Uncovering Dynamic Relationships Between SARS-CoV-2 Wastewater Concentrations and Community Infections via Bayesian Spatial Functional Concurrent Regression

Monitoring wastewater concentrations of SARS-CoV-2 yields a low-cost, noninvasive method for tracking disease prevalence and provides early warning signs of upcoming outbreaks in the serviced communities. There is tremendous clinical and public health interest in understanding the complex relationsh...

Full description

Saved in:
Bibliographic Details
Published inData science in science Vol. 4; no. 1
Main Authors Sun, Thomas Y., Schedler, Julia C., Kowal, Daniel R., Schneider, Rebecca, Stadler, Lauren B., Hopkins, Loren, Ensor, Katherine B.
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 31.12.2025
Subjects
Online AccessGet full text
ISSN2694-1899
2694-1899
DOI10.1080/26941899.2025.2521329

Cover

Abstract Monitoring wastewater concentrations of SARS-CoV-2 yields a low-cost, noninvasive method for tracking disease prevalence and provides early warning signs of upcoming outbreaks in the serviced communities. There is tremendous clinical and public health interest in understanding the complex relationships between wastewater viral loads and infection rates in the population. As both data sources may contain substantial noise and missingness, in addition to spatial and temporal dependencies, properly modeling this relationship must address these numerous complexities simultaneously while providing interpretable and clear insights. We propose a novel Bayesian functional concurrent regression model that accounts for both spatial and temporal correlations while estimating the time-dependent effects between wastewater concentrations and positivity rates over time. We explicitly model the time lag between the two series and provide full posterior inference on the possible delay between spikes in wastewater concentrations and subsequent outbreaks. We estimate a time lag likely between 5 to 11 days between spikes in wastewater levels and reported clinical positivity rates. Additionally, we find a dynamic relationship between wastewater concentration levels and the strength of its association with positivity rates that fluctuates between outbreaks and non-outbreaks.
AbstractList Monitoring wastewater concentrations of SARS-CoV-2 yields a low-cost, noninvasive method for tracking disease prevalence and provides early warning signs of upcoming outbreaks in the serviced communities. There is tremendous clinical and public health interest in understanding the complex relationships between wastewater viral loads and infection rates in the population. As both data sources may contain substantial noise and missingness, in addition to spatial and temporal dependencies, properly modeling this relationship must address these numerous complexities simultaneously while providing interpretable and clear insights. We propose a novel Bayesian functional concurrent regression model that accounts for both spatial and temporal correlations while estimating the time-dependent effects between wastewater concentrations and positivity rates over time. We explicitly model the time lag between the two series and provide full posterior inference on the possible delay between spikes in wastewater concentrations and subsequent outbreaks. We estimate a time lag likely between 5 to 11 days between spikes in wastewater levels and reported clinical positivity rates. Additionally, we find a dynamic relationship between wastewater concentration levels and the strength of its association with positivity rates that fluctuates between outbreaks and non-outbreaks.
Author Hopkins, Loren
Stadler, Lauren B.
Ensor, Katherine B.
Sun, Thomas Y.
Schedler, Julia C.
Kowal, Daniel R.
Schneider, Rebecca
Author_xml – sequence: 1
  givenname: Thomas Y.
  orcidid: 0000-0002-5385-5083
  surname: Sun
  fullname: Sun, Thomas Y.
– sequence: 2
  givenname: Julia C.
  orcidid: 0000-0003-1242-0048
  surname: Schedler
  fullname: Schedler, Julia C.
– sequence: 3
  givenname: Daniel R.
  surname: Kowal
  fullname: Kowal, Daniel R.
– sequence: 4
  givenname: Rebecca
  surname: Schneider
  fullname: Schneider, Rebecca
– sequence: 5
  givenname: Lauren B.
  surname: Stadler
  fullname: Stadler, Lauren B.
– sequence: 6
  givenname: Loren
  surname: Hopkins
  fullname: Hopkins, Loren
– sequence: 7
  givenname: Katherine B.
  orcidid: 0000-0002-3964-0465
  surname: Ensor
  fullname: Ensor, Katherine B.
