Parameter estimation for fractional autoregressive process with seasonal structure
This paper introduces a new kind of seasonal fractional autoregressive process (SFAR) driven by fractional Gaussian noise (fGn). The new model includes a standard seasonal AR model and fGn. The estimation of the parameters of this new model has to solve two problems: nonstationarity from the seasona...
Saved in:
Published in | Statistical theory and related fields pp. 1 - 30 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis Group
05.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper introduces a new kind of seasonal fractional autoregressive process (SFAR) driven by fractional Gaussian noise (fGn). The new model includes a standard seasonal AR model and fGn. The estimation of the parameters of this new model has to solve two problems: nonstationarity from the seasonal structure and long memory from fGn. We innovatively solve these by getting a stationary subsequence, making a stationary additive sequence and then obtaining their spectral density. Then we use one-step procedure for Generalized Least Squares Estimator (GLSE) and the Geweke Porter–Hudak (GPH) method to get better results. We prove that both the initial and one-step estimators are consistent and asymptotically normal. Finally, we use Monte Carlo simulations with finite-sized samples to demonstrate the performance of these estimators. Moreover, through empirical analysis, it is shown that the SFAR model can simulate some real-world phenomena better than general models. |
---|---|
AbstractList | This paper introduces a new kind of seasonal fractional autoregressive process (SFAR) driven by fractional Gaussian noise (fGn). The new model includes a standard seasonal AR model and fGn. The estimation of the parameters of this new model has to solve two problems: nonstationarity from the seasonal structure and long memory from fGn. We innovatively solve these by getting a stationary subsequence, making a stationary additive sequence and then obtaining their spectral density. Then we use one-step procedure for Generalized Least Squares Estimator (GLSE) and the Geweke Porter–Hudak (GPH) method to get better results. We prove that both the initial and one-step estimators are consistent and asymptotically normal. Finally, we use Monte Carlo simulations with finite-sized samples to demonstrate the performance of these estimators. Moreover, through empirical analysis, it is shown that the SFAR model can simulate some real-world phenomena better than general models. |
Author | Shang, Yiwu Cai, Chunhao |
Author_xml | – sequence: 1 givenname: Chunhao surname: Cai fullname: Cai, Chunhao – sequence: 2 givenname: Yiwu surname: Shang fullname: Shang, Yiwu |
BookMark | eNo9kNtKAzEQhoMoWGsfQdgX2Jrzbi6leCgUFNHrkMOkbmmbkqSKb-9uW3s1__wMH8N3gy63cQsI3RE8JbjF95Q3glOpphRTMaWCNbxtLtBo6GtOm-bynKW6RpOcVxhj0gosGRmh9zeTzAYKpApy6TamdHFbhZiqkIwbFrOuzL7EBMsEOXffUO1SdH2sfrryVWUw-XCUS9q7sk9wi66CWWeYnOYYfT49fsxe6sXr83z2sKgdZaSpbeAes-C8pViB4Ja1gVghOAvCEmlt8EpaSo1RhHhDWEu8d1QSwSxuwLIxmh-5PpqV3qX--fSro-n0oYhpqU0qnVuDluCV4F4aaiXvuRYoUOKIU857LKBniSPLpZhzgnDmEawHz_rfsx4865Nn9gecw3Sl |
Cites_doi | 10.1111/jtsa.v44.1 10.1057/9780230280830_19 10.1080/15326349.2023.2202227 10.3103/S1066530714020021 10.1111/jtsa.1983.4.issue-4 10.1016/j.mcm.2008.12.003 10.1029/WR020i012p01898 10.1016/j.physa.2006.08.027 10.1214/20-EJS1777 10.1017/S0266466611000399 10.1016/S0304-4076(01)00076-8 10.1080/01621459.1989.10478729 10.1007/978-1-4419-0320-4 10.1111/jtsa.1998.19.issue-1 10.1051/ps/2020022 10.2307/2344994 10.1525/9780520313880-014 10.1214/aos/1176349936 10.1016/j.jspi.2024.106148 10.1061/TACEAT.0006518 10.1007/s00184-015-0574-4 10.1214/aos/1176324636 10.1007/978-3-642-35512-7 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1080/24754269.2025.2537487 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 2475-4277 |
EndPage | 30 |
ExternalDocumentID | oai_doaj_org_article_6ed954d6a2b64fd9be2e21c1c9cdd05e 10_1080_24754269_2025_2537487 |
GroupedDBID | 0YH 30N AAYXX ACGFS ADFNY ADWHR AECIN AEEWU AEISY AIYEW ALMA_UNASSIGNED_HOLDINGS ALQZU APAHL BLEHA CCCUG CITATION EBS GROUPED_DOAJ H13 KYCEM LJTGL SOJIQ TDBHL TFL TFW TTHFI UK4 |
ID | FETCH-LOGICAL-c2317-bf4d03fcdb209e54b38f1b5543f5b16bbfd96b22aa911da1381ddc26153b07eb3 |
IEDL.DBID | DOA |
ISSN | 2475-4269 |
IngestDate | Wed Aug 27 01:29:57 EDT 2025 Thu Aug 07 05:49:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2317-bf4d03fcdb209e54b38f1b5543f5b16bbfd96b22aa911da1381ddc26153b07eb3 |
OpenAccessLink | https://doaj.org/article/6ed954d6a2b64fd9be2e21c1c9cdd05e |
