Modern Methods of Mathematical Modeling of the Development of Hydrodynamic Instabilities and Turbulent Mixing

The study of the development of perturbations under the influence of various hydrodynamic instabilities, as well as the transition to turbulent mixing and turbulence, has been a subject of considerable interest over the past decades. This is primarily due to the importance of these phenomena in vari...

Full description

Saved in:
Bibliographic Details
Published inMathematical models and computer simulations Vol. 13; no. 2; pp. 311 - 327
Main Authors Tishkin, V. F., Gasilov, V. A., Zmitrenko, N. V., Kuchugov, P. A., Ladonkina, M. E., Poveschenko, Y. A.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.03.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The study of the development of perturbations under the influence of various hydrodynamic instabilities, as well as the transition to turbulent mixing and turbulence, has been a subject of considerable interest over the past decades. This is primarily due to the importance of these phenomena in various fields of science and engineering. In addition, it should be noted that studies of the characteristics of turbulent flows, for example, have still not been completed. This is inspiring a great deal of interest in this topic, both in the sense of physical theory and in the sense of developing new approaches to the mathematical modeling of the corresponding problems. The capabilities of modern computer technology make it possible to carry out numerical experiments in two-dimensional and three-dimensional setups and analyze the features of the new numerical methods. Presently, numerous methods with many modifications are used in practice. This review focuses on the most promising among them.
AbstractList The study of the development of perturbations under the influence of various hydrodynamic instabilities, as well as the transition to turbulent mixing and turbulence, has been a subject of considerable interest over the past decades. This is primarily due to the importance of these phenomena in various fields of science and engineering. In addition, it should be noted that studies of the characteristics of turbulent flows, for example, have still not been completed. This is inspiring a great deal of interest in this topic, both in the sense of physical theory and in the sense of developing new approaches to the mathematical modeling of the corresponding problems. The capabilities of modern computer technology make it possible to carry out numerical experiments in two-dimensional and three-dimensional setups and analyze the features of the new numerical methods. Presently, numerous methods with many modifications are used in practice. This review focuses on the most promising among them.
Author Zmitrenko, N. V.
Gasilov, V. A.
Tishkin, V. F.
Kuchugov, P. A.
Ladonkina, M. E.
Poveschenko, Y. A.
Author_xml – sequence: 1
  givenname: V. F.
  surname: Tishkin
  fullname: Tishkin, V. F.
  email: v.f.tishkin@mail.ru
  organization: Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
– sequence: 2
  givenname: V. A.
  surname: Gasilov
  fullname: Gasilov, V. A.
  organization: Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
– sequence: 3
  givenname: N. V.
  surname: Zmitrenko
  fullname: Zmitrenko, N. V.
  organization: Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
– sequence: 4
  givenname: P. A.
  surname: Kuchugov
  fullname: Kuchugov, P. A.
  organization: Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
– sequence: 5
  givenname: M. E.
  surname: Ladonkina
  fullname: Ladonkina, M. E.
  organization: Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
– sequence: 6
  givenname: Y. A.
  surname: Poveschenko
  fullname: Poveschenko, Y. A.
  organization: Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
BookMark eNp9kMtOwzAQRS1UJErpB7CLxLrgR5o4S1QerdSIBWUdOfG4dZXYxXYR_XscFYEEAm_GunPP2HPP0cBYAwhdEnxNCEtvninOMU45pQRTTPL0BA17aYLTAg--7pyeobH3WxwPozlnfIi60kpwJikhbKz0iVVJKcIGOhF0I9qkb7farPtGlJM7eIPW7jowoZfmB-msPBjR6SZZGB9ErVsdNPhEGJms9q7et7231O9xygU6VaL1MP6sI_TycL-azSfLp8fF7HY5aSgj6YQwmgJmoiiyad1IXsgiq4FTUHlW00ylqZJTxUGCZIUCYEKqDHIylXWRAedshK6Oc3fOvu7Bh2pr987EJys6jfnQPq7oyo-uxlnvHaiq0SHubU1wQrcVwVUfb_Ur3kiSH-TO6U64w78MPTI-es0a3Pef_oY-AFVvjd0
CitedBy_id crossref_primary_10_1134_S0965542523040085
crossref_primary_10_1134_S0965542522040030
crossref_primary_10_1134_S0015462823602590
crossref_primary_10_20948_mm_2024_04_05
Cites_doi 10.1016/0021-9991(89)90226-X
10.1137/S003614450036757X
10.2514/6.2001-879
10.1016/0021-9991(79)90145-1
10.1134/S2070048219010101
10.1006/jcph.1996.0130
10.1016/j.jcp.2014.04.001
10.1134/S0965542508030111
10.1134/S207004821003004X
10.1142/9789814313193_0005
10.1201/9781482273991
10.1016/0041-5553(62)90062-9
10.1016/0021-9991(87)90031-3
10.1016/0021-9991(85)90183-4
10.1017/CBO9780511840531
10.1134/S0965542515010133
10.1134/S207004821404005X
10.1007/978-1-4612-2708-3_18
10.1137/0721016
10.1016/j.jcp.2007.02.023
10.4208/cicp.2009.09.055
10.1016/0021-9991(89)90222-2
10.1006/jcph.2000.6459
10.1098/rsta.2012.0217
10.1007/BFb0096353
10.1016/j.jcp.2007.05.011
10.1006/jcph.1993.1101
10.1007/BF01060030
10.1016/0041-5553(63)90351-3
10.1093/imanum/6.4.381
10.1134/S0361768817030082
10.1016/0021-9991(79)90051-2
10.1002/fld.4187
10.1016/0041-5553(90)90093-8
10.1134/S2070048210040034
10.1002/cpa.3160070112
10.1103/PhysRevE.97.013104
10.1080/10618569808940837
10.1016/j.jcp.2013.04.012
10.1016/j.apnum.2020.01.005
10.1007/978-3-642-55711-8_82
10.1016/j.jcp.2005.08.022
10.1016/j.compfluid.2017.09.004
10.1006/jcph.2002.7191
10.1006/jcph.1997.5745
10.1090/qam/11999
10.1016/j.jcp.2013.07.031
