Tailoring activation sites of metastable distorted 1T′-phase MoS2 by Ni doping for enhanced hydrogen evolution

Heteroatom doping is a promising approach to enhance catalytic activity by modulating physical properties, electronic structure, and reaction pathway. Herein, we demonstrate that appropriate Ni-doping could trigger a preferential transition of the basal plane from 2H (trigonal prismatic) to 1T′ (clu...

Full description

Saved in:
Bibliographic Details
Published inNano research Vol. 15; no. 7; pp. 5946 - 5952
Main Authors Liu, Mingming, Li, Hengxu, Liu, Shijie, Wang, Longlu, Xie, Lingbin, Zhuang, Zechao, Sun, Chun, Wang, Jin, Tang, Meng, Sun, Shujiang, Liu, Shujuan, Zhao, Qiang
Format Journal Article
LanguageEnglish
Published Beijing Tsinghua University Press 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heteroatom doping is a promising approach to enhance catalytic activity by modulating physical properties, electronic structure, and reaction pathway. Herein, we demonstrate that appropriate Ni-doping could trigger a preferential transition of the basal plane from 2H (trigonal prismatic) to 1T′ (clustered Mo) by inducing lattice distortion and S vacancy (SV) and thus dramatically facilitate its catalytic hydrogen evolution activity. It is noteworthy that the unique catalysts did possess superior catalytic performance of hydrogen evolution reaction (HER). The rate of photocatalytic hydrogen evolution could reach 20.45 mmol·g −1 ·h −1 and reduced only slightly in the long period of the photocatalytic process. First-principles calculations reveal that the distorted Ni-1T′-MoS 2 with SV could generate favorable water adsorption energy ( E ad (H 2 O)) and Gibbs free energy of hydrogen adsorption (Δ G H ). This work exhibits a facile and promising pathway for synergistically regulating physical properties, electronic structure, or wettability based on the doping strategy for designing HER electrocatalysts.
AbstractList Heteroatom doping is a promising approach to enhance catalytic activity by modulating physical properties, electronic structure, and reaction pathway. Herein, we demonstrate that appropriate Ni-doping could trigger a preferential transition of the basal plane from 2H (trigonal prismatic) to 1T′ (clustered Mo) by inducing lattice distortion and S vacancy (SV) and thus dramatically facilitate its catalytic hydrogen evolution activity. It is noteworthy that the unique catalysts did possess superior catalytic performance of hydrogen evolution reaction (HER). The rate of photocatalytic hydrogen evolution could reach 20.45 mmol·g−1·h−1 and reduced only slightly in the long period of the photocatalytic process. First-principles calculations reveal that the distorted Ni-1T′-MoS2 with SV could generate favorable water adsorption energy (Ead(H2O)) and Gibbs free energy of hydrogen adsorption (ΔGH). This work exhibits a facile and promising pathway for synergistically regulating physical properties, electronic structure, or wettability based on the doping strategy for designing HER electrocatalysts.
Heteroatom doping is a promising approach to enhance catalytic activity by modulating physical properties, electronic structure, and reaction pathway. Herein, we demonstrate that appropriate Ni-doping could trigger a preferential transition of the basal plane from 2H (trigonal prismatic) to 1T′ (clustered Mo) by inducing lattice distortion and S vacancy (SV) and thus dramatically facilitate its catalytic hydrogen evolution activity. It is noteworthy that the unique catalysts did possess superior catalytic performance of hydrogen evolution reaction (HER). The rate of photocatalytic hydrogen evolution could reach 20.45 mmol·g −1 ·h −1 and reduced only slightly in the long period of the photocatalytic process. First-principles calculations reveal that the distorted Ni-1T′-MoS 2 with SV could generate favorable water adsorption energy ( E ad (H 2 O)) and Gibbs free energy of hydrogen adsorption (Δ G H ). This work exhibits a facile and promising pathway for synergistically regulating physical properties, electronic structure, or wettability based on the doping strategy for designing HER electrocatalysts.