BookMark eNpNkd1OGzEQha2KSqWUR6jkF9jUf-u1LyEtEAkJCZr20pr1zqZGiR3ZG6K8Sx-2uyRFXM3ROTPfXJzP5CymiIR85WzGmWHfhLaKG2tngol6JmrBpbAfyPnkV1Nw9k5_IpelPDPGhOXSCnNO_i6jTy-YQ1zR74cIm-DpI65hCCmWP2Fb6DUOe8RIn64en6p5-lUJ-hvKgHsYMNN5ih7jkI8HFGI3WpvNLobhQBexR38MXgLQazhgCTCituM6rOnNLr7Go5w4u5xH1Ph-lbGU0f9CPvawLnh5mhdkefPj5_yuun-4Xcyv7isvJLdV00rDZC9NK33rW-2NbUzTd13HpMaa89Z3stEdtrJhlve9VA2XdQ1GSehBywuyOHK7BM9um8MG8sElCO7VSHnlIA_Br9FZpgVoJY3iUmn0wJVuQbU1Ku87ZUdWfWT5nErJ2L_xOHNTY-5_Y25qzJ0ak_8AjHuNsw
Cites_doi 10.3201/eid2809.220938
10.1016/j.watres.2023.119648
10.1002/sim.7254
10.1214/23-BA1410
10.1002/sim.7582
10.1093/biomet/asr013
10.1111/j.1467-842X.2008.00507.x
10.1039/D1EW00672J
10.1016/j.scitotenv.2021.150121
10.1016/j.watres.2022.118611
10.1111/j.1541-0420.2012.01808.x
10.1002/sim.10009
10.1016/j.scitotenv.2023.165105
10.1016/j.scitotenv.2022.158967
10.1016/j.envint.2023.107765
10.1080/13658810601073315
10.1016/j.scitotenv.2021.150151
10.1017/S0950268821002752
10.1080/10618600.2024.2362227
10.1007/s10729-020-09525-1
10.2307/2986151
10.1177/1471082X15617594
10.1016/j.heliyon.2023.e21734
10.1111/j.1541-0420.2012.01788.x
10.1016/j.jhazmat.2022.129848
10.1198/016214504000001745
10.1111/biom.12278
10.1198/jasa.2010.tm09228
10.1016/j.scitotenv.2021.149618
10.1016/j.scitotenv.2021.152334
10.1214/16-BA1003
10.1214/20-BA1213
10.1093/biomet/87.3.587
10.1021/acs.est.1c05029
10.1109/BigData52589.2021.9671543
10.1016/j.scitotenv.2021.147947
10.1038/s41587-020-0684-z
10.1038/s41467-022-31753-y
10.1038/s41598-024-56175-2
10.1016/j.scitotenv.2021.147451
10.1016/S2542-5196(21)00230-8
10.1198/jcgs.2009.08011
10.1007/s10654-021-00727-7
10.1016/j.watres.2021.117433
10.1038/s41598-022-17543-y
10.1016/j.scitotenv.2023.163655
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1080/26941899.2025.2521329
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2694-1899
ExternalDocumentID oai_doaj_org_article_9062a643841346eca146ba4b5e4ccd49
10_1080_26941899_2025_2521329
GroupedDBID 0YH
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
GROUPED_DOAJ
M~E
TDBHL
ID FETCH-LOGICAL-c2319-7b3803f38b3cbcb6c89787fddd036e511bcd376deb37091ff3471355a843afa63
IEDL.DBID DOA
ISSN 2694-1899
IngestDate Wed Aug 27 00:55:07 EDT 2025
Thu Jul 10 07:46:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2319-7b3803f38b3cbcb6c89787fddd036e511bcd376deb37091ff3471355a843afa63
ORCID 0000-0003-1242-0048
0000-0002-3964-0465
0000-0002-5385-5083
OpenAccessLink https://doaj.org/article/9062a643841346eca146ba4b5e4ccd49
ParticipantIDs doaj_primary_oai_doaj_org_article_9062a643841346eca146ba4b5e4ccd49
crossref_primary_10_1080_26941899_2025_2521329
PublicationCentury 2000
PublicationDate 2025-12-31
PublicationDateYYYYMMDD 2025-12-31
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-31
  day: 31
PublicationDecade 2020
PublicationTitle Data science in science
PublicationYear 2025