10.1016/0021-9991(91)90277-R
10.1016/0041-5553(88)90127-9
10.1137/0721001
10.2514/6.2015-0822
10.1002/nme.1620320403
10.1137/S0036142901384162
10.1016/S0377-0427(99)00156-9
10.1016/j.crme.2005.07.008
10.1016/j.jcp.2006.12.017
10.1006/jcph.2001.6853
10.1016/j.jcp.2016.04.030
10.1111/j.1365-246X.2007.03421.x
10.1051/m2an:2004024
10.2514/1.36541
10.1093/mnras/stt1890
10.2514/6.1991-1592
10.1007/978-3-642-48246-5
10.2514/1.28314
10.1016/j.jcp.2004.06.014
10.1007/978-3-662-03915-1
10.1098/rspa.2001.0926
10.20948/prepr-2016-136
10.1016/j.compfluid.2009.07.003
10.2514/6.1992-439
10.1063/1.1688328
10.1016/j.jcp.2004.10.028
10.4171/012-1/13
10.1016/0021-9991(74)90019-9
10.1007/BF02674128
10.1016/0041-5553(80)90283-9
10.1017/S002211207200268X
10.1006/jcph.2000.6679
10.1134/S0965542513020097
10.1016/j.jcp.2007.04.004
10.1016/0021-9991(88)90177-5
10.1016/0021-9991(75)90002-9
10.1134/S2070048217050064
10.1103/PhysRevE.91.043002
10.1006/jcph.1994.1187
10.1017/S0022112090002221
10.2514/3.12149
10.1006/jcph.1996.5632
10.1134/S0965542507120081
10.1016/j.jcp.2004.05.020
10.1016/j.apnum.2019.01.008
10.1002/fld.338
10.1016/j.proeng.2013.08.011
10.1007/BF02672918
10.2514/6.1985-483
10.1080/10618562.2017.1387251
10.1007/978-1-4419-7916-2
10.1016/0021-9991(84)90142-6
10.1063/1.4993464
10.1137/S0036142901389025
10.1002/fld.3950
10.1016/j.jcp.2009.06.041
10.2514/3.9724
10.1006/jcph.1998.5892
10.1016/j.ijheatmasstransfer.2009.11.035
10.1002/fld.1134
10.1016/0021-9991(77)90094-8
10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
10.1016/0021-9991(84)90073-1
10.1016/j.jcp.2016.04.003
10.20948/prepr-2019-14
10.1137/S0036142997316712
10.1016/j.jcp.2009.07.007
10.1137/0724022
10.1016/0021-9991(84)90143-8
10.1006/jcph.1998.5970
10.1007/BF01330059
10.1023/A:1015126814947
10.2514/6.2009-1303
10.1146/annurev.fl.28.010196.000401
10.1016/0021-9991(91)90217-9
10.1016/0021-9991(89)90035-1
10.1016/S0010-4655(97)00083-0
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2021. ISSN 2070-0482, Mathematical Models and Computer Simulations, 2021, Vol. 13, No. 2, pp. 311–327. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2020, published in Matematicheskoe Modelirovanie, 2020, Vol. 32, No. 8, pp. 57–90.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2021. ISSN 2070-0482, Mathematical Models and Computer Simulations, 2021, Vol. 13, No. 2, pp. 311–327. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2020, published in Matematicheskoe Modelirovanie, 2020, Vol. 32, No. 8, pp. 57–90.
DBID AAYXX
CITATION
DOI 10.1134/S2070048221020174
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 2070-0490
EndPage 327
ExternalDocumentID 10_1134_S2070048221020174
GroupedDBID -5D
-5G
-BR
-EM
-~C
06D
0R~
0VY
1N0
29M
2JY
2KG
2VQ
2~H
30V
4.4
408
409
40D
40E
6NX
8TC
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
BA0
BAPOH
BGNMA
CAG
COF
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IZIGR
I~X
J-C
J9A
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9R
PT4
QOS
R89
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SHX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XU3
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
ID FETCH-LOGICAL-c2314-1324e03a9965bcd89d96be82ef76b26f44fd5f8eded39fee3adf6e715db96e883
IEDL.DBID AGYKE
ISSN 2070-0482
IngestDate Wed Aug 13 08:21:51 EDT 2025
Tue Jul 01 03:44:38 EDT 2025
Thu Apr 24 23:05:03 EDT 2025
Fri Feb 21 02:48:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords hydrodynamic instabilities
mathematical modeling
accurate numerical methods
turbulent mixing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2314-1324e03a9965bcd89d96be82ef76b26f44fd5f8eded39fee3adf6e715db96e883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2517427004
PQPubID 2044391
PageCount 17
ParticipantIDs proquest_journals_2517427004
crossref_citationtrail_10_1134_S2070048221020174
crossref_primary_10_1134_S2070048221020174
springer_journals_10_1134_S2070048221020174
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210300
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 3
  year: 2021
  text: 20210300
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationTitle Mathematical models and computer simulations
PublicationTitleAbbrev Math Models Comput Simul
PublicationYear 2021
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References BoldarevA. S.GasilovV. A.OlkhovskayaO. G.On the solution of hyperbolic equations using unstructured gridsMat. Model.19968517813994550981.65506
ShuC.-W.High order WENO and DG methods for time-dependent convection-dominated PDEs: A brief survey of several recent developmentsJ. Comput. Phys.201631659861334943711349.6548610.1016/j.jcp.2016.04.030
VlasenkoV. V.VolkovA. V.TroshinA. I.“Choice of an approximation method for viscous terms in the Galerkin method with discontinuous basis functions,” Uch. ZapTsAGI2013XLIV1840
OstapenkoV. V.On monotonicity of difference schemesSib. Math. J.199839959972165068910.1007/BF02672918
FedorenkoR. P.The application of difference schemes of high accuracy to the numerical solution of hyperbolic equationsUSSR Comput. Math. Math. Phys.19632135513650139.1080310.1016/0041-5553(63)90351-3
DiyankovO. V.GlazyrinI. V.KoshelevS. V.MAG – two-dimensional resistive MHD code using an arbitrary moving coordinate systemComput. Phys. Commun.199710676940976.7652410.1016/S0010-4655(97)00083-0
BalbásJ.TadmorE.WuC.-C.Non-oscillatory central schemes for one- and two-dimensional MHD equations: IJ. Comput. Phys.200420126128520988581195.7630410.1016/j.jcp.2004.05.020
M. Strelets, “Detached Eddy Simulation of massively separated flows,” in 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, January 8−11,2001, AIAA Paper 2001−879. https://doi.org/10.2514/6.2001-879