Author Sun, Chun
Zhao, Qiang
Liu, Mingming
Wang, Longlu
Zhuang, Zechao
Wang, Jin
Xie, Lingbin
Tang, Meng
Liu, Shijie
Li, Hengxu
Sun, Shujiang
Liu, Shujuan
Author_xml – sequence: 1
  givenname: Mingming
  surname: Liu
  fullname: Liu, Mingming
  organization: College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications
– sequence: 2
  givenname: Hengxu
  surname: Li
  fullname: Li, Hengxu
  organization: College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications
– sequence: 3
  givenname: Shijie
  surname: Liu
  fullname: Liu, Shijie
  organization: College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications
– sequence: 4
  givenname: Longlu
  surname: Wang
  fullname: Wang, Longlu
  email: wanglonglu@njupt.edu.cn
  organization: College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications
– sequence: 5
  givenname: Lingbin
  surname: Xie
  fullname: Xie, Lingbin
  organization: State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications
– sequence: 6
  givenname: Zechao
  surname: Zhuang
  fullname: Zhuang, Zechao
  organization: Department of Chemistry, Tsinghua University
– sequence: 7
  givenname: Chun
  surname: Sun
  fullname: Sun, Chun
  organization: College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications
– sequence: 8
  givenname: Jin
  surname: Wang
  fullname: Wang, Jin
  email: jin@njupt.edu.cn
  organization: College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications
– sequence: 9
  givenname: Meng
  surname: Tang
  fullname: Tang, Meng
  organization: College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications
– sequence: 10
  givenname: Shujiang
  surname: Sun
  fullname: Sun, Shujiang
  organization: College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications
– sequence: 11
  givenname: Shujuan
  surname: Liu
  fullname: Liu, Shujuan
  organization: State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications
– sequence: 12
  givenname: Qiang
  surname: Zhao
  fullname: Zhao, Qiang
  email: iamqzhao@njupt.edu.cn
  organization: College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications
BookMark eNp9kM1OAyEURonRxLb6AO5IXI8CZQZYmsa_pOrC2ROYgZamHUagTbrzmXwkn8QZR2Niomwui-989-aMwWHjGwPAGUYXGCF2GTEhjGaIkIySgmXiAIywEDxD3Tv8_mNCj8E4xhVCBcGUj0BbKrf2wTULqKrkdio538DokonQW7gxScWk9NrA2sXkQzI1xOX761vWLlU08ME_E6j38NHB2rd9jfUBmmapmqqLLvd18AvTQLPz623ffQKOrFpHc_o1J6C8uS5nd9n86fZ-djXPKjLFIjO0YNRYpGpVGV7nqspxXQuNNCk000JTa6kQeUEFZlZzwYRlmuQMW13x6XQCzofaNviXrYlJrvw2NN1GSQrOCc9zQroUHlJV8DEGY2Ub3EaFvcRI9l7l4FV2XmXvVYqOYb-YyqVPbSl0Lv8lyUDGthduws9Nf0MfMsSQvQ
CitedBy_id crossref_primary_10_1039_D3QI00885A
crossref_primary_10_1016_j_apsusc_2023_157447
crossref_primary_10_1016_j_envres_2022_115166
crossref_primary_10_1039_D3TA03788F
crossref_primary_10_1016_j_fuel_2024_133743
crossref_primary_10_1016_j_mser_2024_100838
crossref_primary_10_1007_s12274_023_5390_y
crossref_primary_10_3390_catal15010038
crossref_primary_10_1021_acsanm_3c04026
crossref_primary_10_1007_s12274_022_4507_z
crossref_primary_10_1007_s12274_023_6374_7
crossref_primary_10_1016_j_cclet_2023_108246
crossref_primary_10_3390_nano13182522
crossref_primary_10_1016_j_ijhydene_2024_12_151
crossref_primary_10_1016_j_inoche_2022_110277
crossref_primary_10_1016_j_jclepro_2023_137589
crossref_primary_10_1002_adfm_202301526
crossref_primary_10_1007_s12274_022_5133_5
crossref_primary_10_1016_j_seppur_2022_122848
crossref_primary_10_1007_s12274_022_4901_6
crossref_primary_10_1016_j_seppur_2022_122920
crossref_primary_10_1088_2053_1591_ad5f09
crossref_primary_10_1016_j_jcis_2023_08_123
crossref_primary_10_1016_j_cplett_2023_140633
crossref_primary_10_1021_acs_inorgchem_4c01963
crossref_primary_10_1016_j_diamond_2023_109841
crossref_primary_10_1016_j_cclet_2023_108351
crossref_primary_10_1021_acsami_3c11802
crossref_primary_10_1016_j_materresbull_2023_112301
crossref_primary_10_34133_energymatadv_0006
crossref_primary_10_1007_s40820_023_01251_x
crossref_primary_10_1016_j_jcis_2023_04_095
crossref_primary_10_3390_catal13081148
crossref_primary_10_1021_acs_energyfuels_3c02929
crossref_primary_10_1016_j_cclet_2023_108226
crossref_primary_10_1016_j_cej_2024_157963
crossref_primary_10_1016_j_jhazmat_2023_131441
crossref_primary_10_1016_j_jcis_2023_01_072
crossref_primary_10_3389_fchem_2023_1132233
crossref_primary_10_3389_fchem_2022_959414
crossref_primary_10_1016_j_cclet_2023_108628
crossref_primary_10_1016_j_cclet_2023_108705
crossref_primary_10_1039_D3NR00092C
crossref_primary_10_1016_j_jclepro_2022_135499
crossref_primary_10_1021_acsnano_4c18256
crossref_primary_10_1016_j_ijhydene_2023_05_139