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References e_1_3_3_50_1
e_1_3_3_18_1
e_1_3_3_39_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_40_1
e_1_3_3_7_1
e_1_3_3_9_1
e_1_3_3_29_1
e_1_3_3_25_1
e_1_3_3_48_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_30_1
Stadler L (e_1_3_3_41_1) 2020
e_1_3_3_17_1
Schedler JC (e_1_3_3_38_1) 2021; 10
e_1_3_3_19_1
e_1_3_3_13_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_34_1
e_1_3_3_11_1
e_1_3_3_32_1
Symanski E (e_1_3_3_44_1) 2021; 224
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_28_1
e_1_3_3_24_1
e_1_3_3_49_1
e_1_3_3_26_1
e_1_3_3_47_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
References_xml – ident: e_1_3_3_23_1
  doi: 10.3201/eid2809.220938
– ident: e_1_3_3_48_1
  doi: 10.1016/j.watres.2023.119648
– ident: e_1_3_3_16_1
  doi: 10.1002/sim.7254
– ident: e_1_3_3_25_1
  doi: 10.1214/23-BA1410
– ident: e_1_3_3_27_1
  doi: 10.1002/sim.7582
– ident: e_1_3_3_4_1
  doi: 10.1093/biomet/asr013
– ident: e_1_3_3_47_1
  doi: 10.1111/j.1467-842X.2008.00507.x
– ident: e_1_3_3_18_1
  doi: 10.1039/D1EW00672J
– ident: e_1_3_3_49_1
  doi: 10.1016/j.scitotenv.2021.150121
– ident: e_1_3_3_3_1
  doi: 10.1016/j.watres.2022.118611
– ident: e_1_3_3_15_1
  doi: 10.1111/j.1541-0420.2012.01808.x
– ident: e_1_3_3_8_1
  doi: 10.1002/sim.10009
– volume: 224
  start-page: 1649
  issue: 10
  year: 2021
  ident: e_1_3_3_44_1
  article-title: Population-based estimates of SARS-CoV-2 seroprevalence in Houston, Texas as of September 2020
  publication-title: J Infect Dis
– ident: e_1_3_3_26_1
  doi: 10.1016/j.scitotenv.2023.165105
– ident: e_1_3_3_19_1
  doi: 10.1016/j.scitotenv.2022.158967
– ident: e_1_3_3_28_1
  doi: 10.1016/j.envint.2023.107765
– ident: e_1_3_3_32_1
  doi: 10.1080/13658810601073315
– ident: e_1_3_3_14_1
  doi: 10.1016/j.scitotenv.2021.150151
– ident: e_1_3_3_6_1
  doi: 10.1017/S0950268821002752
– ident: e_1_3_3_43_1
  doi: 10.1080/10618600.2024.2362227
– ident: e_1_3_3_22_1
  doi: 10.1007/s10729-020-09525-1
– ident: e_1_3_3_40_1
  doi: 10.2307/2986151
– ident: e_1_3_3_7_1
  doi: 10.1177/1471082X15617594
– ident: e_1_3_3_45_1
  doi: 10.1016/j.heliyon.2023.e21734
– ident: e_1_3_3_33_1
  doi: 10.1111/j.1541-0420.2012.01788.x
– ident: e_1_3_3_30_1
  doi: 10.1016/j.jhazmat.2022.129848
– ident: e_1_3_3_50_1
  doi: 10.1198/016214504000001745
– ident: e_1_3_3_17_1
  doi: 10.1111/biom.12278
– ident: e_1_3_3_39_1
  doi: 10.1198/jasa.2010.tm09228
– ident: e_1_3_3_10_1
  doi: 10.1016/j.scitotenv.2021.149618
– ident: e_1_3_3_46_1
  doi: 10.1016/j.scitotenv.2021.152334
– ident: e_1_3_3_42_1
  doi: 10.1214/16-BA1003
– ident: e_1_3_3_24_1
  doi: 10.1214/20-BA1213
– ident: e_1_3_3_20_1
  doi: 10.1093/biomet/87.3.587
– ident: e_1_3_3_13_1
  doi: 10.1021/acs.est.1c05029
– ident: e_1_3_3_12_1
  doi: 10.1109/BigData52589.2021.9671543
– ident: e_1_3_3_29_1
  doi: 10.1016/j.scitotenv.2021.147947
– ident: e_1_3_3_36_1