VolkovA. V.LyapunovC. V.“Monotonization of a finite element method in problems of gas dynamics,” Uch. ZapTsAGI2009XL1527
ChetverushkinB. N.Kinetically Consistent Schemes in Gas Dynamics1999MoscowIzd. Mosk. Gos. Univ.1189.76359
KleinR. I.Star formation with 3-D adaptive mesh refinement: The collapse and fragmentation of molecular cloudsJ. Comput. Appl. Math.201110912315210.1016/S0377-0427(99)00156-90946.76059
LutskyA. E.PlenkinA. V.“Numerical simulation of shock waves interaction with boundary layers on adaptive grids,” KIAM Preprint No. 1362016MoscowKeldysh Inst. Appl. Math. RAS10.20948/prepr-2016-136
DimonteG.YoungsD. L.DimitsA.A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: The Alpha-group collaborationPhys. Fluids200416166816931186.7614310.1063/1.1688328
LadonkinaM. E.NeklyudovaO. A.TishkinV. F.Application of the RKDG method for gas dynamics problemsMath. Models Comput. Simul.2014639740733707971313.7609010.1134/S207004821404005X
van LeerB.Towards the ultimate conservative difference schemes. III. Upstream-centered finite-difference schemes for ideal compressible flowJ. Comput. Phys.1977232632750339.7603910.1016/0021-9991(77)90094-8
ShuC.-W.OsherS.Efficient implementation of essentially non-oscillatory shock-capturing schemesJ. Comput. Phys.1988774394719549150653.6507210.1016/0021-9991(88)90177-5
OsherS.Riemann solvers, the entropy condition, and difference approximationSIAM J. Numer. Anal.1984212172357363270592.6506910.1137/0721016
W. H. Reed and T. R. Hill, “Triangular mesh methods for the neutron transport equation,” Report LA-UR-73-479, Los Alamos Scientific Laboratory, University of California, Los Alamos, NM, USA, 1973. doi: https://www. osti.gov/servlets/purl/4491151
E. Tadmor and J. Tanner, “An adaptive order Godunov type central scheme,” in Hyperbolic Problems: Theory, Numerics, Applications, Proc. 9th Int. Conf. on Hyperbolic Problems, CalTech, Pasadena, March 2002, Ed. by T. Y. Hou and E. Tadmor (Springer, Berlin, Heidelberg, 2003), pp. 871−880.
RodionovA. V.“On the use of Boussinesq approximation in turbulent supersonic jet modeling,” IntJ. Heat Mass Transp.2010538899011183.8005410.1016/j.ijheatmasstransfer.2009.11.035
Proc. ECCOMAS Thematic Conference: European Workshop on High Order Nonlinear Numerical Methods for Evolutionary PDEs: Theory and Applications (HONOM 2017), Stuttgart, Germany, March 27−31, 2017.
IserlesA.Generalized leapfrog methodsIMA J. Numer. Anal.198663813929682650637.6508910.1093/imanum/6.4.381
GottliebS.ShuC.-W.TadmorE.Strong stability-preserving high-order time discretization methodsSIAM Rev.2001438911218546470967.6509810.1137/S003614450036757X
P. R. Spalart and S. R. Allmaras, “A one-equation turbulence model for aerodynamics flows,” in 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, January 6−9,1992, AIAA Paper 92-439. https://doi.org/10.2514/6.1992-439
ShuC.-W.OsherS.Efficient implementation of essentially non-oscillatory shock-capturing schemes, IIJ. Comput. Phys.198983327810101620674.6506110.1016/0021-9991(89)90222-2
SmagorinskyJ.General circulation experiments with the primitive equations. I. The basic experimentMon. Weather Rev.1963919916410.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
LadonkinaM. E.NeklyudovaO. A.TishkinV. F.Constructing a limiter based on averaging the solutions for the discontinuous Galerkin methodMath. Models Comput. Simul.2019116173384931710.1134/S2070048219010101
KhattriS. K.Grid generation and adaptation by functionalsComput. Appl. Math.20072623524923377101182.65185
KurganovA.TadmorE.New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equationsJ. Comput. Phys.200016024128217567660987.6508510.1006/jcph.2000.6459
ColellaP.WoodwardP. R.The piecewise parabolic method (PPM) for gas-dynamical simulationsJ. Comput. Phys.1984541742010531.7608210.1016/0021-9991(84)90143-8
HawkenD. F.GottliebJ. J.HansenJ. S.Review of some adaptive node-movement techniques in finite-element and finite-difference solutions of partial differential equationsJ. Comput. Phys.19919525430211178440733.6505710.1016/0021-9991(91)90277-R
VolkovK. N.EmelyanovV. N.Simulation of Large Vortices in Calculations of Turbulent Flows2008MoscowFizmatlit
SamarskiiA. A.TishkinV. F.FavorskiiA. P.ShashkovM. Yu.Operator difference schemesDiffer. Uravn.19811713171327625569
GolovizninV. M.SamarskiiA. A.Finite difference approximation of convective transport with spatial splitting of the time derivativeMat. Model.1998108610017587791189.76364
DumbserM.KäserM.de la PuenteJ.Arbitrary high-order finite volume schemes for seismic wave propagation on unstructured meshes in 2D and 3DGeophys. J. Int.200717166569410.1111/j.1365-246X.2007.03421.x
ToroE. F.Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction1999Berlin, HeidelbergSpringer0923.7600410.1007/978-3-662-03915-1
R. H. Cohen and A. A. Mirin, “ASCI turbulence and instability modeling using the piecewise parabolic method,” Report UCRL-TB-125580, Rev. 4, Lawrence Livermore National Laboratory, 1999.
KlöcknerA.WarburtonT.BridgeJ.HesthavenJ. S.Nodal discontinuous Galerkin methods on graphics processorsJ. Comput. Phys.20092287863788225733361175.6511110.1016/j.jcp.2009.06.041
HartenA.OsherS.Uniformly high-order accurate nonoscillatory schemes. ISIAM J. Numer. Anal.1987272793098813650627.6510210.1137/0724022
ChouP. Y.On velocity correlations and the solutions of the equations of turbulent fluctuationsQ. Appl. Math.194533854119990061.4530210.1090/qam/11999
R.B. Christensen, “Godunov methods on a staggered mesh an improved artificial viscosity,” Report UCRL-JC-105269, Lawrence Livermore National Laboratory, 1991.
