Uncovering Dynamic Relationships Between SARS-CoV-2 Wastewater Concentrations and Community Infections via Bayesian Spatial Functional Concurrent Regression
Monitoring wastewater concentrations of SARS-CoV-2 yields a low-cost, noninvasive method for tracking disease prevalence and provides early warning signs of upcoming outbreaks in the serviced communities. There is tremendous clinical and public health interest in understanding the complex relationsh...
Saved in:
Published in | Data science in science Vol. 4; no. 1 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis Group
31.12.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2694-1899 2694-1899 |
DOI | 10.1080/26941899.2025.2521329 |
Cover
Abstract | Monitoring wastewater concentrations of SARS-CoV-2 yields a low-cost, noninvasive method for tracking disease prevalence and provides early warning signs of upcoming outbreaks in the serviced communities. There is tremendous clinical and public health interest in understanding the complex relationships between wastewater viral loads and infection rates in the population. As both data sources may contain substantial noise and missingness, in addition to spatial and temporal dependencies, properly modeling this relationship must address these numerous complexities simultaneously while providing interpretable and clear insights. We propose a novel Bayesian functional concurrent regression model that accounts for both spatial and temporal correlations while estimating the time-dependent effects between wastewater concentrations and positivity rates over time. We explicitly model the time lag between the two series and provide full posterior inference on the possible delay between spikes in wastewater concentrations and subsequent outbreaks. We estimate a time lag likely between 5 to 11 days between spikes in wastewater levels and reported clinical positivity rates. Additionally, we find a dynamic relationship between wastewater concentration levels and the strength of its association with positivity rates that fluctuates between outbreaks and non-outbreaks. |
---|---|
AbstractList | Monitoring wastewater concentrations of SARS-CoV-2 yields a low-cost, noninvasive method for tracking disease prevalence and provides early warning signs of upcoming outbreaks in the serviced communities. There is tremendous clinical and public health interest in understanding the complex relationships between wastewater viral loads and infection rates in the population. As both data sources may contain substantial noise and missingness, in addition to spatial and temporal dependencies, properly modeling this relationship must address these numerous complexities simultaneously while providing interpretable and clear insights. We propose a novel Bayesian functional concurrent regression model that accounts for both spatial and temporal correlations while estimating the time-dependent effects between wastewater concentrations and positivity rates over time. We explicitly model the time lag between the two series and provide full posterior inference on the possible delay between spikes in wastewater concentrations and subsequent outbreaks. We estimate a time lag likely between 5 to 11 days between spikes in wastewater levels and reported clinical positivity rates. Additionally, we find a dynamic relationship between wastewater concentration levels and the strength of its association with positivity rates that fluctuates between outbreaks and non-outbreaks. |
