Electron‐Paramagnetic‐Resonance Studies on Nitrogenase
The oxidation‐reduction properties of azoferredoxin, molybdoferredoxin, and the inactive species of molybdoferredoxin, all iron‐sulfur proteins purified from Clostridium pasteurianum, were studied by potentiometry combined with electron paramagnetic resonance spectroscopy at low temperature. The tec...
Saved in:
Published in | European journal of biochemistry Vol. 46; no. 3; pp. 525 - 535 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.08.1974
|
Online Access | Get full text |
Cover
Loading…
Abstract | The oxidation‐reduction properties of azoferredoxin, molybdoferredoxin, and the inactive species of molybdoferredoxin, all iron‐sulfur proteins purified from Clostridium pasteurianum, were studied by potentiometry combined with electron paramagnetic resonance spectroscopy at low temperature. The technique, evaluated with spinach ferredoxin for which a midpoint potential of ‐446 mV was determined (pH 7.9, showed that azoferredoxin has a midpoint potential of ‐294 ± 20 mV (pH 7.5). In the presence of MgATP2−, azoferredoxin undergoes a negative shift of 110 mV in its oxidation‐reduction potential. The resulting potential of approximately ‐400 mV is likely to be effective under physiological conditions. The potential shift is consistent with a proposed conformational change of the protein caused by the binding of two molecules of ATP to the protein (dimer). Molybdoferredoxin and its inactive species, which has an incomplete iron‐sulfur and molybdenum centre, have midpoint potentials of approximately −20 mV and −395 mV, respectively, both at pH 7.5. All nitrogenase proteins are characterized by the transfer of one electron per redox step.
Kinetic studies of the reduction of azoferredoxin and molybdoferredoxin by dithionite gave half times of <10 ms and 3–5 min, respectively. Hence, the latter process must be excluded from being part of the physiological reaction. The complex formation of ATP with azoferredoxin is a relatively slow process, which is markedly accelerated by molybdoferredoxin in the reconstituted nitrogenase system. Changes in the electron paramagnetic resonance signals of reconstituted nitrogenase were followed by a rapid‐freeze technique as a function of mixing sequence and ratio of the two proteins. The observed signal changes were independent of the mixing sequence. The steady‐state level of the molybdoferredoxin signal was also independent of the ratio of the two proteins and was less than 15% of the original resonance. The results indicate that the role of the azoferredoxin · ATP complex may not be confined solely to the function of an electron carrier for the nitrogenase reaction. |
---|---|
AbstractList | The oxidation‐reduction properties of azoferredoxin, molybdoferredoxin, and the inactive species of molybdoferredoxin, all iron‐sulfur proteins purified from Clostridium pasteurianum, were studied by potentiometry combined with electron paramagnetic resonance spectroscopy at low temperature. The technique, evaluated with spinach ferredoxin for which a midpoint potential of ‐446 mV was determined (pH 7.9, showed that azoferredoxin has a midpoint potential of ‐294 ± 20 mV (pH 7.5). In the presence of MgATP2−, azoferredoxin undergoes a negative shift of 110 mV in its oxidation‐reduction potential. The resulting potential of approximately ‐400 mV is likely to be effective under physiological conditions. The potential shift is consistent with a proposed conformational change of the protein caused by the binding of two molecules of ATP to the protein (dimer). Molybdoferredoxin and its inactive species, which has an incomplete iron‐sulfur and molybdenum centre, have midpoint potentials of approximately −20 mV and −395 mV, respectively, both at pH 7.5. All nitrogenase proteins are characterized by the transfer of one electron per redox step.
