Electron‐Paramagnetic‐Resonance Studies on Nitrogenase

The oxidation‐reduction properties of azoferredoxin, molybdoferredoxin, and the inactive species of molybdoferredoxin, all iron‐sulfur proteins purified from Clostridium pasteurianum, were studied by potentiometry combined with electron paramagnetic resonance spectroscopy at low temperature. The tec...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of biochemistry Vol. 46; no. 3; pp. 525 - 535
Main Authors ZUMFT, Walter G., MORTENSON, Leonard E., PALMER, Graham
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.08.1974
Online AccessGet full text

Cover

Loading…
Abstract The oxidation‐reduction properties of azoferredoxin, molybdoferredoxin, and the inactive species of molybdoferredoxin, all iron‐sulfur proteins purified from Clostridium pasteurianum, were studied by potentiometry combined with electron paramagnetic resonance spectroscopy at low temperature. The technique, evaluated with spinach ferredoxin for which a midpoint potential of ‐446 mV was determined (pH 7.9, showed that azoferredoxin has a midpoint potential of ‐294 ± 20 mV (pH 7.5). In the presence of MgATP2−, azoferredoxin undergoes a negative shift of 110 mV in its oxidation‐reduction potential. The resulting potential of approximately ‐400 mV is likely to be effective under physiological conditions. The potential shift is consistent with a proposed conformational change of the protein caused by the binding of two molecules of ATP to the protein (dimer). Molybdoferredoxin and its inactive species, which has an incomplete iron‐sulfur and molybdenum centre, have midpoint potentials of approximately −20 mV and −395 mV, respectively, both at pH 7.5. All nitrogenase proteins are characterized by the transfer of one electron per redox step. Kinetic studies of the reduction of azoferredoxin and molybdoferredoxin by dithionite gave half times of <10 ms and 3–5 min, respectively. Hence, the latter process must be excluded from being part of the physiological reaction. The complex formation of ATP with azoferredoxin is a relatively slow process, which is markedly accelerated by molybdoferredoxin in the reconstituted nitrogenase system. Changes in the electron paramagnetic resonance signals of reconstituted nitrogenase were followed by a rapid‐freeze technique as a function of mixing sequence and ratio of the two proteins. The observed signal changes were independent of the mixing sequence. The steady‐state level of the molybdoferredoxin signal was also independent of the ratio of the two proteins and was less than 15% of the original resonance. The results indicate that the role of the azoferredoxin · ATP complex may not be confined solely to the function of an electron carrier for the nitrogenase reaction.
AbstractList The oxidation‐reduction properties of azoferredoxin, molybdoferredoxin, and the inactive species of molybdoferredoxin, all iron‐sulfur proteins purified from Clostridium pasteurianum, were studied by potentiometry combined with electron paramagnetic resonance spectroscopy at low temperature. The technique, evaluated with spinach ferredoxin for which a midpoint potential of ‐446 mV was determined (pH 7.9, showed that azoferredoxin has a midpoint potential of ‐294 ± 20 mV (pH 7.5). In the presence of MgATP2−, azoferredoxin undergoes a negative shift of 110 mV in its oxidation‐reduction potential. The resulting potential of approximately ‐400 mV is likely to be effective under physiological conditions. The potential shift is consistent with a proposed conformational change of the protein caused by the binding of two molecules of ATP to the protein (dimer). Molybdoferredoxin and its inactive species, which has an incomplete iron‐sulfur and molybdenum centre, have midpoint potentials of approximately −20 mV and −395 mV, respectively, both at pH 7.5. All nitrogenase proteins are characterized by the transfer of one electron per redox step. Kinetic studies of the reduction of azoferredoxin and molybdoferredoxin by dithionite gave half times of <10 ms and 3–5 min, respectively. Hence, the latter process must be excluded from being part of the physiological reaction. The complex formation of ATP with azoferredoxin is a relatively slow process, which is markedly accelerated by molybdoferredoxin in the reconstituted nitrogenase system. Changes in the electron paramagnetic resonance signals of reconstituted nitrogenase were followed by a rapid‐freeze technique as a function of mixing sequence and ratio of the two proteins. The observed signal changes were independent of the mixing sequence. The steady‐state level of the molybdoferredoxin signal was also independent of the ratio of the two proteins and was less than 15% of the original resonance. The results indicate that the role of the azoferredoxin · ATP complex may not be confined solely to the function of an electron carrier for the nitrogenase reaction.
