Parameter estimation for fractional autoregressive process with seasonal structure

This paper introduces a new kind of seasonal fractional autoregressive process (SFAR) driven by fractional Gaussian noise (fGn). The new model includes a standard seasonal AR model and fGn. The estimation of the parameters of this new model has to solve two problems: nonstationarity from the seasona...

Full description

Saved in:
Bibliographic Details
Published inStatistical theory and related fields pp. 1 - 30
Main Authors Cai, Chunhao, Shang, Yiwu
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 05.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper introduces a new kind of seasonal fractional autoregressive process (SFAR) driven by fractional Gaussian noise (fGn). The new model includes a standard seasonal AR model and fGn. The estimation of the parameters of this new model has to solve two problems: nonstationarity from the seasonal structure and long memory from fGn. We innovatively solve these by getting a stationary subsequence, making a stationary additive sequence and then obtaining their spectral density. Then we use one-step procedure for Generalized Least Squares Estimator (GLSE) and the Geweke Porter–Hudak (GPH) method to get better results. We prove that both the initial and one-step estimators are consistent and asymptotically normal. Finally, we use Monte Carlo simulations with finite-sized samples to demonstrate the performance of these estimators. Moreover, through empirical analysis, it is shown that the SFAR model can simulate some real-world phenomena better than general models.
AbstractList This paper introduces a new kind of seasonal fractional autoregressive process (SFAR) driven by fractional Gaussian noise (fGn). The new model includes a standard seasonal AR model and fGn. The estimation of the parameters of this new model has to solve two problems: nonstationarity from the seasonal structure and long memory from fGn. We innovatively solve these by getting a stationary subsequence, making a stationary additive sequence and then obtaining their spectral density. Then we use one-step procedure for Generalized Least Squares Estimator (GLSE) and the Geweke Porter–Hudak (GPH) method to get better results. We prove that both the initial and one-step estimators are consistent and asymptotically normal. Finally, we use Monte Carlo simulations with finite-sized samples to demonstrate the performance of these estimators. Moreover, through empirical analysis, it is shown that the SFAR model can simulate some real-world phenomena better than general models.
Author Shang, Yiwu
Cai, Chunhao
Author_xml – sequence: 1
  givenname: Chunhao
  surname: Cai
  fullname: Cai, Chunhao
– sequence: 2
  givenname: Yiwu
  surname: Shang
  fullname: Shang, Yiwu
BookMark eNo9kNtKAzEQhoMoWGsfQdgX2Jrzbi6leCgUFNHrkMOkbmmbkqSKb-9uW3s1__wMH8N3gy63cQsI3RE8JbjF95Q3glOpphRTMaWCNbxtLtBo6GtOm-bynKW6RpOcVxhj0gosGRmh9zeTzAYKpApy6TamdHFbhZiqkIwbFrOuzL7EBMsEOXffUO1SdH2sfrryVWUw-XCUS9q7sk9wi66CWWeYnOYYfT49fsxe6sXr83z2sKgdZaSpbeAes-C8pViB4Ja1gVghOAvCEmlt8EpaSo1RhHhDWEu8d1QSwSxuwLIxmh-5PpqV3qX--fSro-n0oYhpqU0qnVuDluCV4F4aaiXvuRYoUOKIU857LKBniSPLpZhzgnDmEawHz_rfsx4865Nn9gecw3Sl
Cites_doi 10.1111/jtsa.v44.1
10.1057/9780230280830_19
10.1080/15326349.2023.2202227
10.3103/S1066530714020021
10.1111/jtsa.1983.4.issue-4
10.1016/j.mcm.2008.12.003
10.1029/WR020i012p01898
10.1016/j.physa.2006.08.027
10.1214/20-EJS1777
10.1017/S0266466611000399
10.1016/S0304-4076(01)00076-8
10.1080/01621459.1989.10478729
10.1007/978-1-4419-0320-4
10.1111/jtsa.1998.19.issue-1
10.1051/ps/2020022
10.2307/2344994
10.1525/9780520313880-014
10.1214/aos/1176349936
10.1016/j.jspi.2024.106148
10.1061/TACEAT.0006518
10.1007/s00184-015-0574-4
10.1214/aos/1176324636
10.1007/978-3-642-35512-7
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1080/24754269.2025.2537487
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 2475-4277
EndPage 30
ExternalDocumentID oai_doaj_org_article_6ed954d6a2b64fd9be2e21c1c9cdd05e
10_1080_24754269_2025_2537487
GroupedDBID 0YH
30N
AAYXX
ACGFS
ADFNY
ADWHR
AECIN
AEEWU
AEISY
AIYEW
ALMA_UNASSIGNED_HOLDINGS
ALQZU
APAHL
BLEHA
CCCUG
CITATION
EBS
GROUPED_DOAJ
H13
KYCEM
LJTGL
SOJIQ
TDBHL
TFL
TFW
TTHFI
UK4
ID FETCH-LOGICAL-c2317-bf4d03fcdb209e54b38f1b5543f5b16bbfd96b22aa911da1381ddc26153b07eb3
IEDL.DBID DOA
ISSN 2475-4269
IngestDate Wed Aug 27 01:29:57 EDT 2025
Thu Aug 07 05:49:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2317-bf4d03fcdb209e54b38f1b5543f5b16bbfd96b22aa911da1381ddc26153b07eb3
OpenAccessLink https://doaj.org/article/6ed954d6a2b64fd9be2e21c1c9cdd05e