Kinetic studies of the reduction of azoferredoxin and molybdoferredoxin by dithionite gave half times of <10 ms and 3–5 min, respectively. Hence, the latter process must be excluded from being part of the physiological reaction. The complex formation of ATP with azoferredoxin is a relatively slow process, which is markedly accelerated by molybdoferredoxin in the reconstituted nitrogenase system. Changes in the electron paramagnetic resonance signals of reconstituted nitrogenase were followed by a rapid‐freeze technique as a function of mixing sequence and ratio of the two proteins. The observed signal changes were independent of the mixing sequence. The steady‐state level of the molybdoferredoxin signal was also independent of the ratio of the two proteins and was less than 15% of the original resonance. The results indicate that the role of the azoferredoxin · ATP complex may not be confined solely to the function of an electron carrier for the nitrogenase reaction. |
Author | MORTENSON, Leonard E. ZUMFT, Walter G. PALMER, Graham |
Author_xml | – sequence: 1 givenname: Walter G. surname: ZUMFT fullname: ZUMFT, Walter G. – sequence: 2 givenname: Leonard E. surname: MORTENSON fullname: MORTENSON, Leonard E. – sequence: 3 givenname: Graham surname: PALMER fullname: PALMER, Graham |
BookMark | eNo9kNtKw0AQhhepYFp9h-J94p4y2XgjWlIViorV62UPk5KSbiSJ2N75CH1Gn8QGi3MzDP_PwPeNySg0AQm5ZDRhh7laJ0wKHjMqRMLyTCa9pQIkJNsTEv1HIxJRymTM8xTOyLjr1pRSyCGLyHVRo-vbJvx8719MazZmFbCv3OF8xa4JJjicLvtPX2E3bcL0qTqUVxhMh-fktDR1hxfHPSHv8-Jt9hAvnu8fZ7eL2HHB0jhTKTinrPfowUrLlTSlyqQrcyFLCaUHZQElTaW3KCxn4L2hJVcZeANKTMjN39-vqsad_mirjWl3mlE9KNBrPXDqgVMPCvRRgd7qeXG3THkqfgF70Fd9 |
CitedBy_id | crossref_primary_10_1016_0014_5793_79_80138_6 crossref_primary_10_1074_jbc_275_5_3493 crossref_primary_10_1016_S0005_2728_97_00006_6 crossref_primary_10_1016_S0021_9258_19_42262_X crossref_primary_10_1074_jbc_272_7_4157 crossref_primary_10_1016_S0006_291X_74_80409_2 crossref_primary_10_1007_BF00703585 crossref_primary_10_1016_0304_4173_75_90012_9 crossref_primary_10_1006_abio_2000_4826 crossref_primary_10_1016_S0021_9258_17_39160_3 crossref_primary_10_1021_bi9608572 crossref_primary_10_1021_cr9500545 crossref_primary_10_1111_j_1432_1033_1982_tb05813_x crossref_primary_10_1021_bi960026w crossref_primary_10_1128_jb_137_2_779_789_1979 crossref_primary_10_1002_anie_201813966 crossref_primary_10_1016_S0021_9258_18_83473_1 crossref_primary_10_1021_bi972667c crossref_primary_10_1016_S0021_9258_19_50437_9 crossref_primary_10_1016_0014_5793_78_80242_7 crossref_primary_10_1016_S0021_9258_17_41861_8 crossref_primary_10_1021_bi962286j crossref_primary_10_1111_j_1399_3054_1987_tb01965_x crossref_primary_10_1016_0038_092X_80_90018_3 crossref_primary_10_1016_0302_4598_87_87039_3 crossref_primary_10_1016_0006_291X_82_91775_2 crossref_primary_10_1016_0014_5793_75_80425_X crossref_primary_10_1111_j_1432_1033_1995_tb20611_x crossref_primary_10_1016_S0003_2670_01_95447_9 crossref_primary_10_1016_0005_2728_80_90220_0 crossref_primary_10_1016_0005_2744_77_90242_X crossref_primary_10_1016_S0021_9258_17_44238_4 crossref_primary_10_1016_j_ccr_2016_10_003 crossref_primary_10_1016_0005_2795_76_90056_8 crossref_primary_10_1021_ar960260e crossref_primary_10_1074_jbc_270_22_13112 crossref_primary_10_1074_jbc_274_28_19778 crossref_primary_10_1016_S0167_4838_98_00251_9 