Author | Hopkins, Loren Stadler, Lauren B. Ensor, Katherine B. Sun, Thomas Y. Schedler, Julia C. Kowal, Daniel R. Schneider, Rebecca |
Author_xml | – sequence: 1 givenname: Thomas Y. orcidid: 0000-0002-5385-5083 surname: Sun fullname: Sun, Thomas Y. – sequence: 2 givenname: Julia C. orcidid: 0000-0003-1242-0048 surname: Schedler fullname: Schedler, Julia C. – sequence: 3 givenname: Daniel R. surname: Kowal fullname: Kowal, Daniel R. – sequence: 4 givenname: Rebecca surname: Schneider fullname: Schneider, Rebecca – sequence: 5 givenname: Lauren B. surname: Stadler fullname: Stadler, Lauren B. – sequence: 6 givenname: Loren surname: Hopkins fullname: Hopkins, Loren – sequence: 7 givenname: Katherine B. orcidid: 0000-0002-3964-0465 surname: Ensor fullname: Ensor, Katherine B. |
BookMark | eNpNkd1OGzEQha2KSqWUR6jkF9jUf-u1LyEtEAkJCZr20pr1zqZGiR3ZG6K8Sx-2uyRFXM3ROTPfXJzP5CymiIR85WzGmWHfhLaKG2tngol6JmrBpbAfyPnkV1Nw9k5_IpelPDPGhOXSCnNO_i6jTy-YQ1zR74cIm-DpI65hCCmWP2Fb6DUOe8RIn64en6p5-lUJ-hvKgHsYMNN5ih7jkI8HFGI3WpvNLobhQBexR38MXgLQazhgCTCituM6rOnNLr7Go5w4u5xH1Ph-lbGU0f9CPvawLnh5mhdkefPj5_yuun-4Xcyv7isvJLdV00rDZC9NK33rW-2NbUzTd13HpMaa89Z3stEdtrJhlve9VA2XdQ1GSehBywuyOHK7BM9um8MG8sElCO7VSHnlIA_Br9FZpgVoJY3iUmn0wJVuQbU1Ku87ZUdWfWT5nErJ2L_xOHNTY-5_Y25qzJ0ak_8AjHuNsw |
Cites_doi | 10.3201/eid2809.220938 10.1016/j.watres.2023.119648 10.1002/sim.7254 10.1214/23-BA1410 10.1002/sim.7582 10.1093/biomet/asr013 10.1111/j.1467-842X.2008.00507.x 10.1039/D1EW00672J 10.1016/j.scitotenv.2021.150121 10.1016/j.watres.2022.118611 10.1111/j.1541-0420.2012.01808.x 10.1002/sim.10009 10.1016/j.scitotenv.2023.165105 10.1016/j.scitotenv.2022.158967 10.1016/j.envint.2023.107765 10.1080/13658810601073315 10.1016/j.scitotenv.2021.150151 10.1017/S0950268821002752 10.1080/10618600.2024.2362227 10.1007/s10729-020-09525-1 10.2307/2986151 10.1177/1471082X15617594 10.1016/j.heliyon.2023.e21734 10.1111/j.1541-0420.2012.01788.x 10.1016/j.jhazmat.2022.129848 10.1198/016214504000001745 10.1111/biom.12278 10.1198/jasa.2010.tm09228 10.1016/j.scitotenv.2021.149618 10.1016/j.scitotenv.2021.152334 10.1214/16-BA1003 10.1214/20-BA1213 10.1093/biomet/87.3.587 10.1021/acs.est.1c05029 10.1109/BigData52589.2021.9671543 10.1016/j.scitotenv.2021.147947 10.1038/s41587-020-0684-z 10.1038/s41467-022-31753-y 10.1038/s41598-024-56175-2 10.1016/j.scitotenv.2021.147451 10.1016/S2542-5196(21)00230-8 10.1198/jcgs.2009.08011 10.1007/s10654-021-00727-7 10.1016/j.watres.2021.117433 10.1038/s41598-022-17543-y 10.1016/j.scitotenv.2023.163655 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1080/26941899.2025.2521329 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2694-1899 |
ExternalDocumentID | oai_doaj_org_article_9062a643841346eca146ba4b5e4ccd49 10_1080_26941899_2025_2521329 |
GroupedDBID | 0YH AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION EBS GROUPED_DOAJ M~E TDBHL |
ID | FETCH-LOGICAL-c2319-7b3803f38b3cbcb6c89787fddd036e511bcd376deb37091ff3471355a843afa63 |
IEDL.DBID | DOA |
ISSN | 2694-1899 |