DumbserM.KäserM.TitarevV. A.ToroE. F.Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systemsJ. Comput. Phys.200722620424323563571124.6507410.1016/j.jcp.2007.04.004
NastaseC. R.MavriplisD. J.High-order discontinuous Galerkin methods using an hp-multigrid approachJ. Comput. Phys.20062133303571089.6510010.1016/j.jcp.2005.08.022
MignoneA.High-order conservative reconstruction schemes for finite volume methods in cylindrical and spherical coordinatesJ. Comput. Phys.201427078481432094121349.7636410.1016/j.jcp.2014.04.001
ChoiH.LiuJ.-G.The reconstruction of upwind fluxes for conservation laws: Its behavior in dynamic and steady state calculationsJ. Comput. Phys.198814423725616380870935.7604810.1006/jcph.1998.5970
MoczP.VogelsbergerM.SijackiD.A discontinuous Galerkin method for solving the fluid and magnetohydrodynamic equations in astrophysical simulationsMon. Not. R. Astron. Soc.201443739741410.1093/mnras/stt1890
YeeH. C.WarmingR. F.HartenA.Implicit total variation diminishing (TVD) schemes for steady-state calculationsJ. Comput. Phys.1985573273607829860631.7608710.1016/0021-9991(85)90183-4
HartenA.On a class of high resolution total-variation-stable finite-difference schemesSIAM. J. Numer. Anal.1984211237312100547.6506210.1137/0721001
Dar’inN. A.MazhukinV. I.SamarskiiA. A.A finite-difference method for solving the equations of gas dynamics using adaptive nets which are dynamically associated with the solutionUSSR Comput. Math. Math. Phys.1988281641740850.7643710.1016/0041-5553(88)90127-9
PopovM. V.UstyugovS. D.Piecewise parabolic method on a local stencil for ideal magnetohydrodynamicsComput. Math. Math. Phys.20084847749924265031201.7615110.1134/S0965542508030111
ToroE. F.TitarevV. A.ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensionsJ. Comput. Phys.200520219621521028821061.6510310.1016/j.jcp.2004.06.014
PopovM. V.UstyugovS. D.Piecewise parabolic method on local stencil for gasdynamic simulationsComput. Math. Math. Phys.20074719701989239496410.1134/S0965542507120081
KrasnovM. M.KuchugovP. A.LadonkinaM. E.TishkinV. F.Discontinuous Galerkin method on three-dimensional tetrahedral grids: Using the operator programming methodMath. Models Comput. Simul.2017952954336387761374.7610110.1134/S2070048217050064
[Electronic Source] http://www.astro.virginia.edu/VITA/ATHENA/bow-shock.html (Accessed March 1, 2015).
RogovB. V.High-order accurate monotone compact running scheme for multidimensional hyperbolic equationsComput. Math. Math. Phys.20135320521432490261274.6523910.1134/S0965542513020097
T. Haga and K. Sawada, “An improved slope limiter for high-order spectral volume methods solving the 3D compressible Euler equations” (2009).
ZalesakS. T.Fully multidimensional flux-corrected transport algorithms for fluidsJ. Comput. Phys.1979313353625347860416.7600210.1016/0021-9991(79)90051-2
A. K
V. M. Goloviznin (4223_CR29) 1998; 10
O. V. Diyankov (4223_CR151) 1997; 106
M. Dumbser (4223_CR74) 2005; 333
V. V. Ostapenko (4223_CR39) 1998; 38
M. E. Ladonkina (4223_CR124) 2019; 11
I. Abalakin (4223_CR77) 2016; 81
G. Beckett (4223_CR155) 2001; 167
F. R. Menter (4223_CR10) 1994; 32
J. Balbás (4223_CR84) 2004; 201
G. Dimonte (4223_CR170) 2004; 16
A. Harten (4223_CR53) 1989; 83
S. Osher (4223_CR51) 1984; 21
A. V. Volkov (4223_CR105) 2009; XL
K. N. Volkov (4223_CR20) 2008
M. Dumbser (4223_CR121) 2010; 39
S. B. Pope (4223_CR17) 2000
M. M. Krasnov (4223_CR113) 2017; 43
V. P. Kolgan (4223_CR41) 1972; 3
I. V. Popov (4223_CR145) 2010; 2
B. Cockburn (4223_CR126) 1998; 35
4223_CR36
4223_CR34
4223_CR35
V. V. Ostapenko (4223_CR38) 1998; 39
B. V. Rogov (4223_CR33) 2019; 139
H. Luo (4223_CR119) 2007; 225
4223_CR101
P. Mocz (4223_CR141) 2014; 437
R. I. Klein (4223_CR161) 2011; 109
C.-W. Shu (4223_CR118) 2016; 316
A. Harten (4223_CR54) 1987; 24
O. Antepara (4223_CR167) 2013; 61
J. Smagorinsky (4223_CR15) 1963; 91
4223_CR103
4223_CR102
N. A. Dar’in (4223_CR154) 1988; 28
D. N. Arnold (4223_CR109) 2002; 39
A. Harten (4223_CR48) 1987; 27
A. E. Lutsky (4223_CR163) 2016
G.-S. Jiang (4223_CR62) 1996; 126
J. Zhu (4223_CR120) 2013; 248
Yu. A. Poveshchenko (4223_CR152) 2019
M. E. Ladonkina (4223_CR114) 2014; 6
R. J. Spiteri (4223_CR129) 2002; 40
P. Woodward (4223_CR89) 1984; 54
4223_CR69
J. F. Dannenhoffer (4223_CR159) 1991; 32
B. N. Chetverushkin (4223_CR1) 2003
A. Jameson (4223_CR135) 1987; 25
V. Dolejší (4223_CR133) 2008; 4
M. Dubiner (4223_CR75) 1991; 6
M. E. Ladonkina (4223_CR67) 2010; 2
4223_CR116
V. V. Vlasenko (4223_CR127) 2013; XLIV
4223_CR66
M. V. Popov (4223_CR96) 2007; 47
F. Bassi (4223_CR108) 2002; 40
M. Dumbser (4223_CR63) 2007; 171
A. L. Afendikov (4223_CR164) 2015
B. van Leer (4223_CR43) 1977; 23
R. P. Fedorenko (4223_CR40) 1963; 2
B. E. Morgan (4223_CR11) 2015; 91
P. Colella (4223_CR92) 1990; 213
A. A. Samarskii (4223_CR26) 1981; 17
4223_CR122
M. M. Krasnov (4223_CR139) 2015; 27
S. K. Khattri (4223_CR162) 2007; 26
4223_CR125
A. Kurganov (4223_CR83) 2000; 160
A. Mignone (4223_CR25) 2014; 270
P. Bakhvalov (4223_CR78) 2017; 157
A. Iserles (4223_CR28) 1986; 6
B. N. Chetverushkin (4223_CR147) 1999
T. B. Gatski (4223_CR3) 2009
K. V. Vyaznikov (4223_CR57) 1989; 1
D. F. Hawken (4223_CR158) 1991; 95
A. I. Zhmakin (4223_CR47) 1980; 20