PageCount | 30 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6ed954d6a2b64fd9be2e21c1c9cdd05e crossref_primary_10_1080_24754269_2025_2537487 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-05 |
PublicationDateYYYYMMDD | 2025-08-05 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Statistical theory and related fields |
PublicationYear | 2025 |
Publisher | Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis Group |
References | e_1_3_2_27_1 e_1_3_2_28_1 e_1_3_2_20_1 e_1_3_2_21_1 e_1_3_2_22_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_25_1 e_1_3_2_26_1 e_1_3_2_16_1 e_1_3_2_9_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 Chan N. H. (e_1_3_2_8_1) 1995; 23 e_1_3_2_2_1 e_1_3_2_11_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_5_1 e_1_3_2_13_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_3_1 e_1_3_2_15_1 Harrison P. J. (e_1_3_2_17_1) 1965; 14 Tsay R. S. (e_1_3_2_29_1) 2013 Cohen S. (e_1_3_2_10_1) 2013; 10 |
References_xml | – ident: e_1_3_2_21_1 doi: 10.1111/jtsa.v44.1 – ident: e_1_3_2_27_1 doi: 10.1057/9780230280830_19 – ident: e_1_3_2_28_1 doi: 10.1080/15326349.2023.2202227 – ident: e_1_3_2_5_1 doi: 10.3103/S1066530714020021 – ident: e_1_3_2_14_1 doi: 10.1111/jtsa.1983.4.issue-4 – ident: e_1_3_2_3_1 doi: 10.1016/j.mcm.2008.12.003 – ident: e_1_3_2_18_1 doi: 10.1029/WR020i012p01898 – ident: e_1_3_2_13_1 doi: 10.1016/j.physa.2006.08.027 – ident: e_1_3_2_15_1 doi: 10.1214/20-EJS1777 – ident: e_1_3_2_24_1 doi: 10.1017/S0266466611000399 – ident: e_1_3_2_25_1 doi: 10.1016/S0304-4076(01)00076-8 – ident: e_1_3_2_7_1 doi: 10.1080/01621459.1989.10478729 – volume: 23 start-page: 1662 issue: 5 year: 1995 ident: e_1_3_2_8_1 article-title: Inference for unstable long-memory processes with applications to fractional unit root autoregressions publication-title: The Annals of Statistics – ident: e_1_3_2_4_1 doi: 10.1007/978-1-4419-0320-4 – volume: 10 start-page: 91 issue: 1 year: 2013 ident: e_1_3_2_10_1 article-title: LAN property for some fractional type Brownian motion publication-title: ALEA: Latin American Journal of Probability and Mathematical Statistics – volume-title: Multivariate Time Series Analysis: With R and Financial Applications year: 2013 ident: e_1_3_2_29_1 – ident: e_1_3_2_20_1 doi: 10.1111/jtsa.1998.19.issue-1 – ident: e_1_3_2_6_1 doi: 10.1051/ps/2020022 – ident: e_1_3_2_9_1 doi: 10.2307/2344994 – volume: 14 start-page: 102 issue: 2 year: 1965 ident: e_1_3_2_17_1 article-title: Short-term sales forecasting publication-title: Journal of the Royal Statistical Society: Series C (Applied Statistics) – ident: e_1_3_2_23_1 doi: 10.1525/9780520313880-014 – ident: e_1_3_2_12_1 doi: 10.1214/aos/1176349936 – ident: e_1_3_2_16_1 doi: 10.1016/j.jspi.2024.106148 – ident: e_1_3_2_11_1 – ident: e_1_3_2_19_1 doi: 10.1061/TACEAT.0006518 – ident: e_1_3_2_22_1 doi: 10.1007/s00184-015-0574-4 – ident: e_1_3_2_26_1 doi: 10.1214/aos/1176324636 – ident: e_1_3_2_2_1 doi: 10.1007/978-3-642-35512-7 |
SSID | ssj0001850631 |
Score | 2.2993784 |
Snippet | This paper introduces a new kind of seasonal fractional autoregressive process (SFAR) driven by fractional Gaussian noise (fGn). The new model includes a... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 1 |
SubjectTerms | fractional Gaussian noise one-step procedure Seasonal autoregressive process |
Title | Parameter estimation for fractional autoregressive process with seasonal structure |
URI | https://doaj.org/article/6ed954d6a2b64fd9be2e21c1c9cdd05e |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagUxfEU5RH5YHVbeL4kYyAqCokKoSo1C2yfc5Yqgr-P3d2isrEwnpyIuez4_vudPeZsTsrQzA1lBiWBBDKmE40TldCorMLFqAONfUOvyzMfKmeV3q1d9UX1YRleeAM3NREaLQC46Q3qoPGRxllGcrQBIBCRzp90eftBVMpu0JCbOkyQqmsFtSvuWvfqYsp2ciE4aHUE6lJgsX-ckx7-v3J0cyO2VHPEPl9ntkJO4jrUzYkUpg1lc_Y26ujkipEhJNGRm4-5Mg-ebfNfQr4vCNxgpiiaTzQ-CY3BHDKu3JKDKZBWT32axvP2XL29P44F_3dCCIgI7OC6uuKqgvg8eujVr6qu9IjN6g67UvjPUJlvJTO4WkGrkTHDBAk0TtfWIygL9hg_bGOl4yDbZwliYCqc_g7G9doIlrKKYjW137EJjtg2k2WwGjLXll0h2RLSLY9kiP2QPD9DCYF62TAdW37dW3_Wter_3jJNRvSxFLBnr5hAwQ13iKJ-PRjdlgVi3HaNd_cu8Vj |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+estimation+for+fractional+autoregressive+process+with+seasonal+structure&rft.jtitle=Statistical+theory+and+related+fields&rft.au=Cai%2C+Chunhao&rft.au=Shang%2C+Yiwu&rft.date=2025-08-05&rft.issn=2475-4269&rft.eissn=2475-4277&rft.spage=1&rft.epage=30&rft_id=info:doi/10.1080%2F24754269.2025.2537487&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_24754269_2025_2537487 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-4269&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-4269&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-4269&client=summon |