crossref_primary_10_1016_j_inoche_2023_110901
crossref_primary_10_1016_j_optmat_2022_112737
crossref_primary_10_3390_nano13020230
crossref_primary_10_1016_j_envres_2022_114130
crossref_primary_10_1016_j_ijhydene_2023_11_123
crossref_primary_10_1021_acs_inorgchem_3c03206
crossref_primary_10_1016_j_ijhydene_2023_11_242
crossref_primary_10_1016_j_seppur_2022_122580
crossref_primary_10_1016_j_jallcom_2023_172607
crossref_primary_10_1016_j_envres_2023_115460
crossref_primary_10_3390_catal13030517
crossref_primary_10_1007_s12274_022_5246_x
crossref_primary_10_1007_s12274_022_4802_8
crossref_primary_10_1016_j_jclepro_2023_136636
crossref_primary_10_1016_j_cclet_2022_07_052
crossref_primary_10_1016_j_jhazmat_2023_131894
crossref_primary_10_1007_s12274_023_5610_5
crossref_primary_10_1039_D3CC02843G
crossref_primary_10_1016_j_materresbull_2022_112085
crossref_primary_10_1016_j_inoche_2023_110857
crossref_primary_10_1007_s12274_024_6430_y
crossref_primary_10_1039_D4DT00788C
crossref_primary_10_1016_j_cej_2024_150725
crossref_primary_10_1016_j_ccr_2024_215715
crossref_primary_10_1016_j_carbpol_2022_120471
crossref_primary_10_1016_j_colsurfa_2023_131003
crossref_primary_10_1016_j_envpol_2024_124083
crossref_primary_10_1016_j_jcis_2023_03_123
crossref_primary_10_1016_j_matchemphys_2022_126870
crossref_primary_10_1016_j_colsurfa_2023_131000
crossref_primary_10_1016_j_electacta_2022_141478
crossref_primary_10_3390_molecules27175660
crossref_primary_10_1016_j_materresbull_2023_112404
crossref_primary_10_3390_ma16020470
crossref_primary_10_1016_j_cclet_2023_108724
crossref_primary_10_1016_j_cclet_2024_109515
crossref_primary_10_1039_D4CC02012J
crossref_primary_10_1016_j_jhazmat_2023_131024
crossref_primary_10_1016_j_seppur_2023_123560
crossref_primary_10_3390_su15065258
crossref_primary_10_1007_s12274_022_5287_1
crossref_primary_10_1186_s12951_022_01516_4
crossref_primary_10_1016_j_seppur_2023_123167
crossref_primary_10_1002_adfm_202501720
crossref_primary_10_1016_j_est_2023_108624
Cites_doi 10.1038/s41467-020-17121-8
10.1016/j.nanoen.2021.105898
10.1149/1.1856988
10.1039/C8CS00846A
10.1038/s41467-021-21742-y
10.1002/smtd.201900653
10.1016/j.cej.2021.131210
10.1038/nchem.2740
10.1002/aenm.202100141
10.1021/acsnano.9b05714
10.1039/C9NR06541E
10.1039/D0EE03701J
10.1007/s12274-021-3794-0
10.1016/j.matt.2021.07.019
10.1038/s41563-021-00971-y
10.1021/acscatal.6b01211
10.1021/nn302422x
10.1016/j.cej.2020.127028
10.1016/j.apsusc.2019.01.276
10.1016/j.nanoen.2018.12.045
10.1126/sciadv.1500259
10.1002/anie.201909879
10.1021/acs.jpcc.6b04692
10.1016/j.cej.2021.128567
10.1038/s41467-020-17904-z
10.1038/s41467-021-20951-9
10.1039/D1CS00330E
10.1002/adma.201700311
10.1007/s12274-022-4158-0
10.1016/j.apcatb.2020.118773
10.1002/ange.202014968
10.1038/s41467-021-25647-8
10.1002/smll.202102496
10.1002/adfm.201802744
10.1038/s41467-021-21526-4
10.1038/s41467-019-08877-9
10.1016/j.comptc.2018.08.019
10.1016/j.mtnano.2021.100111
10.1002/anie.202109116
10.1016/j.nanoen.2018.09.003
10.1016/j.apmate.2021.10.004
10.1038/ncomms9311
10.1007/s12274-021-4035-2
10.1016/j.scib.2019.04.005
ContentType Journal Article
Copyright Tsinghua University Press 2022
Tsinghua University Press 2022.
Copyright_xml – notice: Tsinghua University Press 2022
– notice: Tsinghua University Press 2022.
DBID AAYXX
CITATION
3V.
7QF
7QO
7QQ
7SE
7SR
7U5
7X7
7XB
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H8G
HCIFZ
JG9
K9.
KB.
L7M
LK8
M0S
M7P
P64
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s12274-022-4267-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (ProQuest)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Copper Technical Reference Library
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
METADEX
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1998-0000
EndPage 5952
ExternalDocumentID 10_1007_s12274_022_4267_9
GroupedDBID -58
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
123
1N0
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
6NX
7X7
8AO
8FE
8FG
8FH
8FI
8FJ
95-
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACCUX
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADFRT
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRJ
FRP
FRRFC
FSGXE
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HH5
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LK8
LLZTM
M4Y
M7P
N2Q
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P2P
P9N
PDBOC
PQQKQ
PROAC
PT4
Q2X
QOR
R89
R9I
RNS
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
TGP
7QF
7QO
7QQ
7SE
7SR
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H8G
JG9
K9.