B. van Leer (4223_CR44) 1979; 32
A. Harten (4223_CR58) 1997; 131
A. Suresh (4223_CR99) 1997; 136
K. Hanjalic (4223_CR9) 1972; 52
R. Hartmann (4223_CR132) 2006; 3
P. Y. Chou (4223_CR13) 1945; 3
P. Colella (4223_CR90) 1984; 54
R. Hartmann (4223_CR131) 2006; 51
M. Dumbser (4223_CR64) 2005
B. V. Rogov (4223_CR31) 2013; 53
B. Cockburn (4223_CR104) 1998; 141
H. C. Yee (4223_CR52) 1985; 57
M. Lesieur (4223_CR16) 1996; 28
(4223_CR22) 2010
D. L. Book (4223_CR45) 1975; 18
4223_CR137
4223_CR86
M. M. Krasnov (4223_CR111) 2017; 815
S. D. Ustyugov (4223_CR98) 2009; 228
M. M. Krasnov (4223_CR112) 2017; 9
4223_CR80
P. Arminjon (4223_CR143) 1993; 106
E. F. Toro (4223_CR68) 1999
4223_CR2
M. M. Krasnov (4223_CR140) 2015; 55
M. J. Berger (4223_CR160) 1984; 53
W. J. Rider (4223_CR100) 2007; 225
J. Chan (4223_CR138) 2015; 318
4223_CR5
4223_CR7
4223_CR79
V. V. Rusanov (4223_CR82) 1962; 1
4223_CR150
M. V. Popov (4223_CR97) 2008; 48
C.-W. Shu (4223_CR60) 1989; 83
K. Yasue (4223_CR134) 2010; 7
4223_CR144
4223_CR149
A. V. Volkov (4223_CR123) 2009; XL
4223_CR146
V. A. Titarev (4223_CR70) 2002; 17
G. Li (4223_CR168) 2017; 31
S. Gottlieb (4223_CR128) 2001; 43
V. M. Goloviznin (4223_CR30) 2005; 403
S. T. Zalesak (4223_CR46) 1979; 31
4223_CR24
C. R. Nastase (4223_CR106) 2006; 213
S. Karni (4223_CR88) 2004; 38
J. Rotta (4223_CR14) 1951; 129
4223_CR27
S. M. Bosnyakov (4223_CR110) 2018; 30
4223_CR156
B. van Leer (4223_CR42) 1974; 14
P. Arminjon (4223_CR87) 1998; 9
4223_CR153
4223_CR21
L. Krivodonova (4223_CR117) 2007; 226
C.-W. Shu (4223_CR59) 1988; 77
K. Yasue (4223_CR115) 2010; 7
4223_CR157
A. S. Boldarev (4223_CR148) 1996; 8
H. Luo (4223_CR107) 2008; 46
D. C. Wilcox (4223_CR8) 2008; 46
M. Dumbser (4223_CR65) 2005; 333
D.-K. Mao (4223_CR55) 1991; 92
X.-D. Liu (4223_CR61) 1994; 115
P. D. Lax (4223_CR81) 1954; 7
M. J. Berger (4223_CR93) 1989; 82
M. Dumbser (4223_CR73) 2005
B. E. Morgan (4223_CR12) 2018; 97
A. V. Rodionov (4223_CR6) 2010; 53
4223_CR18
4223_CR19
A. Harten (4223_CR50) 1984; 21
E. F. Toro (4223_CR72) 2005; 202
4223_CR94
B. Thornber (4223_CR169) 2017; 29
4223_CR166
4223_CR165
V. V. Ostapenko (4223_CR37) 1998; 39
A. Harten (4223_CR49) 1987; 71
W. J. Rider (4223_CR95) 2014; 76
S. M. Bakhrakh (4223_CR23) 1981; 257
A. Klöckner (4223_CR136) 2009; 228
M. D. Bragin (4223_CR32) 2020; 151
D. C. Wilcox (4223_CR4) 2006
4223_CR91
H. Choi (4223_CR56) 1988; 144
M. Dumbser (4223_CR76) 2007; 226
M. M. Basko (4223_CR142) 1990; 30
V. A. Titarev (4223_CR71) 2005; 204
J. Qiu (4223_CR85) 2002; 183
P. Rasetarinera (4223_CR130) 2001; 172
References_xml – reference: VolkovK. N.EmelyanovV. N.Simulation of Large Vortices in Calculations of Turbulent Flows2008MoscowFizmatlit
– reference: R. H. Cohen and A. A. Mirin, “ASCI turbulence and instability modeling using the piecewise parabolic method,” Report UCRL-TB-125580, Rev. 4, Lawrence Livermore National Laboratory, 1999.
– reference: DannenhofferJ. F.A comparison of adaptive-grid redistribution and embedding for steady transonic flowsInt. J. Numer. Methods Eng.1991326536630825.7652810.1002/nme.1620320403
– reference: ToroE. F.TitarevV. A.ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensionsJ. Comput. Phys.200520219621521028821061.6510310.1016/j.jcp.2004.06.014
– reference: LutskyA. E.PlenkinA. V.“Numerical simulation of shock waves interaction with boundary layers on adaptive grids,” KIAM Preprint No. 1362016MoscowKeldysh Inst. Appl. Math. RAS10.20948/prepr-2016-136
– reference: DumbserM.KäserM.TitarevV. A.ToroE. F.Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systemsJ. Comput. Phys.200722620424323563571124.6507410.1016/j.jcp.2007.04.004
– reference: RottaJ.Statistische Theorie nichthomogener TurbulenzZ. Physik1951129547572455230042.4330410.1007/BF01330059
– reference: KarniS.KirrE.KurganovA.PetrovaG.Compressible two-phase flows by central and upwind schemesESIAM: Math. Modell. Numer. Anal.20043847749320757561079.7604510.1051/m2an:2004024
– reference: BalbásJ.TadmorE.WuC.-C.Non-oscillatory central schemes for one- and two-dimensional MHD equations: IJ. Comput. Phys.200420126128520988581195.7630410.1016/j.jcp.2004.05.020
– reference: BraginM. D.RogovB. V.Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equationsAppl. Numer. Math.202015122924540523281434.6517610.1016/j.apnum.2020.01.005
– reference: BakhvalovP.KozubskayaT.EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshesComp. Fluids201715731232437066871390.7655010.1016/j.compfluid.2017.09.004
– reference: AfendikovA. L.DavydovA. A.“Algorithm for multilevel mesh adaptation with wavelet-based criteria for gas dynamic problems,” KIAM Preprint No. 972015MoscowKeldysh Inst. Appl. Math. RAS
– reference: AbalakinI.BakhvalovP.KozubskayaT.Edge-based reconstruction schemes for unstructured tetrahedral meshesInt. J. Numer. Methods Fluids201681331356350515510.1002/fld.4187
– reference: DiyankovO. V.GlazyrinI. V.KoshelevS. V.MAG – two-dimensional resistive MHD code using an arbitrary moving coordinate systemComput. Phys. Commun.199710676940976.7652410.1016/S0010-4655(97)00083-0
– reference: W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Section 10.1.2. Lax Method,” Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge Univ. Press, Cambridge, 2007).