Author MORTENSON, Leonard E.
ZUMFT, Walter G.
PALMER, Graham
Author_xml – sequence: 1
  givenname: Walter G.
  surname: ZUMFT
  fullname: ZUMFT, Walter G.
– sequence: 2
  givenname: Leonard E.
  surname: MORTENSON
  fullname: MORTENSON, Leonard E.
– sequence: 3
  givenname: Graham
  surname: PALMER
  fullname: PALMER, Graham
BookMark eNo9kNtKw0AQhhepYFp9h-J94p4y2XgjWlIViorV62UPk5KSbiSJ2N75CH1Gn8QGi3MzDP_PwPeNySg0AQm5ZDRhh7laJ0wKHjMqRMLyTCa9pQIkJNsTEv1HIxJRymTM8xTOyLjr1pRSyCGLyHVRo-vbJvx8719MazZmFbCv3OF8xa4JJjicLvtPX2E3bcL0qTqUVxhMh-fktDR1hxfHPSHv8-Jt9hAvnu8fZ7eL2HHB0jhTKTinrPfowUrLlTSlyqQrcyFLCaUHZQElTaW3KCxn4L2hJVcZeANKTMjN39-vqsad_mirjWl3mlE9KNBrPXDqgVMPCvRRgd7qeXG3THkqfgF70Fd9
CitedBy_id crossref_primary_10_1016_0014_5793_79_80138_6
crossref_primary_10_1074_jbc_275_5_3493
crossref_primary_10_1016_S0005_2728_97_00006_6
crossref_primary_10_1016_S0021_9258_19_42262_X
crossref_primary_10_1074_jbc_272_7_4157
crossref_primary_10_1016_S0006_291X_74_80409_2
crossref_primary_10_1007_BF00703585
crossref_primary_10_1016_0304_4173_75_90012_9
crossref_primary_10_1006_abio_2000_4826
crossref_primary_10_1016_S0021_9258_17_39160_3
crossref_primary_10_1021_bi9608572
crossref_primary_10_1021_cr9500545
crossref_primary_10_1111_j_1432_1033_1982_tb05813_x
crossref_primary_10_1021_bi960026w
crossref_primary_10_1128_jb_137_2_779_789_1979
crossref_primary_10_1002_anie_201813966
crossref_primary_10_1016_S0021_9258_18_83473_1
crossref_primary_10_1021_bi972667c
crossref_primary_10_1016_S0021_9258_19_50437_9
crossref_primary_10_1016_0014_5793_78_80242_7
crossref_primary_10_1016_S0021_9258_17_41861_8
crossref_primary_10_1021_bi962286j
crossref_primary_10_1111_j_1399_3054_1987_tb01965_x
crossref_primary_10_1016_0038_092X_80_90018_3
crossref_primary_10_1016_0302_4598_87_87039_3
crossref_primary_10_1016_0006_291X_82_91775_2
crossref_primary_10_1016_0014_5793_75_80425_X
crossref_primary_10_1111_j_1432_1033_1995_tb20611_x
crossref_primary_10_1016_S0003_2670_01_95447_9
crossref_primary_10_1016_0005_2728_80_90220_0
crossref_primary_10_1016_0005_2744_77_90242_X
crossref_primary_10_1016_S0021_9258_17_44238_4
crossref_primary_10_1016_j_ccr_2016_10_003
crossref_primary_10_1016_0005_2795_76_90056_8
crossref_primary_10_1021_ar960260e
crossref_primary_10_1074_jbc_270_22_13112
crossref_primary_10_1074_jbc_274_28_19778
crossref_primary_10_1016_S0167_4838_98_00251_9
crossref_primary_10_1021_bi9603985
crossref_primary_10_1021_cr950055x
crossref_primary_10_1021_bi000219q
crossref_primary_10_1002_ange_201813966
crossref_primary_10_1016_0005_2744_81_90226_6
crossref_primary_10_1016_0014_5793_78_80995_8
crossref_primary_10_1007_s00775_009_0480_1
crossref_primary_10_1021_bi981165b
crossref_primary_10_1016_S0021_9258_18_48120_3
crossref_primary_10_1007_s00775_008_0360_0
crossref_primary_10_1074_jbc_271_3_1551
crossref_primary_10_1016_S0769_2609_83_80100_8
crossref_primary_10_1111_febs_17134
crossref_primary_10_1007_BF00624574
crossref_primary_10_1016_0005_2744_76_90056_5
crossref_primary_10_1016_0005_2795_78_90504_4