L7M
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
ID FETCH-LOGICAL-c2319-e4674ef0adace8d5ac51dd9b0b26b7b9b4ff499564917fb8979f7b2571fbc833
IEDL.DBID 7X7
ISSN 1998-0124
IngestDate Tue Aug 19 13:11:02 EDT 2025
Tue Jul 01 01:47:03 EDT 2025
Thu Apr 24 23:05:46 EDT 2025
Fri Feb 21 02:44:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords hydrogen evolution
Ni doping
S vacancy
phase transformation
electronic structure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2319-e4674ef0adace8d5ac51dd9b0b26b7b9b4ff499564917fb8979f7b2571fbc833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2688285522
PQPubID 326270
PageCount 7
ParticipantIDs proquest_journals_2688285522
crossref_primary_10_1007_s12274_022_4267_9
crossref_citationtrail_10_1007_s12274_022_4267_9
springer_journals_10_1007_s12274_022_4267_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220700
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 7
  year: 2022
  text: 20220700
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Nano research
PublicationTitleAbbrev Nano Res
PublicationYear 2022
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References Liu, Du, Zhang, Zhuang, Wang (CR6) 2021; 4
Liu, Wang, Klysubun, Wang, Sattayaporn, Li, Cai, Zhang, Yu, Yang (CR38) 2021; 12
Lai, He, Tran, Repaka, Zhou, Sun, Xi, Li, Chaturvedi, Tan (CR27) 2021; 20
Han, Zhou, Wang, Liu, Xiong, Zhang, Gu, Zhuang, Zhang, Li (CR24) 2021; 12
Zhuang, Li, Li, Huang, Wei, Sun, Ren, Ding, Zhu, Lang (CR11) 2021; 14
Xu, Liang, Kong, Wang, Zhi (CR5) 2021; 14
Zhang, Liang, Zhang, Geng, Zeng (CR17) 2021; 50
Duan, Wang, Li, Tan, Hu, Cai, Liu, Li, Ji, Wang (CR39) 2021; 133
CR32
Zhang, Luo, Tan, Yu, Yang, Zhang, Yang, Cheng, Liu (CR2) 2020; 11
Wang, Xie, Zhao, Liu, Zhao (CR15) 2021; 405
Cai, Ding, Wei, Xie, Li, Lu, Zhang, Liu, Cai, Zang (CR16) 2021; 11
Xin, Song, Guo, Zhang, Wang, Yu, Li (CR43) 2020; 269
Xia, Guo (CR4) 2019; 48
Chou, Sai, Lu, Coker, Liu, Artyushkova, Luk, Kaehr, Brinker (CR21) 2015; 6
Ji, Lin, Zeng, Ren, Lin, Mu, Qiu, Yu (CR10) 2021; 12
Zhuang, Li, Huang, Li, Zhao, Zhao, Xu, Zhou, Moskaleva, Mai (CR36) 2019; 64
Guo, Li, Li, Wei (CR42) 2021; 12
Liang, Zhang, Lu, Yu (CR44) 2019; 11
Li, Gu, Johannessen, Zheng, Li, Luo, Zhang, Zhang, Fan, Luo (CR1) 2021; 84
Liu, Robertson, Li, Kuo, Darby, Muhieddine, Lin, Suenaga, Stamatakis, Warner (CR12) 2017; 9
Yin, Zhang, Gao, Yao, Zhang, Han, Wang, Zhang, Xu, Zhang (CR20) 2017; 29
Tang, Jiang (CR18) 2016; 6
Hu, Zhang, Yu (CR34) 2019; 478
Pattengale, Huang, Yan, Yang, Younan, Hu, Li, Lee, Pan, Gu (CR9) 2020; 11
Gao, Zhao, Du, Li, Ding, Li, Xiao, Song (CR31) 2021; 411
Wang, Zhao, Dong, He, Lawrence, Han, Cai, Xiang, Rodriguez, Xiang (CR7) 2018; 53
Gao, Sun, Du (CR37) 2016; 120
CR3
Huang, Sun, Zheng, Aoki, Pattengale, Huang, He, Bian, Younan, Williams (CR8) 2019; 10
Sun, Li, Zhang, Xu, Yang, Chen, Li, Xie (CR13) 2021; 60
Han, Kong, Hou, Wu, Zhang, Geng (CR25) 2018; 1142
Zhou, Jiang, Chen, Li, Luo, Guo, Yang, Yu, Yuan, Wang (CR35) 2022; 428
Nørskov, Bligaard, Logadottir, Kitchin, Chen, Pandelov, Stimming (CR33) 2005; 152
Liu, Li, Feng, Jia, Li, Sun, Zhou (CR40) 2021; 17
Zhang, Xu, Yang, Cheng, Cao (CR26) 2019; 3
Zhang, Xiang, Tao, Dong, Zhou, Hu, Chen, Liu, Wang, Garaj (CR41) 2019; 57
CR23
Miao, Xiao, Yang, Khoo, Chen, Fan, Hsu, Chen, Zhang, Liu (CR19) 2015; 7
Wang, Zheng, Wang (CR14) 2022; 15
Ekspong, Sandström, Rajukumar, Terrones, Wågberg, Gracia-Espino (CR28) 2018; 28
Cao, Ye, Moses, Xu, Liu, Song, Wu, Wang, Ding, Chen (CR30) 2019; 13
Eda, Fujita, Yamaguchi, Voiry, Chen, Chhowalla (CR22) 2012; 6
Chen, Wang, Wei, Zhang, Zhang, Gu, Zhang, Yang, Yu (CR29) 2019; 58
W D Zhou (4267_CR35) 2022; 428
Z L Liu (4267_CR40) 2021; 17
C Zhang (4267_CR2) 2020; 11
Y Q Sun (4267_CR13) 2021; 60
D Liang (4267_CR44) 2019; 11
J W Miao (4267_CR19) 2015; 7
D F Cao (4267_CR30) 2019; 13
Y Yin (4267_CR20) 2017; 29
J Ekspong (4267_CR28) 2018; 28
Y Wang (4267_CR14) 2022; 15
X Xu (4267_CR5) 2021; 14
4267_CR23
X Y Chen (4267_CR29) 2019; 58
G L Liu (4267_CR12) 2017; 9
L L Wang (4267_CR15) 2021; 405
B Gao (4267_CR31) 2021; 411
Y Li (4267_CR1) 2021; 84
Z H Xia (4267_CR4) 2019; 48
X Xin (4267_CR43) 2020; 269
J K Nørskov (4267_CR33) 2005; 152
Z H Liu (4267_CR6) 2021; 4
G P Gao (4267_CR37) 2016; 120
4267_CR32
4267_CR3
X X Ji (4267_CR10) 2021; 12
M Q Liu (4267_CR38) 2021; 12
Z C Zhuang (4267_CR11) 2021; 14
X Y Hu (4267_CR34) 2019; 478
Z C Zhuang (4267_CR36) 2019; 64
Y X Han (4267_CR25) 2018; 1142
P Zhang (4267_CR41) 2019; 57
A L Han (4267_CR24) 2021; 12
Q Tang (4267_CR18) 2016; 6
H L Duan (4267_CR39) 2021; 133
Y C Huang (4267_CR8) 2019; 10
Q Wang (4267_CR7) 2018; 53
J L Cai (4267_CR16) 2021; 11
J M Zhang (4267_CR26) 2019; 3
S H Guo (4267_CR42) 2021; 12
A Zhang (4267_CR17) 2021; 50
S S Chou (4267_CR21) 2015; 6
G Eda (4267_CR22) 2012; 6
B Pattengale (4267_CR9) 2020; 11
Z C Lai (4267_CR27) 2021; 20
References_xml – volume: 57
  start-page: 535
  year: 2019
  end-page: 541
  ident: CR41
  article-title: Chemically activated MoS for efficient hydrogen production
  publication-title: Nano Energy
– volume: 11
  start-page: 3724
  year: 2020
  ident: CR2
  article-title: High-throughput production of cheap mineral-based two-dimensional electrocatalysts for high-current-density hydrogen evolution
  publication-title: Nat. Commun.