– reference: HartenA.OsherS.Uniformly high-order accurate nonoscillatory schemes. ISIAM J. Numer. Anal.1987272793098813650627.6510210.1137/0724022
– reference: BosnyakovS. M.MikhailovS. V.PodaruevV. Yu.TroshinA.I.Unsteady high-order accurate discontinuous Galerkin method for turbulent flow modelingMat. Model.20183037563799877
– reference: MorganB. E.SchillingO.HartlandT. A.Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixingPhys. Rev. E20189701310410.1103/PhysRevE.97.013104
– reference: P. J. Roache, Computational Fluid Dynamics (Hermosa, Albuquerque, NM, 1976; Mir, Moscow, 1980).
– reference: T. Haga and K. Sawada, “An improved slope limiter for high-order spectral volume methods solving the 3D compressible Euler equations” (2009).
– reference: ThornberB.GriffondJ.PoujadeO.Late-time growth rate, mixing, and anisotropy in multimode narrowband Richtmyer-Meshkov instability: The θ–group collaborationPhys. Fluids20172910510710.1063/1.4993464
– reference: HartenA.EngquistB.OsherS.ChakravarthyS. R.Uniformly high order accuracy essentially non-oscillatory schemes, IIIJ. Comput. Phys.1987712313038972440652.6506710.1016/0021-9991(87)90031-3
– reference: ChetverushkinB. N.TishkinV. F.Mathematical Modeling: Problems and Results2003MoscowNauka
– reference: TitarevV. A.ToroE. F.ADER schemes for three-dimensional non-linear hyperbolic systemsJ. Comput. Phys.200520471573621318591060.6564110.1016/j.jcp.2004.10.028
– reference: YasueK.FurudateM.OhnishiN.SawadaK.Implicit discontinuous Galerkin method for RANS simulation utilizing pointwise relaxation algorithmCommun. Comput. Phys.2010751053326729551364.7610110.4208/cicp.2009.09.055
– reference: P. R. Spalart and S. R. Allmaras, “A one-equation turbulence model for aerodynamics flows,” in 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, January 6−9,1992, AIAA Paper 92-439. https://doi.org/10.2514/6.1992-439
– reference: ChanJ.WangZ.ModaveA.GPU-accelerated discontinuous Galerkin methods on hybrid meshesJ. Comput. Phys.201531814216835039921349.6544310.1016/j.jcp.2016.04.003
– reference: E. F. Toro and V. A. Titarev, “Solution of the generalized Riemann problem for advection-reaction equations,” Proc. R. Soc. Lond. A 458 (2018), 271−281 (2002).
– reference: MoczP.VogelsbergerM.SijackiD.A discontinuous Galerkin method for solving the fluid and magnetohydrodynamic equations in astrophysical simulationsMon. Not. R. Astron. Soc.201443739741410.1093/mnras/stt1890
– reference: Yu. V. Yanilkin, V. P. Statsenko, and V. I. Kozlov, Mathematical Modeling of Turbulent Mixing in Compressible Media (RFYaTs–VNIITF, Sarov, 2009) [in Russian].
– reference: P. R. Spalart, W.-H. Jou, M. Stretlets, and S. R. Allmaras, “Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach,” in Advances in DNS/LES, Proc. First AFOSR Int. Conf. on DNS/LES, Ruston, LA, USA, August 4−8,1997, pp. 137−147.
– reference: ColellaP.WoodwardP. R.The piecewise parabolic method (PPM) for gas-dynamical simulationsJ. Comput. Phys.1984541742010531.7608210.1016/0021-9991(84)90143-8
– reference: RogovB. V.Dispersive and dissipative properties of the fully discrete bicompact schemes of the fourth order of spatial approximation for hyperbolic equationsAppl. Numer. Math.201913913615539131821416.6528110.1016/j.apnum.2019.01.008
– reference: S. R. Kennon and G. S. Dulikravich, “A posteriori optimization of computational grid,” in 23rd Aerospace Sciences Meeting, Reno, NV, USA, January 14−17,1985, AIAA-85-483. https://doi.org/10.2514/6.1985-483
– reference: F. F. Grinstein, A. A. Gowardhan, and J. R. Ristorcelli, “Implicit large eddy simulation of shock-driven material mixing,” Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 371 (2003), 20120217 (2013).
– reference: S. K. Godunov, “A difference method for numerical computation of discontinuous solutions of the equations of hydrodynamics,” Mat. Sb. 47 (89) (3), 271−306 (1959).
– reference: FedorenkoR. P.The application of difference schemes of high accuracy to the numerical solution of hyperbolic equationsUSSR Comput. Math. Math. Phys.19632135513650139.1080310.1016/0041-5553(63)90351-3
– reference: ZhmakinA. I.FursenkoA. A.On a monotonic shock-capturing difference schemeUSSR Comput. Math. Math. Phys.19802021822710.1016/0041-5553(80)90283-9
– reference: DumbserM.Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier–Stokes equationsComput. Fluids201039607626008091242.7616110.1016/j.compfluid.2009.07.003
– reference: BookD. L.BorisJ. P.HainK.Flux-corrected transport II: Generalization of the methodJ. Comput. Phys.1975182482830306.7600410.1016/0021-9991(75)90002-9
– reference: W. Huang and R. D. Russell, Adaptive Moving Mesh Methods, Applied Mathematical Sciences, Vol. 174 (Springer, New York, 2011).