crossref_primary_10_1002_ange_19951071321
crossref_primary_10_1021_bi700446s
crossref_primary_10_1074_jbc_274_25_17593
crossref_primary_10_1016_0022_5088_77_90069_8
crossref_primary_10_1042_BJ20050226
crossref_primary_10_1111_j_1432_1033_1993_tb17632_x
crossref_primary_10_1016_S0021_9258_18_34949_4
crossref_primary_10_1016_0014_5793_86_81329_1
crossref_primary_10_1111_j_1432_1033_1983_tb07323_x
crossref_primary_10_1016_S0005_2728_89_80196_3
crossref_primary_10_1021_bi961886f
crossref_primary_10_1111_j_1432_1033_1983_tb07430_x
crossref_primary_10_1016_j_jinorgbio_2020_111075
crossref_primary_10_1016_S0021_9258_19_50480_X
crossref_primary_10_1002_pro_5560020110
crossref_primary_10_1021_acs_chemrev_9b00663
crossref_primary_10_1246_bcsj_62_2830
crossref_primary_10_1111_j_1432_1033_1992_tb17185_x
crossref_primary_10_1128_jb_123_2_537_545_1975
crossref_primary_10_1016_0014_5793_85_81231_X
crossref_primary_10_1016_S0300_9084_78_80817_7
crossref_primary_10_1016_0014_5793_91_80676_T
crossref_primary_10_1002_anie_199515021
crossref_primary_10_1016_S0021_9258_19_40892_2
crossref_primary_10_1016_0005_2795_80_90015_X
crossref_primary_10_1021_acs_chemrev_9b00650
crossref_primary_10_1016_0167_4838_82_90100_5
crossref_primary_10_1046_j_1432_1327_1999_00748_x
crossref_primary_10_1016_j_ccr_2019_07_001
crossref_primary_10_1021_bi951430i
crossref_primary_10_1016_S0021_9258_17_43939_1
crossref_primary_10_1021_bi020033m
crossref_primary_10_1021_acs_jpcc_9b01160
crossref_primary_10_1074_jbc_M202061200
ContentType Journal Article
DOI 10.1111/j.1432-1033.1974.tb03646.x
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1432-1033
EndPage 535
ExternalDocumentID FEBS525
Genre article
GroupedDBID -DZ
-~X
.55
.GA
.GJ
.Y3
10A
1OC
24P
29G
31~
36B
3O-
4.4
51W
51X
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5HH
5LA
5RE
66C
7PT
8-1
8-4
8-5
930
A01
A03
AAEVG
AAHHS
AAZKR
ABDBF
ABEFU
ABJNI
ACCFJ
ACFBH
ACGFS
ACMXC
ACNCT
ACXQS
ADBBV
ADIZJ
ADZOD
AEEZP
AEIMD
AEQDE
AETEA
AEUQT
AFBPY
AFPWT
AFZJQ
AI.
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
BAWUL
BY8
C45
CAG
CO8
COF
CS3
D-7
D-F
DIK
E3Z
EAD
EAP
EAS
EAU
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EST
ESX
EX3
F00
F01
F04
F5P
G-S
G8K
GODZA
GX1
HZI
IH2
IHE
IPNFZ
L7B
LH4
LP6
LP7
LW6
MVM
O9-
OBS
OHT
OVD
P4B
P4D
QB0
RIG
ROL
SDH
SUPJJ
SV3
TEORI
TR2
TUS
UB1
VH1
WH7
WOW
WQJ
WRC
WXI
X7M
XG1
Y6R
YFH
YSK
YUY
ZGI
ZXP
ID FETCH-LOGICAL-c2315-7856cc8bdded6b4b284af874cf934f46fd68b6e4054dbe3b216dda0f2876da683
IEDL.DBID 24P
ISSN 0014-2956
IngestDate Sat Aug 24 01:18:43 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2315-7856cc8bdded6b4b284af874cf934f46fd68b6e4054dbe3b216dda0f2876da683
Notes 2
formed per min under standard conditions [8].
4
Botanisches Institut der Friedrich‐Alexander‐Universität zu Erlangen‐Nürnberg, D‐8520 Erlangen, Schlossgarten 4, Federal Republic of Germany
One activity unit of the nitrogenase proteins corresponds to 1 nmole of C
H
Department of Biochemistry, Rice University, P. O. Box 1892, Houston, Texas, U.S.A. 77001
Definition.