– volume: 478
  start-page: 857
  year: 2019
  end-page: 865
  ident: CR34
  article-title: Theoretical insight into the hydrogen adsorption on MoS (MoSe ) monolayer as a function of biaxial strain/external electric field
  publication-title: Appl. Surf. Sci.
– volume: 14
  start-page: 1016
  year: 2021
  end-page: 1028
  ident: CR11
  article-title: Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides
  publication-title: Energy Environ. Sci.
– volume: 405
  start-page: 127028
  year: 2021
  ident: CR15
  article-title: Oxygen-facilitated dynamic active-site generation on strained MoS during photo-catalytic hydrogen evolution
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 1343
  year: 2021
  ident: CR42
  article-title: Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems
  publication-title: Nat. Commun.
– volume: 10
  start-page: 982
  year: 2019
  ident: CR8
  article-title: Atomically engineering activation sites onto metallic 1T-MoS catalysts for enhanced electrochemical hydrogen evolution
  publication-title: Nat. Commun.
– volume: 12
  start-page: 709
  year: 2021
  ident: CR24
  article-title: One-step synthesis of single-site vanadium substitution in 1T-WS monolayers for enhanced hydrogen evolution catalysis
  publication-title: Nat. Commun.
– volume: 7
  start-page: e1500259
  year: 2015
  ident: CR19
  article-title: Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte
  publication-title: Sci. Adv.
– volume: 6
  start-page: 8311
  year: 2015
  ident: CR21
  article-title: Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide
  publication-title: Nat. Commun.
– volume: 60
  start-page: 21575
  year: 2021
  end-page: 21582
  ident: CR13
  article-title: Nitrogen-incorporated cobalt diselenide with cubic phase maintaining for enhanced alkaline hydrogen evolution
  publication-title: Angew. Chem., Int. Ed.
– volume: 17
  start-page: 2102496
  year: 2021
  ident: CR40
  article-title: Strong electron coupling of Ru and vacancy-rich carbon dots for synergistically enhanced hydrogen evolution reaction
  publication-title: Small
– volume: 4
  start-page: 3161
  year: 2021
  end-page: 3194
  ident: CR6
  article-title: Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon
  publication-title: Matter
– volume: 48
  start-page: 3265
  year: 2019
  end-page: 3278
  ident: CR4
  article-title: Strain engineering of metal-based nanomaterials for energy electrocatalysis
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 100111
  year: 2021
  ident: CR5
  article-title: Strain engineering of two-dimensional materials for advanced electrocatalysts
  publication-title: Mater. Today Nano
– volume: 9
  start-page: 810
  year: 2017
  end-page: 816
  ident: CR12
  article-title: MoS monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction
  publication-title: Nat. Chem.
– volume: 3
  start-page: 1900653
  year: 2019
  ident: CR26
  article-title: Singleatom Ru doping induced phase transition of MoS and S vacancy for hydrogen evolution reaction
  publication-title: Small Methods
– volume: 13
  start-page: 11733
  year: 2019
  end-page: 11740
  ident: CR30
  article-title: Engineering the in-plane structure of metallic phase molybdenum disulfide via Co and O dopants toward efficient alkaline hydrogen evolution
  publication-title: ACS Nano
– volume: 152
  start-page: J23
  year: 2005
  ident: CR33
  article-title: Trends in the exchange current for hydrogen evolution
  publication-title: J. Electrochem. Soc.
– volume: 53
  start-page: 458
  year: 2018
  end-page: 467
  ident: CR7
  article-title: Design of active nickel single-atom decorated MoS as a pH-universal catalyst for hydrogen evolution reaction
  publication-title: Nano Energy
– volume: 15
  start-page: 1730
  year: 2022
  end-page: 1752
  ident: CR14
  article-title: Design concept for electrocatalysts
  publication-title: Nano Res.
– volume: 12
  start-page: 5260
  year: 2021
  ident: CR38
  article-title: Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution
  publication-title: Nat. Commun.
– volume: 12
  start-page: 1380
  year: 2021
  ident: CR10
  article-title: Graphene/MoS /FeCoNi(OH) and Graphene/MoS /FeCoNiP multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting
  publication-title: Nat. Commun.