crossref_primary_10_1021_bi9603985 crossref_primary_10_1021_cr950055x crossref_primary_10_1021_bi000219q crossref_primary_10_1002_ange_201813966 crossref_primary_10_1016_0005_2744_81_90226_6 crossref_primary_10_1016_0014_5793_78_80995_8 crossref_primary_10_1007_s00775_009_0480_1 crossref_primary_10_1021_bi981165b crossref_primary_10_1016_S0021_9258_18_48120_3 crossref_primary_10_1007_s00775_008_0360_0 crossref_primary_10_1074_jbc_271_3_1551 crossref_primary_10_1016_S0769_2609_83_80100_8 crossref_primary_10_1111_febs_17134 crossref_primary_10_1007_BF00624574 crossref_primary_10_1016_0005_2744_76_90056_5 crossref_primary_10_1016_0005_2795_78_90504_4 crossref_primary_10_1002_ange_19951071321 crossref_primary_10_1021_bi700446s crossref_primary_10_1074_jbc_274_25_17593 crossref_primary_10_1016_0022_5088_77_90069_8 crossref_primary_10_1042_BJ20050226 crossref_primary_10_1111_j_1432_1033_1993_tb17632_x crossref_primary_10_1016_S0021_9258_18_34949_4 crossref_primary_10_1016_0014_5793_86_81329_1 crossref_primary_10_1111_j_1432_1033_1983_tb07323_x crossref_primary_10_1016_S0005_2728_89_80196_3 crossref_primary_10_1021_bi961886f crossref_primary_10_1111_j_1432_1033_1983_tb07430_x crossref_primary_10_1016_j_jinorgbio_2020_111075 crossref_primary_10_1016_S0021_9258_19_50480_X crossref_primary_10_1002_pro_5560020110 crossref_primary_10_1021_acs_chemrev_9b00663 crossref_primary_10_1246_bcsj_62_2830 crossref_primary_10_1111_j_1432_1033_1992_tb17185_x crossref_primary_10_1128_jb_123_2_537_545_1975 crossref_primary_10_1016_0014_5793_85_81231_X crossref_primary_10_1016_S0300_9084_78_80817_7 crossref_primary_10_1016_0014_5793_91_80676_T crossref_primary_10_1002_anie_199515021 crossref_primary_10_1016_S0021_9258_19_40892_2 crossref_primary_10_1016_0005_2795_80_90015_X crossref_primary_10_1021_acs_chemrev_9b00650 crossref_primary_10_1016_0167_4838_82_90100_5 crossref_primary_10_1046_j_1432_1327_1999_00748_x crossref_primary_10_1016_j_ccr_2019_07_001 crossref_primary_10_1021_bi951430i crossref_primary_10_1016_S0021_9258_17_43939_1 crossref_primary_10_1021_bi020033m crossref_primary_10_1021_acs_jpcc_9b01160 crossref_primary_10_1074_jbc_M202061200 |
ContentType | Journal Article |
DOI | 10.1111/j.1432-1033.1974.tb03646.x |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1432-1033 |
EndPage | 535 |
ExternalDocumentID | FEBS525 |
Genre | article |
GroupedDBID | -DZ -~X .55 .GA .GJ .Y3 10A 1OC 24P 29G 31~ 36B 3O- 4.4 51W 51X 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5RE 66C 7PT 8-1 8-4 8-5 930 A01 A03 AAEVG AAHHS AAZKR ABDBF ABEFU ABJNI ACCFJ ACFBH ACGFS ACMXC ACNCT ACXQS ADBBV ADIZJ ADZOD AEEZP AEIMD AEQDE AETEA AEUQT AFBPY AFPWT AFZJQ AI. AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR BAWUL BY8 C45 CAG CO8 COF CS3 D-7 D-F DIK E3Z EAD EAP EAS EAU EBB EBC EBD EBS EBX EJD EMB EMK EMOBN EST ESX EX3 F00 F01 F04 F5P G-S G8K GODZA GX1 HZI IH2 IHE IPNFZ L7B LH4 LP6 LP7 LW6 MVM O9- OBS OHT OVD P4B P4D QB0 RIG ROL SDH SUPJJ SV3 TEORI TR2 TUS UB1 VH1 WH7 WOW WQJ WRC WXI X7M XG1 Y6R YFH YSK YUY ZGI ZXP |
ID | FETCH-LOGICAL-c2315-7856cc8bdded6b4b284af874cf934f46fd68b6e4054dbe3b216dda0f2876da683 |
IEDL.DBID | 24P |
ISSN | 0014-2956 |
IngestDate | Sat Aug 24 01:18:43 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2315-7856cc8bdded6b4b284af874cf934f46fd68b6e4054dbe3b216dda0f2876da683 |
