 |
References_xml | – volume: 57 start-page: 535 year: 2019 end-page: 541 ident: CR41 article-title: Chemically activated MoS for efficient hydrogen production publication-title: Nano Energy – volume: 11 start-page: 3724 year: 2020 ident: CR2 article-title: High-throughput production of cheap mineral-based two-dimensional electrocatalysts for high-current-density hydrogen evolution publication-title: Nat. Commun. – volume: 478 start-page: 857 year: 2019 end-page: 865 ident: CR34 article-title: Theoretical insight into the hydrogen adsorption on MoS (MoSe ) monolayer as a function of biaxial strain/external electric field publication-title: Appl. Surf. Sci. – volume: 14 start-page: 1016 year: 2021 end-page: 1028 ident: CR11 article-title: Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides publication-title: Energy Environ. Sci. – volume: 405 start-page: 127028 year: 2021 ident: CR15 article-title: Oxygen-facilitated dynamic active-site generation on strained MoS during photo-catalytic hydrogen evolution publication-title: Chem. Eng. J. – volume: 12 start-page: 1343 year: 2021 ident: CR42 article-title: Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems publication-title: Nat. Commun. – volume: 10 start-page: 982 year: 2019 ident: CR8 article-title: Atomically engineering activation sites onto metallic 1T-MoS catalysts for enhanced electrochemical hydrogen evolution publication-title: Nat. Commun. – volume: 12 start-page: 709 year: 2021 ident: CR24 article-title: One-step synthesis of single-site vanadium substitution in 1T-WS monolayers for enhanced hydrogen evolution catalysis publication-title: Nat. Commun. – volume: 7 start-page: e1500259 year: 2015 ident: CR19 article-title: Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte publication-title: Sci. Adv. – volume: 6 start-page: 8311 year: 2015 ident: CR21 article-title: Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide publication-title: Nat. Commun. – volume: 60 start-page: 21575 year: 2021 end-page: 21582 ident: CR13 article-title: Nitrogen-incorporated cobalt diselenide with cubic phase maintaining for enhanced alkaline hydrogen evolution publication-title: Angew. Chem., Int. Ed. – volume: 17 start-page: 2102496 year: 2021 ident: CR40 article-title: Strong electron coupling of Ru and vacancy-rich carbon dots for synergistically enhanced hydrogen evolution reaction publication-title: Small – volume: 4 start-page: 3161 year: 2021 end-page: 3194 ident: CR6 article-title: Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon publication-title: Matter – volume: 48 start-page: 3265 year: 2019 end-page: 3278 ident: CR4 article-title: Strain engineering of metal-based nanomaterials for energy electrocatalysis publication-title: Chem. Soc. Rev. – volume: 14 start-page: 100111 year: 2021 ident: CR5 article-title: Strain engineering of two-dimensional materials for advanced electrocatalysts publication-title: Mater. Today Nano – volume: 9 start-page: 810 year: 2017 end-page: 816 ident: CR12 article-title: MoS monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction publication-title: Nat. Chem. – volume: 3 start-page: 1900653 year: 2019 ident: CR26 article-title: Singleatom Ru doping induced phase transition of MoS and S vacancy for hydrogen evolution reaction publication-title: Small Methods – volume: 13 start-page: 11733 year: 2019 end-page: 11740 ident: CR30 article-title: Engineering the in-plane structure of metallic phase molybdenum disulfide via Co and O dopants toward efficient alkaline hydrogen evolution publication-title: ACS Nano – volume: 152 start-page: J23 year: 2005 ident: CR33 article-title: Trends in the exchange current for hydrogen evolution publication-title: J. Electrochem. Soc. – volume: 53 start-page: 458 year: 2018 end-page: 467 ident: CR7 article-title: Design of active nickel single-atom decorated MoS as a pH-universal catalyst for hydrogen evolution reaction publication-title: Nano Energy – volume: 15 start-page: 1730 year: 2022 end-page: 1752 ident: CR14 article-title: Design concept for electrocatalysts publication-title: Nano Res. – volume: 12 start-page: 5260 year: 2021 ident: CR38 article-title: Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution publication-title: Nat. Commun. – volume: 12 start-page: 1380 year: 2021 ident: CR10 article-title: Graphene/MoS /FeCoNi(OH) and Graphene/MoS /FeCoNiP multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting publication-title: Nat. Commun. – ident: CR23 – volume: 6 start-page: 7311 year: 2012 end-page: 7317 ident: CR22 article-title: Coherent atomic and electronic heterostructures of single-layer MoS publication-title: ACS Nano – volume: 29 start-page: 1700311 year: 2017 ident: CR20 article-title: Synergistic phase and disorder engineering in 1T-MoSe nanosheets for enhanced hydrogen-evolution reaction publication-title: Adv. Mater. – volume: 84 start-page: 105898 year: 2021 ident: CR1 article-title: Synergistic Pt doping and phase conversion engineering in two-dimensional MoS for efficient hydrogen evolution publication-title: Nano Energy – ident: CR3 – volume: 133 start-page: 7327 year: 2021 end-page: 7334 ident: CR39 article-title: Single-atom-layer catalysis in a MoS monolayer activated by long-range ferromagnetism for the hydrogen evolution reaction: Beyond single-atom catalysis publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 18329 year: 2019 end-page: 18337 ident: CR44 article-title: Strain and defect engineered monolayer Ni-MoS for pH-universal hydrogen evolution catalysis publication-title: Nanoscale – ident: CR32 – volume: 11 start-page: 2100141 year: 2021 ident: CR16 article-title: Coupling of Ru and O-vacancy on 2D Mo-based electrocatalyst via a solid-phase interface reaction strategy for hydrogen evolution reaction publication-title: Adv. Energy Mater. – volume: 120 start-page: 16761 year: 2016 end-page: 16766 ident: CR37 article-title: Activating catalytic inert basal plane of molybdenum disulfide to optimize hydrogen evolution activity via defect doping and strain engineering publication-title: J. Phys. Chem. C – volume: 269 start-page: 118773 year: 2020 ident: CR43 article-title: growth of high-content 1T phase MoS confined in the CuS nanoframe for efficient photocatalytic hydrogen evolution publication-title: Appl. Catal. B – volume: 1142 start-page: 15 year: 2018 end-page: 20 ident: CR25 article-title: Theoretical research on the effect of eosin Y adsorption action on Ru and Pt clusters on the hydrogen evolution performance publication-title: Comput. Theor. Chem. – volume: 411 start-page: 128567 year: 2021 ident: CR31 article-title: Electron injection induced phase transition of 2H to 1T MoS by cobalt and nickel substitutional doping publication-title: Chem. Eng. J. – volume: 428 start-page: 131210 year: 2022 ident: CR35 article-title: Directly anchoring non-noble metal single atoms on 1T-TMDs with tip structure for efficient hydrogen evolution publication-title: Chem. Eng. J. – volume: 64 start-page: 617 year: 2019 end-page: 624 ident: CR36 article-title: effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge publication-title: Sci. Bull. – volume: 28 start-page: 1802744 year: 2018 ident: CR28 article-title: Stable sulfur-intercalated 1T′ MoS on graphitic nanoribbons as hydrogen evolution electrocatalyst publication-title: Adv. Funct. Mater. – volume: 11 start-page: 4114 year: 2020 ident: CR9 article-title: Dynamic evolution and reversibility of single-atom Ni(II) active site in 1T-MoS electrocatalysts for hydrogen evolution publication-title: Nat. Commun. – volume: 6 start-page: 4953 year: 2016 end-page: 4961 ident: CR18 article-title: Mechanism of hydrogen evolution reaction on 1T-MoS from first principles publication-title: ACS Catal. – volume: 50 start-page: 9817 year: 2021 end-page: 9844 ident: CR17 article-title: Doping regulation in transition metal compounds for electrocatalysis publication-title: Chem. Soc. Rev. – volume: 20 start-page: 1113 year: 2021 end-page: 1120 ident: CR27 article-title: Metastable 1T′-phase group VIB transition metal dichalcogenide crystals publication-title: Nat. Mater. – volume: 58 start-page: 17621 year: 2019 end-page: 17624 ident: CR29 article-title: High phase-purity 1T-MoS ultrathin nanosheets by a spatially confined template publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 3724 year: 2020 ident: 4267_CR2 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17121-8 – volume: 84 start-page: 105898 year: 2021 ident: 4267_CR1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105898 – volume: 152 start-page: J23 year: 2005 ident: 4267_CR33 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1856988 – volume: 48 start-page: 3265 year: 2019 ident: 4267_CR4 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00846A – volume: 12 start-page: 1380 year: 2021 ident: 4267_CR10 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21742-y – volume: 3 start-page: 1900653 year: 2019 ident: 4267_CR26 publication-title: Small Methods doi: 10.1002/smtd.201900653 – volume: 428 start-page: 131210 year: 2022 ident: 4267_CR35 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131210 – volume: 9 start-page: 810 year: 2017 ident: 4267_CR12 publication-title: Nat. Chem. doi: 10.1038/nchem.2740 – volume: 11 start-page: 2100141 year: 2021 ident: 4267_CR16 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100141 – volume: 13 start-page: 11733 year: 2019 ident: 4267_CR30 publication-title: ACS Nano doi: 10.1021/acsnano.9b05714 – volume: 11 start-page: 18329 year: 2019 ident: 4267_CR44 publication-title: Nanoscale doi: 10.1039/C9NR06541E – volume: 14 start-page: 1016 year: 2021 ident: 4267_CR11 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03701J – volume: 15 start-page: 1730 year: 2022 ident: 4267_CR14 publication-title: Nano Res. doi: 10.1007/s12274-021-3794-0 – volume: 4 start-page: 3161 year: 2021 ident: 4267_CR6 publication-title: Matter doi: 10.1016/j.matt.2021.07.019 – volume: 20 start-page: 1113 year: 2021 ident: 4267_CR27 publication-title: Nat. Mater. doi: 10.1038/s41563-021-00971-y – volume: 6 start-page: 4953 year: 2016 ident: 4267_CR18 publication-title: ACS Catal. doi: 10.1021/acscatal.6b01211 – volume: 6 start-page: 7311 year: 2012 ident: 4267_CR22 publication-title: ACS Nano doi: 10.1021/nn302422x – volume: 405 start-page: 127028 year: 2021 ident: 4267_CR15 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127028 – volume: 478 start-page: 857 year: 2019 ident: 4267_CR34 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.01.276 – volume: 57 start-page: 535 year: 2019 ident: 4267_CR41 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.045 – volume: 7 start-page: e1500259 year: 2015 ident: 