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1432-1033.1974.tb03646.x
PageCount 11
ParticipantIDs wiley_primary_10_1111_j_1432_1033_1974_tb03646_x_FEBS525
PublicationCentury 1900
PublicationDate August 1974
PublicationDateYYYYMMDD 1974-08-01
PublicationDate_xml – month: 08
  year: 1974
  text: August 1974
PublicationDecade 1970
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
PublicationTitle European journal of biochemistry
PublicationYear 1974
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1970; 141
1973; 325
1973; 53
1973; 54
1973; 35
1973; 15
1969; 36
1953; 5
1974
1972; 153
1925; 117
1972; 130
1972; 69
1973; 309
1969; 244
1964; 81
1972; 48
1973; 133
1973; 135
1966; 241
1973; 292
1968; 153
1951; 193
1965
1960
1966; 23
1973; 1
References_xml – volume: 325
  start-page: 275
  year: 1973
  end-page: 283
  publication-title: Biochim. Biophys. Acta
– year: 1960
– volume: 54
  start-page: 669
  year: 1973
  end-page: 676
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 53
  start-page: 904
  year: 1973
  end-page: 909
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 130
  start-page: 641
  year: 1972
  end-page: 643
  publication-title: Biochem. J.
– volume: 35
  start-page: 401
  year: 1973
  end-page: 409
  publication-title: Eur. J. Biochem.
– volume: 153
  start-page: 602
  year: 1968
  end-page: 613
  publication-title: Biochim. Biophys. Acta.
– volume: 153
  start-page: 325
  year: 1972
  end-page: 332
  publication-title: Arch. Biochem. Biophys.
– volume: 244
  start-page: 1720
  year: 1969
  end-page: 1728
  publication-title: J. Biol. Chem.
– start-page: 261
  year: 1965
  end-page: 274
– volume: 133
  start-page: 405
  year: 1973
  end-page: 408
  publication-title: Biochem. J.
– volume: 5
  start-page: 218
  year: 1953
  end-page: 222
  publication-title: Scand. J. Clin. Lab. Invest.
– volume: 292
  start-page: 422
  year: 1973
  end-page: 435
  publication-title: Biochim. Biophys. Acta
– volume: 141
  start-page: 456
  year: 1970
  end-page: 464
  publication-title: Arch. Biochem. Biophys.
– volume: 23
  start-page: 357
  year: 1966
  end-page: 362
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 69
  start-page: 3142
  year: 1972
  end-page: 3145
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 117
  start-page: 57
  year: 1925
  end-page: 87
  publication-title: J. Phys. Chem.
– volume: 1
  start-page: 1
  year: 1973
  end-page: 26
  publication-title: Biochem. Soc. Trans.
– volume: 48
  start-page: 1525
  year: 1972
  end-page: 1532
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 193
  start-page: 265
  year: 1951
  end-page: 275
  publication-title: J. Biol. Chem.
– volume: 69
  start-page: 2263
  year: 1972
  end-page: 2267
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 309
  start-page: 263
  year: 1973
  end-page: 270
  publication-title: Biochim. Biophys. Acta
– volume: 15
  start-page: 141
  year: 1973
  end-page: 166
  publication-title: Struct. Bonding
– year: 1974
– volume: 81
  start-page: 71
  year: 1964
  end-page: 77
  publication-title: Biochim. Biophys. Acta
– volume: 153
  start-page: 777
  year: 1968
  end-page: 786
  publication-title: Biochim. Biophys. Acta
– volume: 241
  start-page: 253
  year: 1966
  publication-title: J. Biol. Chem.
– volume: 36
  start-page: 337
  year: 1969
  end-page: 344
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 135
  start-page: 331
  year: 1973
  end-page: 341
  publication-title: Biochem. J.
– volume: 292
  start-page: 413
  year: 1973
  end-page: 421
  publication-title: Biochim. Biophys. Acta
SSID ssj0006967
Score 1.2051237
Snippet The oxidation‐reduction properties of azoferredoxin, molybdoferredoxin, and the inactive species of molybdoferredoxin, all iron‐sulfur proteins purified from...