Notes | 2 formed per min under standard conditions [8]. 4 Botanisches Institut der Friedrich‐Alexander‐Universität zu Erlangen‐Nürnberg, D‐8520 Erlangen, Schlossgarten 4, Federal Republic of Germany One activity unit of the nitrogenase proteins corresponds to 1 nmole of C H Department of Biochemistry, Rice University, P. O. Box 1892, Houston, Texas, U.S.A. 77001 Definition. |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1432-1033.1974.tb03646.x |
PageCount | 11 |
ParticipantIDs | wiley_primary_10_1111_j_1432_1033_1974_tb03646_x_FEBS525 |
PublicationCentury | 1900 |
PublicationDate | August 1974 |
PublicationDateYYYYMMDD | 1974-08-01 |
PublicationDate_xml | – month: 08 year: 1974 text: August 1974 |
PublicationDecade | 1970 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK |
PublicationTitle | European journal of biochemistry |
PublicationYear | 1974 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 1970; 141 1973; 325 1973; 53 1973; 54 1973; 35 1973; 15 1969; 36 1953; 5 1974 1972; 153 1925; 117 1972; 130 1972; 69 1973; 309 1969; 244 1964; 81 1972; 48 1973; 133 1973; 135 1966; 241 1973; 292 1968; 153 1951; 193 1965 1960 1966; 23 1973; 1 |
References_xml | – volume: 325 start-page: 275 year: 1973 end-page: 283 publication-title: Biochim. Biophys. Acta – year: 1960 – volume: 54 start-page: 669 year: 1973 end-page: 676 publication-title: Biochem. Biophys. Res. Commun. – volume: 53 start-page: 904 year: 1973 end-page: 909 publication-title: Biochem. Biophys. Res. Commun. – volume: 130 start-page: 641 year: 1972 end-page: 643 publication-title: Biochem. J. – volume: 35 start-page: 401 year: 1973 end-page: 409 publication-title: Eur. J. Biochem. – volume: 153 start-page: 602 year: 1968 end-page: 613 publication-title: Biochim. Biophys. Acta. – volume: 153 start-page: 325 year: 1972 end-page: 332 publication-title: Arch. Biochem. Biophys. – volume: 244 start-page: 1720 year: 1969 end-page: 1728 publication-title: J. Biol. Chem. – start-page: 261 year: 1965 end-page: 274 – volume: 133 start-page: 405 year: 1973 end-page: 408 publication-title: Biochem. J. – volume: 5 start-page: 218 year: 1953 end-page: 222 publication-title: Scand. J. Clin. Lab. Invest. – volume: 292 start-page: 422 year: 1973 end-page: 435 publication-title: Biochim. Biophys. Acta – volume: 141 start-page: 456 year: 1970 end-page: 464 publication-title: Arch. Biochem. Biophys. – volume: 23 start-page: 357 year: 1966 end-page: 362 publication-title: Biochem. Biophys. Res. Commun. – volume: 69 start-page: 3142 year: 1972 end-page: 3145 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 117 start-page: 57 year: 1925 end-page: 87 publication-title: J. Phys. Chem. – volume: 1 start-page: 1 year: 1973 end-page: 26 publication-title: Biochem. Soc. Trans. – volume: 48 start-page: 1525 year: 1972 end-page: 1532 publication-title: Biochem. Biophys. Res. Commun. – volume: 193 start-page: 265 year: 1951 end-page: 275 publication-title: J. Biol. Chem. – volume: 69 start-page: 2263 year: 1972 end-page: 2267 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 309 start-page: 263 year: 1973 end-page: 270 publication-title: Biochim. Biophys. Acta – volume: 15 start-page: 141 year: 1973 end-page: 166 publication-title: Struct. Bonding – year: 1974 – volume: 81 start-page: 71 year: 1964 end-page: 77 publication-title: Biochim. Biophys. Acta – volume: 153 start-page: 777 year: 1968 end-page: 786 publication-title: Biochim. Biophys. Acta – volume: 241 start-page: 253 year: 1966 publication-title: J. Biol. Chem. – volume: 36 start-page: 337 year: 1969 end-page: 344 publication-title: Biochem. Biophys. Res. Commun. – volume: 135 start-page: 331 year: 1973 end-page: 341 publication-title: Biochem. J. – volume: 292 start-page: 413 year: 1973 end-page: 421 publication-title: Biochim. Biophys. Acta |