4267_CR19 publication-title: Sci. Adv. doi: 10.1126/sciadv.1500259 – volume: 58 start-page: 17621 year: 2019 ident: 4267_CR29 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201909879 – volume: 120 start-page: 16761 year: 2016 ident: 4267_CR37 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b04692 – volume: 411 start-page: 128567 year: 2021 ident: 4267_CR31 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128567 – volume: 11 start-page: 4114 year: 2020 ident: 4267_CR9 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17904-z – volume: 12 start-page: 709 year: 2021 ident: 4267_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-021-20951-9 – volume: 50 start-page: 9817 year: 2021 ident: 4267_CR17 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00330E – volume: 29 start-page: 1700311 year: 2017 ident: 4267_CR20 publication-title: Adv. Mater. doi: 10.1002/adma.201700311 – ident: 4267_CR23 doi: 10.1007/s12274-022-4158-0 – volume: 269 start-page: 118773 year: 2020 ident: 4267_CR43 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.118773 – volume: 133 start-page: 7327 year: 2021 ident: 4267_CR39 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202014968 – volume: 12 start-page: 5260 year: 2021 ident: 4267_CR38 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25647-8 – volume: 17 start-page: 2102496 year: 2021 ident: 4267_CR40 publication-title: Small doi: 10.1002/smll.202102496 – volume: 28 start-page: 1802744 year: 2018 ident: 4267_CR28 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802744 – volume: 12 start-page: 1343 year: 2021 ident: 4267_CR42 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21526-4 – volume: 10 start-page: 982 year: 2019 ident: 4267_CR8 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08877-9 – volume: 1142 start-page: 15 year: 2018 ident: 4267_CR25 publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2018.08.019 – volume: 14 start-page: 100111 year: 2021 ident: 4267_CR5 publication-title: Mater. Today Nano doi: 10.1016/j.mtnano.2021.100111 – volume: 60 start-page: 21575 year: 2021 ident: 4267_CR13 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202109116 – volume: 53 start-page: 458 year: 2018 ident: 4267_CR7 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.09.003 – ident: 4267_CR3 doi: 10.1016/j.apmate.2021.10.004 – volume: 6 start-page: 8311 year: 2015 ident: 4267_CR21 publication-title: Nat. Commun. doi: 10.1038/ncomms9311 – ident: 4267_CR32 doi: 10.1007/s12274-021-4035-2 – volume: 64 start-page: 617 year: 2019 ident: 4267_CR36 publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.04.005 |
SSID | ssj0062148 |
Score | 2.6061058 |
Snippet | Heteroatom doping is a promising approach to enhance catalytic activity by modulating physical properties, electronic structure, and reaction pathway. Herein,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5946 |
SubjectTerms | Adsorbed water Adsorption Atomic/Molecular Structure and Spectra Basal plane Biomedicine Biotechnology Carbon Catalysis Catalysts Catalytic activity Chemistry and Materials Science Condensed Matter Physics Doping Electrocatalysts Electronic structure Energy Engineering Evolution First principles Free energy Gibbs free energy Graphene Hydrogen Hydrogen evolution reactions Hydrogen-based energy Lattice vacancies Materials Science Molybdenum disulfide Nanotechnology Nickel Phase transitions Photocatalysis Physical properties Research Article Wettability |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELagLDAgfkWhIA9MIEuJ6yT2WCFQhdQupFK3yL9qpZJUbUHqxjPxSDwJtpMQQIDEHMfD3dn3ne--OwAusdSGhsYgrDFBRBuMuKQcmYgKxTHXEXUE58Ew7o_I_TgaVzzuZV3tXqck_U3dkN2wjaCQqz63XiVBbBNsRTZ0d3VcI9yrr98Yh35kVskds96rTmX-tMVXZ9QgzG9JUe9r7vbAbgUSYa_U6j7Y0PkB2PnUOvAQzFM-LYvnoKMmlA-r0KWCl7Aw8FGvuMV9Yqah8o1ALLCEYfr28ormE-u44KB4wFCs4XAKledMQYteoc4nviIATtZqUVjbgvq5ss0jkN7dpjd9VE1PQBI7ZpJ2c0S0CbjiUlMVcRmFSjERCByLRDBBjCGO10psxGYEZQkzibAnODRC0m73GLTyItcnABojlZsEk_CYEUU41S7QCGQsRUJYINsgqKWYyaqzuBtwMcuanshO8JkVfOYEn7E2uPr4ZV621fhrcadWTVadsGWGY-qa71n42AbXtbqaz79udvqv1WdgGztz8fW5HdBaLZ70uUUhK3Hhre4dx4PWHA priority: 102 providerName: Springer Nature |
Title | Tailoring activation sites of metastable distorted 1T′-phase MoS2 by Ni doping for enhanced hydrogen evolution |
URI | https://link.springer.com/article/10.1007/s12274-022-4267-9 https://www.proquest.com/docview/2688285522 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA4-LnoQn1itkoMnJbgbs7vZk1RpFcUiWqGeljxpQbvVVqE3f5M_yV9iJrtrVdDLLuwjhMkk800y3wxCe1QZy0NrCTWUEWYsJUJxQWzEpRZUmIgDwfmqHZ_fsYtu1C033EZlWGW1JvqFWucK9sgPacwh2ZqDC8fDJwJVo-B0tSyhMYvmIXUZaHXS_XK4Yhr66lkFjcwZsupU01PnqPPHCMSyOxuVkPSnXZqCzV_no97stJbRUokXcaMY4BU0YwaraPFbFsE1NOyIfhFHh4GlUOyxYuj3COcWP5qxcBBQPhisfU4QhzFx2Pl4eyfDnrNh-Cq_pVhOcLuPtadPYQdksRn0fHAA7k30c-7UDJvXUk3XUafV7Jyek7KQAlEUSEoGSooYGwgtlOE6EioKtU5lIGksE5lKZi0DiitzzpuVPE1Sm0g3mUMrFT862kBzg3xgNhG2VmkoCpOIOGWaCW7A5whUrGTC0kDVUFBJMVNlknGodfGQTdMjg-AzJ_gMBJ-lNbT_9cuwyLDx38f1amiycrKNsqlq1NBBNVzT1382tvV_Y9togYJ--NjcOpobP7-YHYdAxnLXq5m78tbZLppvnN1fNt39pNm-vnFP72jjE1QM3po |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07j9QwEB6djgIoEE-xcIALaEAWiXESp0AIAcsed7sNQbrO8lN70rFZbhfQdvwhGn4Sv4QZJ2EBieuuzqMYf575xp5vBuChcCGqPEYugpBchii4ccrwWCjrjTChUCRwns7KyQf57qg42oHvgxaGyioHn5gctW8dnZE_FaWiZmtIF14sP3GaGkW3q8MIjQ4WB2HzFVO21fP917i-j4QYv2leTXg_VYA7QYqdQPM1QsyMNy4oXxhX5N7XNrOitJWtrYxRkt5TYiYTraqrOlYWkZ1H6xSdf6LHvyCfYSAnYfr47eD4S5GnYV2dag3j5nCJmpR6AtM_TqXzGBIrXv8dBrfc9p_r2BTlxlfhSk9P2csOT9dgJyyuw-U_mhbegGVjjruyPUaiiO5Il5GZVqyN7GNYG2Sc9iQwn1qQIKVlefPz2w--nGPIZNP2vWB2w2bHzCe1FkPezMJinmoR2HzjT1tENQtf-l1xE5rzsPAt2F20i3AbWIzO0wyaypS19NKoQClO5kpnK1lnbgTZYEXt-p7mNFrjRG-7MZPhNRpek-F1PYLHvz9Zdg09znp5b1ga3e_tld4icQRPhuXaPv7vz-6c_bMHcHHSTA_14f7s4C5cEoSVVBa8B7vr08_hHpKftb2fIMdAnzPEfwEfdBbO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB1VqVTBoYICIqWUOcAFZHXX8u56DwhB26ilNKogSL1Z_lQqtdnQBFBu_CZu_B1-CZ79aAoSvfW8Xh_Gz5439rwZgOfc-iDTEBj3XDDhA2faSs1CJo3TXPtMksD5eJgffBbvT7PTFfjVaWEorbI7E-uD2lWW7sh3eC6p2FqkCzuhTYs42Ru8mX5h1EGKXlq7dhoNRI784nsM32avD_fiWr_gfLA_2j1gbYcBZjmpdzz12vAh0U5bL12mbZY6V5rE8NwUpjQiBEHaTxGjmmBkWZShMBHlaTBW0l1oPP1XCwqKerD6bn948rFzAzlP69ZdjYYtetHuSbXW7fEYDDJKpI8OsmDl305xyXT_eZytfd7gHqy3ZBXfNui6Dyt-sgF3r5UwfADTkT5rkviQJBLNBS-SoWZYBbzwcx35pzn36OqCJJHgYjr6_eMnm46jA8Xj6hNHs8DhGbpau4WRRaOfjOvMBBwv3GUVMY7-W7tHHsLoNmz8CHqTauIfA4ZgHXWkKXReCie09BTwJDa3phBlYvuQdFZUtq1wTo02ztWyNjMZXkXDKzK8Kvvw8uqXaVPe46bBW93SqHanz9QSl3141S3X8vN_J9u8ebJnsBbhrT4cDo-ewB1OUKlzhLegN7_86p9GJjQ32y3mENQto_wPrhUcYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailoring+activation+sites+of+metastable+distorted+1T%E2%80%B2-phase+MoS2+by+Ni+doping+for+enhanced+hydrogen+evolution&rft.jtitle=Nano+research&rft.au=Liu%2C+Mingming&rft.au=Li%2C+Hengxu&rft.au=Liu%2C+Shijie&rft.au=Wang%2C+Longlu&rft.date=2022-07-01&rft.pub=Tsinghua+University+Press&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=15&rft.issue=7&rft.spage=5946&rft.epage=5952&rft_id=info:doi/10.1007%2Fs12274-022-4267-9&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1998-0124&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1998-0124&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1998-0124&client=summon |