– ident: CR23
– volume: 6
  start-page: 7311
  year: 2012
  end-page: 7317
  ident: CR22
  article-title: Coherent atomic and electronic heterostructures of single-layer MoS
  publication-title: ACS Nano
– volume: 29
  start-page: 1700311
  year: 2017
  ident: CR20
  article-title: Synergistic phase and disorder engineering in 1T-MoSe nanosheets for enhanced hydrogen-evolution reaction
  publication-title: Adv. Mater.
– volume: 84
  start-page: 105898
  year: 2021
  ident: CR1
  article-title: Synergistic Pt doping and phase conversion engineering in two-dimensional MoS for efficient hydrogen evolution
  publication-title: Nano Energy
– ident: CR3
– volume: 133
  start-page: 7327
  year: 2021
  end-page: 7334
  ident: CR39
  article-title: Single-atom-layer catalysis in a MoS monolayer activated by long-range ferromagnetism for the hydrogen evolution reaction: Beyond single-atom catalysis
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 18329
  year: 2019
  end-page: 18337
  ident: CR44
  article-title: Strain and defect engineered monolayer Ni-MoS for pH-universal hydrogen evolution catalysis
  publication-title: Nanoscale
– ident: CR32
– volume: 11
  start-page: 2100141
  year: 2021
  ident: CR16
  article-title: Coupling of Ru and O-vacancy on 2D Mo-based electrocatalyst via a solid-phase interface reaction strategy for hydrogen evolution reaction
  publication-title: Adv. Energy Mater.
– volume: 120
  start-page: 16761
  year: 2016
  end-page: 16766
  ident: CR37
  article-title: Activating catalytic inert basal plane of molybdenum disulfide to optimize hydrogen evolution activity via defect doping and strain engineering
  publication-title: J. Phys. Chem. C
– volume: 269
  start-page: 118773
  year: 2020
  ident: CR43
  article-title: growth of high-content 1T phase MoS confined in the CuS nanoframe for efficient photocatalytic hydrogen evolution
  publication-title: Appl. Catal. B
– volume: 1142
  start-page: 15
  year: 2018
  end-page: 20
  ident: CR25
  article-title: Theoretical research on the effect of eosin Y adsorption action on Ru and Pt clusters on the hydrogen evolution performance
  publication-title: Comput. Theor. Chem.
– volume: 411
  start-page: 128567
  year: 2021
  ident: CR31
  article-title: Electron injection induced phase transition of 2H to 1T MoS by cobalt and nickel substitutional doping
  publication-title: Chem. Eng. J.
– volume: 428
  start-page: 131210
  year: 2022
  ident: CR35
  article-title: Directly anchoring non-noble metal single atoms on 1T-TMDs with tip structure for efficient hydrogen evolution
  publication-title: Chem. Eng. J.
– volume: 64
  start-page: 617
  year: 2019
  end-page: 624
  ident: CR36
  article-title: effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge
  publication-title: Sci. Bull.
– volume: 28
  start-page: 1802744
  year: 2018
  ident: CR28
  article-title: Stable sulfur-intercalated 1T′ MoS on graphitic nanoribbons as hydrogen evolution electrocatalyst
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 4114
  year: 2020
  ident: CR9
  article-title: Dynamic evolution and reversibility of single-atom Ni(II) active site in 1T-MoS electrocatalysts for hydrogen evolution
  publication-title: Nat. Commun.
– volume: 6
  start-page: 4953
  year: 2016
  end-page: 4961
  ident: CR18
  article-title: Mechanism of hydrogen evolution reaction on 1T-MoS from first principles
  publication-title: ACS Catal.
– volume: 50
  start-page: 9817
  year: 2021
  end-page: 9844
  ident: CR17
  article-title: Doping regulation in transition metal compounds for electrocatalysis
  publication-title: Chem. Soc. Rev.
– volume: 20
  start-page: 1113
  year: 2021
  end-page: 1120
  ident: CR27
  article-title: Metastable 1T′-phase group VIB transition metal dichalcogenide crystals
  publication-title: Nat. Mater.