SSID | ssj0006967 |
Score | 1.2051237 |
Snippet | The oxidation‐reduction properties of azoferredoxin, molybdoferredoxin, and the inactive species of molybdoferredoxin, all iron‐sulfur proteins purified from... |
SourceID | wiley |
SourceType | Publisher |
StartPage | 525 |
Title | Electron‐Paramagnetic‐Resonance Studies on Nitrogenase |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1432-1033.1974.tb03646.x |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA1SD3oRbRW_2YN4S3GTbDbrrZaW4qEUtNDbMtkk4qFbqRX05k_wN_pLnGSjqODF47Ifh8nOzJvhzRtCzlKDuFZxTcFAQYUBQ73KFM2lc1hN2Iy7QJAdy9FUXM-yWRyP9rMwjT7EV8PNe0aI197BQT_-cnLOMIxw3k0RFfseJ5dCdhFRrnsJGa-kz8TkKy7LQjYKmqmgDMuCKEEaeT1_fOsnZg1JZ7hNtiJaTHrN8e6QNVu3SadXY6U8f0nOk8DfDI3xNtnof-5u65DLQdxu8_76NoElzOGu9tOKeOn79V5kwyaRQpgs6mR8jw_jr4QpbZdMh4Pb_ojGLQm0QmyW0VxlsqqUxjhlpBYa8w04lYvKFVw4IZ2RSkuLwEwYbblmqTQGLhyWStKAVHyPtOpFbfdJohjn1nBmMWsjjALQOZNQCCgcA0SOB0QFY5QPjRJG-b2C4Kz09iu9_cpov_K5HA6ubjKWHf7_1SOy6W80rLtj0lotn-wJIoGVPg0H_AEAnqq0 |
link.rule.ids | 315,783,787,11574,27936,27937,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA1SD_Ui2ip-uwfxluIm2WnWWy0tVdtSsIXelmSTiIdupVTQmz_B3-gvcbK7LSp48biQzWGSmXnzmLwh5CI0iGsl11QZFVNhlKFeZYo2wTmsJmzEXd4gO4TeRNxNo-kGGazewhT6EGvCzXtGHq-9g3tC-peXc4ZxhPNGiLDYk5wcBDQQUm4KwJvphZ7FaB2YIYZCQjMUlGFdUGqQlo09f-z1E7TmWae7Q7ZLuBi0ivPdJRs2q5F6K8NSefYWXAZ5A2fOjNdItb0a3lYn151yvM3n-8dILdRMPWb-uSJ-esLeq2zYoOwhDOZZMHzCxXiXMKftkUm3M273aDkmgaYIziLalBGkqdQYqAxooTHhKCebInUxF06AMyA1WERmwmjLNQvBGHXlsFYCo0DyfVLJ5pk9IIFknFvDmcW0jThKKd1koGKhYscUQsdDInNjJM-FFEbyvYTgLPH2S7z9ktJ-yWvS7dw8RCw6-v-v56TaGw_6Sf92eH9MtvyiogXvhFSWixd7irBgqc_yw_4CY0SuKA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA2ioF5EW8Vv9yDeUtwkm816q7VL_aAUtNBbSDaJeOi2lAp68yf4G_0lTnZjUcGLx4XsHiY7M-8NM28QOo0N4FpBNVZGZZgZZbBXmcIpdw7YhE2oqxpk-7w3ZDejZBTGo_0sTK0PsSi4ec-o4rV38Klxv5ycEggjlLZiQMW-xkk54y1AlCsMcLlX0idssIjLPOO1gmbMMAFaECRIQ1_PH9_6iVmrpJNvoo2AFqN2fb1baMmWDdRsl8CUx6_RWVT1b1aF8QZa63ztbmuii27YbvPx9j5QMzVWj6WfVoRHX6_3Ihs2Ci2E0aSM-k9wGH4lSGnbaJh3Hzo9HLYk4AKwWYJTkfCiEBrilOGaacg3yomUFS6jzDHuDBeaWwBmzGhLNYm5MercAVXiRnFBd9ByOSntLooEodQaSixkbYBRSumUcJUxlTmiADnuIVEZQ05rJQz5nUFQIr39pLefDPaTLzLvXt4nJNn__6snaHVwlcu76_7tAVr3Z-oGvEO0PJ892yMABXN9XN31J3zOrUg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electron%E2%80%90Paramagnetic%E2%80%90Resonance+Studies+on+Nitrogenase&rft.jtitle=European+journal+of+biochemistry&rft.au=ZUMFT%2C+Walter+G.&rft.au=MORTENSON%2C+Leonard+E.&rft.au=PALMER%2C+Graham&rft.date=1974-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0014-2956&rft.eissn=1432-1033&rft.volume=46&rft.issue=3&rft.spage=525&rft.epage=535&rft_id=info:doi/10.1111%2Fj.1432-1033.1974.tb03646.x&rft.externalDBID=10.1111%252Fj.1432-1033.1974.tb03646.x&rft.externalDocID=FEBS525 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-2956&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-2956&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-2956&client=summon |