  doi: 10.1038/s41587-020-0684-z
– ident: e_1_3_3_34_1
  doi: 10.1038/s41467-022-31753-y
– volume: 10
  start-page: e357
  issue: 1
  year: 2021
  ident: e_1_3_3_38_1
  article-title: A spatiotemporal case-crossover model of asthma exacerbation in the City of Houston
  publication-title: Stat (Int Stat Inst)
– ident: e_1_3_3_11_1
  doi: 10.1038/s41598-024-56175-2
– ident: e_1_3_3_5_1
  doi: 10.1016/j.scitotenv.2021.147451
– ident: e_1_3_3_31_1
  doi: 10.1016/S2542-5196(21)00230-8
– ident: e_1_3_3_37_1
  doi: 10.1198/jcgs.2009.08011
– year: 2020
  ident: e_1_3_3_41_1
  article-title: Wastewater analysis of SARS-CoV-2 as a predictive metric of positivity rate for a major metropolis
  publication-title: medRxiv:2020.11.04.20226191
– ident: e_1_3_3_2_1
  doi: 10.1007/s10654-021-00727-7
– ident: e_1_3_3_35_1
  doi: 10.1016/j.watres.2021.117433
– ident: e_1_3_3_9_1
  doi: 10.1038/s41598-022-17543-y
– ident: e_1_3_3_21_1
  doi: 10.1016/j.scitotenv.2023.163655
SSID ssj0002913928
Score 2.3127675
Snippet Monitoring wastewater concentrations of SARS-CoV-2 yields a low-cost, noninvasive method for tracking disease prevalence and provides early warning signs of...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms COVID-19 data
factor models
sparse functional data
Title Uncovering Dynamic Relationships Between SARS-CoV-2 Wastewater Concentrations and Community Infections via Bayesian Spatial Functional Concurrent Regression
URI https://doaj.org/article/9062a643841346eca146ba4b5e4ccd49
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwuiPMRbHhhgSBtsJ3XGtrQqSDAABbbIT-iSIlqQWPgl_FjuYrd0Y2HxkESO5Tvfw7rvO0JObFp4ryAtcYz7RBglkkLqNNHKZSotJIyIHb6-yYcjcfWUPS21-sKasEAPHDauhTy6CtymBGsrcmcUHG2thM6cMMaKGrqXFulSMoU2mCHbJZNzyI5MWzViE5ILSAlZ1mTgtXgdVv46oyXO_tq5DDbIeowKaSespkFWXLVJGvHcTelpJIc-2yLfo8pg1SV4HHoRusnTRUHby_h1Sruh8oredW7vkt7kIWH0UU3xjgy2kPYQplhFrtwpVZWlESMy-6SXsTILXnyMFe2qT4cYS4p9i0FP6QCcYLg7rOcJ1E7w--dQTFttk9Ggf98bJrHDQmIYopfamsuUey41N9ro3EhIKtveWguOzUEspo0FC2Qh425DYOE9F9jSL1NScOVVznfIajWp3C6hTBpvMLhgIgM7YAqhQT7nLJUFs9rbPdKcb3X5Gog0yvPITzqXTYmyKaNs9kgXBbL4GHmw6wegHWXUjvIv7dj_j0kOyBouLNA7HpLV2du7O4JQZKaPa62D8fqr_wPpSd2C
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+Dynamic+Relationships+Between+SARS-CoV-2+Wastewater+Concentrations+and+Community+Infections+via+Bayesian+Spatial+Functional+Concurrent+Regression&rft.jtitle=Data+science+in+science&rft.au=Thomas+Y.+Sun&rft.au=Julia+C.+Schedler&rft.au=Daniel+R.+Kowal&rft.au=Rebecca+Schneider&rft.date=2025-12-31&rft.pub=Taylor+%26+Francis+Group&rft.eissn=2694-1899&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1080%2F26941899.2025.2521329&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9062a643841346eca146ba4b5e4ccd49
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-1899&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-1899&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-1899&client=summon