– reference: BakhrakhS. M.GlagolevaYu. P.SamigulinM. S.Calculation of gas dynamic flows using the method of concentrationsDokl. Akad. Nauk SSSR1981257566569
– reference: RasetarineraP.HussainiM. Y.An efficient implicit discontinuous spectral Galerkin methodJ. Comput. Phys.20011727187380986.6509310.1006/jcph.2001.6853
– reference: BassiF.RebayS.Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equationsInt. J. Numer. Methods. Fluids2002401972071058.7657010.1002/fld.338
– reference: PopovI. V.FryazinovI. V.Adaptive artificial viscosity for multidimensional gas dynamics for Euler variables in Cartesian coordinatesMath. Models Comput. Simul.2010242944226680321201.7603010.1134/S2070048210040034
– reference: PopovM. V.UstyugovS. D.Piecewise parabolic method on local stencil for gasdynamic simulationsComput. Math. Math. Phys.20074719701989239496410.1134/S0965542507120081
– reference: KrivodonovaL.Limiters for high-order discontinuous Galerkin methodsJ. Comput. Phys.200722687989623568621125.6509110.1016/j.jcp.2007.05.011
– reference: VyaznikovK. V.TishkinV. F.FavorskiiA. P.Construction of monotone high resolution difference schemes for hyperbolic systemsMat. Model.198919512010088670972.76521
– reference: HartenA.ENO schemes with subset resolutionJ. Comput. Phys.19898314818410101630696.6507810.1016/0021-9991(89)90226-X
– reference: LesieurM.MetaisO.New trends in large-eddy simulations of turbulenceAnnu. Rev. Fluid. Mech.1996284582137116210.1146/annurev.fl.28.010196.000401
– reference: GrinsteinF. F.MargolinL. G.RiderW. J.Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics2010CambridgeCambridge Univ. Press
– reference: PoveshchenkoYu. A.LadonkinaM. E.PodrygaV. O.“On a two-layer completely conservative difference scheme of gas dynamics in Eulerian variables with adaptive regularization of solution,” KIAM Preprint No. 142019MoscowKeldysh Inst. Appl. Math. RAS10.20948/prepr-2019-14
– reference: R.B. Christensen, “Godunov methods on a staggered mesh an improved artificial viscosity,” Report UCRL-JC-105269, Lawrence Livermore National Laboratory, 1991.
– reference: RogovB. V.High-order accurate monotone compact running scheme for multidimensional hyperbolic equationsComput. Math. Math. Phys.20135320521432490261274.6523910.1134/S0965542513020097
– reference: ArnoldD. N.BrezziF.CockburnB.MariniL. D.Unified analysis of discontinuous Galerkin methods for elliptic problemsSIAM J. Numer. Anal.2002391749177918857151008.6508010.1137/S0036142901384162
– reference: KleinR. I.Star formation with 3-D adaptive mesh refinement: The collapse and fragmentation of molecular cloudsJ. Comput. Appl. Math.201110912315210.1016/S0377-0427(99)00156-90946.76059
– reference: M. Strelets, “Detached Eddy Simulation of massively separated flows,” in 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, January 8−11,2001, AIAA Paper 2001−879. https://doi.org/10.2514/6.2001-879
– reference: WilcoxD. C.Formulation of the k-ω turbulence model revisitedAIAA J.2008462823283810.2514/1.36541
– reference: HartmannR.HoustonP.Symmetric interior penalty DG methods for the compressible Navier-Stokes equations I: Method formulationInt. J. Numer. Anal. Model.2006312022085621129.76030
– reference: SmagorinskyJ.General circulation experiments with the primitive equations. I. The basic experimentMon. Weather Rev.1963919916410.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
– reference: JiangG.-S.ShuC.-W.Efficient implementation of weighted ENO schemesJ. Comput. Phys.199612620222813916270877.6506510.1006/jcph.1996.0130
– reference: BeckettG.MackenzieJ. A.RamageA.SloanD. M.On the numerical solution of one-dimensional PDEs using adaptive methods based on equidistributionJ. Comput. Phys.20011673723920985.6509710.1006/jcph.2000.6679
– reference: LiG.FuX.WangF.High-resolution multi-code implementation of unsteady Navier–Stokes flow solver based on paralleled overset adaptive mesh refinement and high-order low-dissipation hybrid schemesInt. J. Comput. Fluid Dyn.201731379395373530610.1080/10618562.2017.1387251
– reference: Proc. ECCOMAS Thematic Conference: European Workshop on High Order Nonlinear Numerical Methods for Evolutionary PDEs: Theory and Applications (HONOM 2017), Stuttgart, Germany, March 27−31, 2017.
– reference: ArminjonP.DervieuxA.“Construction of TVD-like artificial viscosities on two-dimensional arbitrary FEM grids,” INRIA Research Report RR-1111, 1989J. Comput. Phys.199310617619812140180771.6506210.1006/jcph.1993.1101
– reference: DumbserM.Arbitrary High Order Schemes for the Solution of Hyperbolic Conservation Laws in Complex Domains2005AachenShaker Verlag
– reference: KurganovA.TadmorE.New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equationsJ. Comput. Phys.200016024128217567660987.6508510.1006/jcph.2000.6459
– reference: SureshA.HuynhH. T.Accurate monotonicity-preserving schemes with Runge–Kutta time steppingJ. Comput. Phys.1997136839914686250886.6509910.1006/jcph.1997.5745
– reference: ShuC.-W.High order WENO and DG methods for time-dependent convection-dominated PDEs: A brief survey of several recent developmentsJ. Comput. Phys.201631659861334943711349.6548610.1016/j.jcp.2016.04.030
– reference: DolejšíV.Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flowsCommun. Comput. Phys.2008423127424409461364.76085
– reference: KolganV. P.“Application of the principle of minimum values of the derivative to the construction of finite-difference schemes for calculating discontinuous solutions of gas dynamics,” Uch. ZapTsAGI197236877
– reference: RiderW. J.Reconsidering remap methodsInt. J. Numer. Methods Fluids201476587610326841510.1002/fld.3950
– reference: A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Problems of the Numerical Solution of Hyperbolic Systems of Equations (Fizmatlit, Moscow, 2001) [in Russian]; English translation: Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Chapman & Hall/CRC, Boca Raton, FL, 2001).