– volume: 58
  start-page: 17621
  year: 2019
  end-page: 17624
  ident: CR29
  article-title: High phase-purity 1T-MoS ultrathin nanosheets by a spatially confined template
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 3724
  year: 2020
  ident: 4267_CR2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17121-8
– volume: 84
  start-page: 105898
  year: 2021
  ident: 4267_CR1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105898
– volume: 152
  start-page: J23
  year: 2005
  ident: 4267_CR33
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1856988
– volume: 48
  start-page: 3265
  year: 2019
  ident: 4267_CR4
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00846A
– volume: 12
  start-page: 1380
  year: 2021
  ident: 4267_CR10
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21742-y
– volume: 3
  start-page: 1900653
  year: 2019
  ident: 4267_CR26
  publication-title: Small Methods
  doi: 10.1002/smtd.201900653
– volume: 428
  start-page: 131210
  year: 2022
  ident: 4267_CR35
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131210
– volume: 9
  start-page: 810
  year: 2017
  ident: 4267_CR12
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2740
– volume: 11
  start-page: 2100141
  year: 2021
  ident: 4267_CR16
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100141
– volume: 13
  start-page: 11733
  year: 2019
  ident: 4267_CR30
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b05714
– volume: 11
  start-page: 18329
  year: 2019
  ident: 4267_CR44
  publication-title: Nanoscale
  doi: 10.1039/C9NR06541E
– volume: 14
  start-page: 1016
  year: 2021
  ident: 4267_CR11
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03701J
– volume: 15
  start-page: 1730
  year: 2022
  ident: 4267_CR14
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3794-0
– volume: 4
  start-page: 3161
  year: 2021
  ident: 4267_CR6
  publication-title: Matter
  doi: 10.1016/j.matt.2021.07.019
– volume: 20
  start-page: 1113
  year: 2021
  ident: 4267_CR27
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-00971-y
– volume: 6
  start-page: 4953
  year: 2016
  ident: 4267_CR18
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01211
– volume: 6
  start-page: 7311
  year: 2012
  ident: 4267_CR22
  publication-title: ACS Nano
  doi: 10.1021/nn302422x
– volume: 405
  start-page: 127028
  year: 2021
  ident: 4267_CR15
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127028
– volume: 478
  start-page: 857
  year: 2019
  ident: 4267_CR34
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.01.276
– volume: 57
  start-page: 535
  year: 2019
  ident: 4267_CR41
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.045
– volume: 7
  start-page: e1500259
  year: 2015
  ident: 4267_CR19
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500259
– volume: 58
  start-page: 17621
  year: 2019
  ident: 4267_CR29
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201909879
– volume: 120
  start-page: 16761
  year: 2016
  ident: 4267_CR37
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b04692
– volume: 411
  start-page: 128567
  year: 2021
  ident: 4267_CR31
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128567
– volume: 11
  start-page: 4114
  year: 2020
  ident: 4267_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17904-z
– volume: 12
  start-page: 709
  year: 2021
  ident: 4267_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-20951-9
– volume: 50
  start-page: 9817
  year: 2021
  ident: 4267_CR17
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00330E
– volume: 29
  start-page: 1700311
  year: 2017
  ident: 4267_CR20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700311
– ident: 4267_CR23
  doi: 10.1007/s12274-022-4158-0
– volume: 269
  start-page: 118773
  year: 2020
  ident: 4267_CR43
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2020.118773
– volume: 133
  start-page: 7327
  year: 2021
  ident: 4267_CR39
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202014968
– volume: 12
  start-page: 5260
  year: 2021
  ident: 4267_CR38
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25647-8
– volume: 17
  start-page: 2102496
  year: 2021
  ident: 4267_CR40
  publication-title: Small
  doi: 10.1002/smll.202102496
– volume: 28
  start-page: 1802744
  year: 2018
  ident: 4267_CR28
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802744
– volume: 12
  start-page: 1343
  year: 2021
  ident: 4267_CR42
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21526-4
– volume: 10
  start-page: 982
  year: 2019
  ident: 4267_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08877-9
– volume: 1142
  start-page: 15
  year: 2018
  ident: 4267_CR25
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2018.08.019
– volume: 14
  start-page: 100111
  year: 2021
  ident: 4267_CR5
  publication-title: Mater. Today Nano
  doi: 10.1016/j.mtnano.2021.100111
– volume: 60
  start-page: 21575
  year: 2021
  ident: 4267_CR13
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202109116