IngestDate | Wed Aug 27 00:55:07 EDT 2025 Thu Jul 10 07:46:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2319-7b3803f38b3cbcb6c89787fddd036e511bcd376deb37091ff3471355a843afa63 |
ORCID | 0000-0003-1242-0048 0000-0002-3964-0465 0000-0002-5385-5083 |
OpenAccessLink | https://doaj.org/article/9062a643841346eca146ba4b5e4ccd49 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9062a643841346eca146ba4b5e4ccd49 crossref_primary_10_1080_26941899_2025_2521329 |
PublicationCentury | 2000 |
PublicationDate | 2025-12-31 |
PublicationDateYYYYMMDD | 2025-12-31 |
PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Data science in science |
PublicationYear | 2025 |
Publisher | Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis Group |
References | e_1_3_3_50_1 e_1_3_3_18_1 e_1_3_3_39_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_40_1 e_1_3_3_7_1 e_1_3_3_9_1 e_1_3_3_29_1 e_1_3_3_25_1 e_1_3_3_48_1 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_42_1 e_1_3_3_30_1 Stadler L (e_1_3_3_41_1) 2020 e_1_3_3_17_1 Schedler JC (e_1_3_3_38_1) 2021; 10 e_1_3_3_19_1 e_1_3_3_13_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_34_1 e_1_3_3_11_1 e_1_3_3_32_1 Symanski E (e_1_3_3_44_1) 2021; 224 e_1_3_3_6_1 e_1_3_3_8_1 e_1_3_3_28_1 e_1_3_3_24_1 e_1_3_3_49_1 e_1_3_3_26_1 e_1_3_3_47_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_45_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_43_1 |
References_xml | – ident: e_1_3_3_23_1 doi: 10.3201/eid2809.220938 – ident: e_1_3_3_48_1 doi: 10.1016/j.watres.2023.119648 – ident: e_1_3_3_16_1 doi: 10.1002/sim.7254 – ident: e_1_3_3_25_1 doi: 10.1214/23-BA1410 – ident: e_1_3_3_27_1 doi: 10.1002/sim.7582 – ident: e_1_3_3_4_1 doi: 10.1093/biomet/asr013 – ident: e_1_3_3_47_1 doi: 10.1111/j.1467-842X.2008.00507.x – ident: e_1_3_3_18_1 doi: 10.1039/D1EW00672J – ident: e_1_3_3_49_1 doi: 10.1016/j.scitotenv.2021.150121 – ident: e_1_3_3_3_1 doi: 10.1016/j.watres.2022.118611 – ident: e_1_3_3_15_1 doi: 10.1111/j.1541-0420.2012.01808.x – ident: e_1_3_3_8_1 doi: 10.1002/sim.10009 – volume: 224 start-page: 1649 issue: 10 year: 2021 ident: e_1_3_3_44_1 article-title: Population-based estimates of SARS-CoV-2 seroprevalence in Houston, Texas as of September 2020 publication-title: J Infect Dis – ident: e_1_3_3_26_1 doi: 10.1016/j.scitotenv.2023.165105 – ident: e_1_3_3_19_1 doi: 10.1016/j.scitotenv.2022.158967 – ident: e_1_3_3_28_1 doi: 10.1016/j.envint.2023.107765 – ident: e_1_3_3_32_1 doi: 10.1080/13658810601073315 – ident: e_1_3_3_14_1 doi: 10.1016/j.scitotenv.2021.150151 – ident: e_1_3_3_6_1 doi: 10.1017/S0950268821002752 – ident: e_1_3_3_43_1 doi: 10.1080/10618600.2024.2362227 – ident: e_1_3_3_22_1 doi: 10.1007/s10729-020-09525-1 – ident: e_1_3_3_40_1 doi: 10.2307/2986151 – ident: e_1_3_3_7_1 doi: 10.1177/1471082X15617594 – ident: e_1_3_3_45_1 doi: 10.1016/j.heliyon.2023.e21734 – ident: e_1_3_3_33_1 doi: 10.1111/j.1541-0420.2012.01788.x – ident: e_1_3_3_30_1 doi: 10.1016/j.jhazmat.2022.129848 – ident: e_1_3_3_50_1 doi: 10.1198/016214504000001745 – ident: e_1_3_3_17_1 doi: 10.1111/biom.12278 – ident: e_1_3_3_39_1 doi: 10.1198/jasa.2010.tm09228 – ident: e_1_3_3_10_1 doi: 10.1016/j.scitotenv.2021.149618 – ident: e_1_3_3_46_1 doi: 10.1016/j.scitotenv.2021.152334 – ident: e_1_3_3_42_1 doi: 10.1214/16-BA1003 – ident: e_1_3_3_24_1 doi: 10.1214/20-BA1213 – ident: e_1_3_3_20_1 doi: 10.1093/biomet/87.3.587 – ident: e_1_3_3_13_1 doi: 10.1021/acs.est.1c05029 – ident: e_1_3_3_12_1 doi: 10.1109/BigData52589.2021.9671543 – ident: e_1_3_3_29_1 doi: 10.1016/j.scitotenv.2021.147947 – ident: e_1_3_3_36_1 doi: 10.1038/s41587-020-0684-z – ident: e_1_3_3_34_1 doi: 10.1038/s41467-022-31753-y – volume: 10 start-page: e357 issue: 1 year: 2021 ident: e_1_3_3_38_1 article-title: A spatiotemporal case-crossover model of asthma exacerbation in the City of Houston publication-title: Stat (Int Stat Inst) – ident: e_1_3_3_11_1 doi: 10.1038/s41598-024-56175-2 – ident: e_1_3_3_5_1 doi: 10.1016/j.scitotenv.2021.147451 – ident: e_1_3_3_31_1 doi: 10.1016/S2542-5196(21)00230-8 – ident: e_1_3_3_37_1 doi: 10.1198/jcgs.2009.08011 – year: 2020 ident: e_1_3_3_41_1 article-title: Wastewater analysis of SARS-CoV-2 as a predictive metric of positivity rate for a major metropolis publication-title: medRxiv:2020.11.04.20226191 – ident: e_1_3_3_2_1 doi: 10.1007/s10654-021-00727-7 – ident: e_1_3_3_35_1 doi: 10.1016/j.watres.2021.117433 – ident: e_1_3_3_9_1 doi: 10.1038/s41598-022-17543-y – ident: e_1_3_3_21_1 doi: 10.1016/j.scitotenv.2023.163655 |
SSID | ssj0002913928 |
Score | 2.3127675 |
Snippet | Monitoring wastewater concentrations of SARS-CoV-2 yields a low-cost, noninvasive method for tracking disease prevalence and provides early warning signs of... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
SubjectTerms | COVID-19 data factor models sparse functional data |
Title | Uncovering Dynamic Relationships Between SARS-CoV-2 Wastewater Concentrations and Community Infections via Bayesian Spatial Functional Concurrent Regression |
URI | https://doaj.org/article/9062a643841346eca146ba4b5e4ccd49 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwuiPMRbHhhgSBtsJ3XGtrQqSDAABbbIT-iSIlqQWPgl_FjuYrd0Y2HxkESO5Tvfw7rvO0JObFp4ryAtcYz7RBglkkLqNNHKZSotJIyIHb6-yYcjcfWUPS21-sKasEAPHDauhTy6CtymBGsrcmcUHG2thM6cMMaKGrqXFulSMoU2mCHbJZNzyI5MWzViE5ILSAlZ1mTgtXgdVv46oyXO_tq5DDbIeowKaSespkFWXLVJGvHcTelpJIc-2yLfo8pg1SV4HHoRusnTRUHby_h1Sruh8oredW7vkt7kIWH0UU3xjgy2kPYQplhFrtwpVZWlESMy-6SXsTILXnyMFe2qT4cYS4p9i0FP6QCcYLg7rOcJ1E7w--dQTFttk9Ggf98bJrHDQmIYopfamsuUey41N9ro3EhIKtveWguOzUEspo0FC2Qh425DYOE9F9jSL1NScOVVznfIajWp3C6hTBpvMLhgIgM7YAqhQT7nLJUFs9rbPdKcb3X5Gog0yvPITzqXTYmyKaNs9kgXBbL4GHmw6wegHWXUjvIv7dj_j0kOyBouLNA7HpLV2du7O4JQZKaPa62D8fqr_wPpSd2C |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+Dynamic+Relationships+Between+SARS-CoV-2+Wastewater+Concentrations+and+Community+Infections+via+Bayesian+Spatial+Functional+Concurrent+Regression&rft.jtitle=Data+science+in+science&rft.au=Thomas+Y.+Sun&rft.au=Julia+C.+Schedler&rft.au=Daniel+R.+Kowal&rft.au=Rebecca+Schneider&rft.date=2025-12-31&rft.pub=Taylor+%26+Francis+Group&rft.eissn=2694-1899&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1080%2F26941899.2025.2521329&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9062a643841346eca146ba4b5e4ccd49 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-1899&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-1899&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-1899&client=summon |