SourceID wiley
SourceType Publisher
StartPage 525
Title Electron‐Paramagnetic‐Resonance Studies on Nitrogenase
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1432-1033.1974.tb03646.x
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA1SD3oRbRW_2YN4S3GTbDbrrZaW4qEUtNDbMtkk4qFbqRX05k_wN_pLnGSjqODF47Ifh8nOzJvhzRtCzlKDuFZxTcFAQYUBQ73KFM2lc1hN2Iy7QJAdy9FUXM-yWRyP9rMwjT7EV8PNe0aI197BQT_-cnLOMIxw3k0RFfseJ5dCdhFRrnsJGa-kz8TkKy7LQjYKmqmgDMuCKEEaeT1_fOsnZg1JZ7hNtiJaTHrN8e6QNVu3SadXY6U8f0nOk8DfDI3xNtnof-5u65DLQdxu8_76NoElzOGu9tOKeOn79V5kwyaRQpgs6mR8jw_jr4QpbZdMh4Pb_ojGLQm0QmyW0VxlsqqUxjhlpBYa8w04lYvKFVw4IZ2RSkuLwEwYbblmqTQGLhyWStKAVHyPtOpFbfdJohjn1nBmMWsjjALQOZNQCCgcA0SOB0QFY5QPjRJG-b2C4Kz09iu9_cpov_K5HA6ubjKWHf7_1SOy6W80rLtj0lotn-wJIoGVPg0H_AEAnqq0
link.rule.ids 315,783,787,11574,27936,27937,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA1SD_Ui2ip-uwfxluIm2WnWWy0tVdtSsIXelmSTiIdupVTQmz_B3-gvcbK7LSp48biQzWGSmXnzmLwh5CI0iGsl11QZFVNhlKFeZYo2wTmsJmzEXd4gO4TeRNxNo-kGGazewhT6EGvCzXtGHq-9g3tC-peXc4ZxhPNGiLDYk5wcBDQQUm4KwJvphZ7FaB2YIYZCQjMUlGFdUGqQlo09f-z1E7TmWae7Q7ZLuBi0ivPdJRs2q5F6K8NSefYWXAZ5A2fOjNdItb0a3lYn151yvM3n-8dILdRMPWb-uSJ-esLeq2zYoOwhDOZZMHzCxXiXMKftkUm3M273aDkmgaYIziLalBGkqdQYqAxooTHhKCebInUxF06AMyA1WERmwmjLNQvBGHXlsFYCo0DyfVLJ5pk9IIFknFvDmcW0jThKKd1koGKhYscUQsdDInNjJM-FFEbyvYTgLPH2S7z9ktJ-yWvS7dw8RCw6-v-v56TaGw_6Sf92eH9MtvyiogXvhFSWixd7irBgqc_yw_4CY0SuKA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA2ioF5EW8Vv9yDeUtwkm816q7VL_aAUtNBbSDaJeOi2lAp68yf4G_0lTnZjUcGLx4XsHiY7M-8NM28QOo0N4FpBNVZGZZgZZbBXmcIpdw7YhE2oqxpk-7w3ZDejZBTGo_0sTK0PsSi4ec-o4rV38Klxv5ycEggjlLZiQMW-xkk54y1AlCsMcLlX0idssIjLPOO1gmbMMAFaECRIQ1_PH9_6iVmrpJNvoo2AFqN2fb1baMmWDdRsl8CUx6_RWVT1b1aF8QZa63ztbmuii27YbvPx9j5QMzVWj6WfVoRHX6_3Ihs2Ci2E0aSM-k9wGH4lSGnbaJh3Hzo9HLYk4AKwWYJTkfCiEBrilOGaacg3yomUFS6jzDHuDBeaWwBmzGhLNYm5MercAVXiRnFBd9ByOSntLooEodQaSixkbYBRSumUcJUxlTmiADnuIVEZQ05rJQz5nUFQIr39pLefDPaTLzLvXt4nJNn__6snaHVwlcu76_7tAVr3Z-oGvEO0PJ892yMABXN9XN31J3zOrUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electron%E2%80%90Paramagnetic%E2%80%90Resonance+Studies+on+Nitrogenase&rft.jtitle=European+journal+of+biochemistry&rft.au=ZUMFT%2C+Walter+G.&rft.au=MORTENSON%2C+Leonard+E.&rft.au=PALMER%2C+Graham&rft.date=1974-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0014-2956&rft.eissn=1432-1033&rft.volume=46&rft.issue=3&rft.spage=525&rft.epage=535&rft_id=info:doi/10.1111%2Fj.1432-1033.1974.tb03646.x&rft.externalDBID=10.1111%252Fj.1432-1033.1974.tb03646.x&rft.externalDocID=FEBS525
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-2956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-2956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-2956&client=summon