– volume: 53
  start-page: 458
  year: 2018
  ident: 4267_CR7
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.09.003
– ident: 4267_CR3
  doi: 10.1016/j.apmate.2021.10.004
– volume: 6
  start-page: 8311
  year: 2015
  ident: 4267_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9311
– ident: 4267_CR32
  doi: 10.1007/s12274-021-4035-2
– volume: 64
  start-page: 617
  year: 2019
  ident: 4267_CR36
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.04.005
SSID ssj0062148
Score 2.6061058
Snippet Heteroatom doping is a promising approach to enhance catalytic activity by modulating physical properties, electronic structure, and reaction pathway. Herein,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5946
SubjectTerms Adsorbed water
Adsorption
Atomic/Molecular Structure and Spectra
Basal plane
Biomedicine
Biotechnology
Carbon
Catalysis
Catalysts
Catalytic activity
Chemistry and Materials Science
Condensed Matter Physics
Doping
Electrocatalysts
Electronic structure
Energy
Engineering
Evolution
First principles
Free energy
Gibbs free energy
Graphene
Hydrogen
Hydrogen evolution reactions
Hydrogen-based energy
Lattice vacancies
Materials Science
Molybdenum disulfide
Nanotechnology
Nickel
Phase transitions
Photocatalysis
Physical properties
Research Article
Wettability
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELagLDAgfkWhIA9MIEuJ6yT2WCFQhdQupFK3yL9qpZJUbUHqxjPxSDwJtpMQQIDEHMfD3dn3ne--OwAusdSGhsYgrDFBRBuMuKQcmYgKxTHXEXUE58Ew7o_I_TgaVzzuZV3tXqck_U3dkN2wjaCQqz63XiVBbBNsRTZ0d3VcI9yrr98Yh35kVskds96rTmX-tMVXZ9QgzG9JUe9r7vbAbgUSYa_U6j7Y0PkB2PnUOvAQzFM-LYvnoKMmlA-r0KWCl7Aw8FGvuMV9Yqah8o1ALLCEYfr28ormE-u44KB4wFCs4XAKledMQYteoc4nviIATtZqUVjbgvq5ss0jkN7dpjd9VE1PQBI7ZpJ2c0S0CbjiUlMVcRmFSjERCByLRDBBjCGO10psxGYEZQkzibAnODRC0m73GLTyItcnABojlZsEk_CYEUU41S7QCGQsRUJYINsgqKWYyaqzuBtwMcuanshO8JkVfOYEn7E2uPr4ZV621fhrcadWTVadsGWGY-qa71n42AbXtbqaz79udvqv1WdgGztz8fW5HdBaLZ70uUUhK3Hhre4dx4PWHA
  priority: 102
  providerName: Springer Nature
Title Tailoring activation sites of metastable distorted 1T′-phase MoS2 by Ni doping for enhanced hydrogen evolution
URI https://link.springer.com/article/10.1007/s12274-022-4267-9
https://www.proquest.com/docview/2688285522
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA4-LnoQn1itkoMnJbgbs7vZk1RpFcUiWqGeljxpQbvVVqE3f5M_yV9iJrtrVdDLLuwjhMkk800y3wxCe1QZy0NrCTWUEWYsJUJxQWzEpRZUmIgDwfmqHZ_fsYtu1C033EZlWGW1JvqFWucK9sgPacwh2ZqDC8fDJwJVo-B0tSyhMYvmIXUZaHXS_XK4Yhr66lkFjcwZsupU01PnqPPHCMSyOxuVkPSnXZqCzV_no97stJbRUokXcaMY4BU0YwaraPFbFsE1NOyIfhFHh4GlUOyxYuj3COcWP5qxcBBQPhisfU4QhzFx2Pl4eyfDnrNh-Cq_pVhOcLuPtadPYQdksRn0fHAA7k30c-7UDJvXUk3XUafV7Jyek7KQAlEUSEoGSooYGwgtlOE6EioKtU5lIGksE5lKZi0DiitzzpuVPE1Sm0g3mUMrFT862kBzg3xgNhG2VmkoCpOIOGWaCW7A5whUrGTC0kDVUFBJMVNlknGodfGQTdMjg-AzJ_gMBJ-lNbT_9cuwyLDx38f1amiycrKNsqlq1NBBNVzT1382tvV_Y9togYJ--NjcOpobP7-YHYdAxnLXq5m78tbZLppvnN1fNt39pNm-vnFP72jjE1QM3po
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07j9QwEB6djgIoEE-xcIALaEAWiXESp0AIAcsed7sNQbrO8lN70rFZbhfQdvwhGn4Sv4QZJ2EBieuuzqMYf575xp5vBuChcCGqPEYugpBchii4ccrwWCjrjTChUCRwns7KyQf57qg42oHvgxaGyioHn5gctW8dnZE_FaWiZmtIF14sP3GaGkW3q8MIjQ4WB2HzFVO21fP917i-j4QYv2leTXg_VYA7QYqdQPM1QsyMNy4oXxhX5N7XNrOitJWtrYxRkt5TYiYTraqrOlYWkZ1H6xSdf6LHvyCfYSAnYfr47eD4S5GnYV2dag3j5nCJmpR6AtM_TqXzGBIrXv8dBrfc9p_r2BTlxlfhSk9P2csOT9dgJyyuw-U_mhbegGVjjruyPUaiiO5Il5GZVqyN7GNYG2Sc9iQwn1qQIKVlefPz2w--nGPIZNP2vWB2w2bHzCe1FkPezMJinmoR2HzjT1tENQtf-l1xE5rzsPAt2F20i3AbWIzO0wyaypS19NKoQClO5kpnK1lnbgTZYEXt-p7mNFrjRG-7MZPhNRpek-F1PYLHvz9Zdg09znp5b1ga3e_tld4icQRPhuXaPv7vz-6c_bMHcHHSTA_14f7s4C5cEoSVVBa8B7vr08_hHpKftb2fIMdAnzPEfwEfdBbO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB1VqVTBoYICIqWUOcAFZHXX8u56DwhB26ilNKogSL1Z_lQqtdnQBFBu_CZu_B1-CZ79aAoSvfW8Xh_Gz5439rwZgOfc-iDTEBj3XDDhA2faSs1CJo3TXPtMksD5eJgffBbvT7PTFfjVaWEorbI7E-uD2lWW7sh3eC6p2FqkCzuhTYs42Ru8mX5h1EGKXlq7dhoNRI784nsM32avD_fiWr_gfLA_2j1gbYcBZjmpdzz12vAh0U5bL12mbZY6V5rE8NwUpjQiBEHaTxGjmmBkWZShMBHlaTBW0l1oPP1XCwqKerD6bn948rFzAzlP69ZdjYYtetHuSbXW7fEYDDJKpI8OsmDl305xyXT_eZytfd7gHqy3ZBXfNui6Dyt-sgF3r5UwfADTkT5rkviQJBLNBS-SoWZYBbzwcx35pzn36OqCJJHgYjr6_eMnm46jA8Xj6hNHs8DhGbpau4WRRaOfjOvMBBwv3GUVMY7-W7tHHsLoNmz8CHqTauIfA4ZgHXWkKXReCie09BTwJDa3phBlYvuQdFZUtq1wTo02ztWyNjMZXkXDKzK8Kvvw8uqXaVPe46bBW93SqHanz9QSl3141S3X8vN_J9u8ebJnsBbhrT4cDo-ewB1OUKlzhLegN7_86p9GJjQ32y3mENQto_wPrhUcYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailoring+activation+sites+of+metastable+distorted+1T%E2%80%B2-phase+MoS2+by+Ni+doping+for+enhanced+hydrogen+evolution&rft.jtitle=Nano+research&rft.au=Liu%2C+Mingming&rft.au=Li%2C+Hengxu&rft.au=Liu%2C+Shijie&rft.au=Wang%2C+Longlu&rft.date=2022-07-01&rft.pub=Tsinghua+University+Press&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=15&rft.issue=7&rft.spage=5946&rft.epage=5952&rft_id=info:doi/10.1007%2Fs12274-022-4267-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1998-0124&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1998-0124&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1998-0124&client=summon