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_6ed954d6a2b64fd9be2e21c1c9cdd05e
crossref_primary_10_1080_24754269_2025_2537487
PublicationCentury 2000
PublicationDate 2025-08-05
PublicationDateYYYYMMDD 2025-08-05
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-05
  day: 05
PublicationDecade 2020
PublicationTitle Statistical theory and related fields
PublicationYear 2025
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References e_1_3_2_27_1
e_1_3_2_28_1
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
e_1_3_2_26_1
e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
Chan N. H. (e_1_3_2_8_1) 1995; 23
e_1_3_2_2_1
e_1_3_2_11_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
Harrison P. J. (e_1_3_2_17_1) 1965; 14
Tsay R. S. (e_1_3_2_29_1) 2013
Cohen S. (e_1_3_2_10_1) 2013; 10
References_xml – ident: e_1_3_2_21_1
  doi: 10.1111/jtsa.v44.1
– ident: e_1_3_2_27_1
  doi: 10.1057/9780230280830_19
– ident: e_1_3_2_28_1
  doi: 10.1080/15326349.2023.2202227
– ident: e_1_3_2_5_1
  doi: 10.3103/S1066530714020021
– ident: e_1_3_2_14_1
  doi: 10.1111/jtsa.1983.4.issue-4
– ident: e_1_3_2_3_1
  doi: 10.1016/j.mcm.2008.12.003
– ident: e_1_3_2_18_1
  doi: 10.1029/WR020i012p01898
– ident: e_1_3_2_13_1
  doi: 10.1016/j.physa.2006.08.027
– ident: e_1_3_2_15_1
  doi: 10.1214/20-EJS1777
– ident: e_1_3_2_24_1
  doi: 10.1017/S0266466611000399
– ident: e_1_3_2_25_1
  doi: 10.1016/S0304-4076(01)00076-8
– ident: e_1_3_2_7_1
  doi: 10.1080/01621459.1989.10478729
– volume: 23
  start-page: 1662
  issue: 5
  year: 1995
  ident: e_1_3_2_8_1
  article-title: Inference for unstable long-memory processes with applications to fractional unit root autoregressions
  publication-title: The Annals of Statistics
– ident: e_1_3_2_4_1
  doi: 10.1007/978-1-4419-0320-4
– volume: 10
  start-page: 91
  issue: 1
  year: 2013
  ident: e_1_3_2_10_1
  article-title: LAN property for some fractional type Brownian motion
  publication-title: ALEA: Latin American Journal of Probability and Mathematical Statistics
– volume-title: Multivariate Time Series Analysis: With R and Financial Applications
  year: 2013
  ident: e_1_3_2_29_1
– ident: e_1_3_2_20_1
  doi: 10.1111/jtsa.1998.19.issue-1
– ident: e_1_3_2_6_1
  doi: 10.1051/ps/2020022
– ident: e_1_3_2_9_1
  doi: 10.2307/2344994
– volume: 14
  start-page: 102
  issue: 2
  year: 1965
  ident: e_1_3_2_17_1
  article-title: Short-term sales forecasting
  publication-title: Journal of the Royal Statistical Society: Series C (Applied Statistics)
– ident: e_1_3_2_23_1
  doi: 10.1525/9780520313880-014
– ident: e_1_3_2_12_1
  doi: 10.1214/aos/1176349936
– ident: e_1_3_2_16_1
  doi: 10.1016/j.jspi.2024.106148
– ident: e_1_3_2_11_1
– ident: e_1_3_2_19_1
  doi: 10.1061/TACEAT.0006518
– ident: e_1_3_2_22_1
  doi: 10.1007/s00184-015-0574-4
– ident: e_1_3_2_26_1
  doi: 10.1214/aos/1176324636
– ident: e_1_3_2_2_1
  doi: 10.1007/978-3-642-35512-7
SSID ssj0001850631
Score 2.2993784
Snippet This paper introduces a new kind of seasonal fractional autoregressive process (SFAR) driven by fractional Gaussian noise (fGn). The new model includes a...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 1
SubjectTerms fractional Gaussian noise
one-step procedure
Seasonal autoregressive process
Title Parameter estimation for fractional autoregressive process with seasonal structure
URI https://doaj.org/article/6ed954d6a2b64fd9be2e21c1c9cdd05e
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagUxfEU5RH5YHVbeL4kYyAqCokKoSo1C2yfc5Yqgr-P3d2isrEwnpyIuez4_vudPeZsTsrQzA1lBiWBBDKmE40TldCorMLFqAONfUOvyzMfKmeV3q1d9UX1YRleeAM3NREaLQC46Q3qoPGRxllGcrQBIBCRzp90eftBVMpu0JCbOkyQqmsFtSvuWvfqYsp2ciE4aHUE6lJgsX-ckx7-v3J0cyO2VHPEPl9ntkJO4jrUzYkUpg1lc_Y26ujkipEhJNGRm4-5Mg-ebfNfQr4vCNxgpiiaTzQ-CY3BHDKu3JKDKZBWT32axvP2XL29P44F_3dCCIgI7OC6uuKqgvg8eujVr6qu9IjN6g67UvjPUJlvJTO4WkGrkTHDBAk0TtfWIygL9hg_bGOl4yDbZwliYCqc_g7G9doIlrKKYjW137EJjtg2k2WwGjLXll0h2RLSLY9kiP2QPD9DCYF62TAdW37dW3_Wter_3jJNRvSxFLBnr5hAwQ13iKJ-PRjdlgVi3HaNd_cu8Vj
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+estimation+for+fractional+autoregressive+process+with+seasonal+structure&rft.jtitle=Statistical+theory+and+related+fields&rft.au=Cai%2C+Chunhao&rft.au=Shang%2C+Yiwu&rft.date=2025-08-05&rft.issn=2475-4269&rft.eissn=2475-4277&rft.spage=1&rft.epage=30&rft_id=info:doi/10.1080%2F24754269.2025.2537487&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_24754269_2025_2537487
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-4269&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-4269&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-4269&client=summon