– reference: UstyugovS. D.PopovM. V.KritsukA. G.NormanM. L.Piecewise parabolic method on a local stencil for magnetized supersonic turbulence simulationJ. Comput. Phys.20092287614763325618341391.7658310.1016/j.jcp.2009.07.007
– reference: ZhuJ.ZhongX.ShuC.-W.QiuJ.Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshesJ. Comput. Phys.201324820022030661491349.6550110.1016/j.jcp.2013.04.012
– reference: ShuC.-W.OsherS.Efficient implementation of essentially non-oscillatory shock-capturing schemesJ. Comput. Phys.1988774394719549150653.6507210.1016/0021-9991(88)90177-5
– reference: LaxP. D.Weak solutions of nonlinear hyperbolic equations and their numerical computationComm. Pure Appl. Math.19547159193660400055.1940410.1002/cpa.3160070112
– reference: KrasnovM. M.KuchugovP. A.LadonkinaM. E.Numerical solution of the Navier-Stokes equations by discontinuous Galerkin methodJ. Phys.: Conf. Ser.2017815012015
– reference: VolkovA. V.LyapunovC. V.“Monotonization of a finite element method in problems of gas dynamics,” Uch. ZapTsAGI2009XL1527
– reference: [Electronic Source] http://www.astro.virginia.edu/VITA/ATHENA/bow-shock.html (Accessed March 1, 2015).
– reference: S. M. Bakhrakh and V. F. Spiridonov, “Method of concentrations for computing nonstationary flows of continuum,” Vopr. At. Nauki Tekh., Ser. Mat. Model. Fiz. Prots., No. 4, 32−36 (1999).
– reference: V. F. Kuropatenko, “A method of constructing difference schemes for the numerical integration of the equations of gas dynamics,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 3, 75−83 (1962).
– reference: J. Lou, Y. Xia, L. Luo, H. Luo, J. R. Edwards, and F. Mueller, “OpenACC-based GPU acceleration of a p-multigrid discontinuous Galerkin method for compressible flows on 3D unstructured grids,” in 53rd AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, Kissimmee, FL, January 5−9,2015, AIAA 2015-0822, pp. 1–12.
– reference: OstapenkoV. V.On strong monotonicity of three-point difference schemesSib. Math. J.19983911741183167265710.1007/BF02674128
– reference: RiderW. J.GreenoughJ. A.KammJ. R.Accurate monotonicity- and extrema-preserving methods through adaptive nonlinear hybridizationsJ. Comput. Phys.20072251827184823492051343.7603610.1016/j.jcp.2007.02.023
– reference: KrasnovM. M.Parallel algorithm for computing points on a computation front hyperplaneComput. Math. Math. Phys.2015551401471318.6501310.1134/S0965542515010133
– reference: HartenA.On a class of high resolution total-variation-stable finite-difference schemesSIAM. J. Numer. Anal.1984211237312100547.6506210.1137/0721001
– reference: SpiteriR. J.RuuthS. J.A new class of optimal high-order strong-stability-preserving time discretization methodsSIAM J. Numer. Anal.20024046949119216661020.6506410.1137/S0036142901389025
– reference: DumbserM.KäserM.de la PuenteJ.Arbitrary high-order finite volume schemes for seismic wave propagation on unstructured meshes in 2D and 3DGeophys. J. Int.200717166569410.1111/j.1365-246X.2007.03421.x
– reference: ChetverushkinB. N.Kinetically Consistent Schemes in Gas Dynamics1999MoscowIzd. Mosk. Gos. Univ.1189.76359
– reference: IserlesA.Generalized leapfrog methodsIMA J. Numer. Anal.198663813929682650637.6508910.1093/imanum/6.4.381
– reference: HartenA.OsherS.Uniformly high-order accurate essentially nonoscillatory schemes. ISIAM J. Numer. Anal.1987242793098813650627.6510210.1137/0724022
– reference: TitarevV. A.ToroE. F.ADER: Arbitrary high order Godunov approachJ. Sci. Comput.20021760961819107551024.7602810.1023/A:1015126814947
– reference: OstapenkoV. V.On the strong monotonicity of nonlinear difference schemesComput. Math. Math. Phys.1998381119113316386380964.65084
– reference: MaoD.-K.A treatment of discontinuities in shock-capturing finite difference methodsJ. Comput. Phys.19919242245510942580716.6508610.1016/0021-9991(91)90217-9
– reference: DubinerM.Spectral methods on triangles and other domainsJ. Sci. Comput.1991634539011549030742.7605910.1007/BF01060030
– reference: LiuX.-D.OsherS.ChanT.Weighted essentially non-oscillatory schemesJ. Comput. Phys.199411520021213003400811.6507610.1006/jcph.1994.1187
– reference: ToroE. F.Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction1999Berlin, HeidelbergSpringer0923.7600410.1007/978-3-662-03915-1
– reference: HartenA.EngquistB.OsherS.ChakravarthlyS. R.Uniformly high order accurate essentially non-oscillatory scheme, IIIJ. Comput. Phys.19971313470866.6505810.1006/jcph.1996.5632
– reference: A. Kolmogoroff, “The local structure of turbulence in incompressible viscous fluid for very large Reynold’s numbers,” C. R. (Doklady) Acad. Sci. URSS (N.S.) 30, 301–305 (1941).
– reference: van LeerB.Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s methodJ. Comput. Phys.1979321011361364.6522310.1016/0021-9991(79)90145-1
– reference: ColellaP.HendersonL. F.The von Neumann paradox for the diffraction of weak shock wavesJ. Fluid Mech.19902137194105153710.1017/S0022112090002221
– reference: BergerM. J.OligerJ.Adaptive mesh refinement for hyperbolic partial differential equationsJ. Comput. Phys.1984534845127391120536.6507110.1016/0021-9991(84)90073-1
– reference: BaskoM. M.The method of artificial viscosity for computing one-dimensional flowsUSSR Comput. Math. Math. Phys.19903017618210558210727.7608110.1016/0041-5553(90)90093-8
– reference: BergerM. J.ColellaP.Local adaptive mesh refinement for shock hydrodynamicsJ. Comput. Phys.19898264840665.7607010.1016/0021-9991(89)90035-1
– reference: CockburnB.ShuC-W.The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systemsJ. Comput. Phys.199814119922416196520920.6505910.1006/jcph.1998.5892
– reference: W. H. Reed and T. R. Hill, “Triangular mesh methods for the neutron transport equation,” Report LA-UR-73-479, Los Alamos Scientific Laboratory, University of California, Los Alamos, NM, USA, 1973. doi: https://www. osti.gov/servlets/purl/4491151
– reference: K. Lipnikov, G. Manzini, and M. Shashkov, “Mimetic finite difference method,” J. Comput. Phys. 257, Part B, 1163–1227 (2014).
– reference: KhattriS. K.Grid generation and adaptation by functionalsComput. Appl. Math.20072623524923377101182.65185
– reference: VolkovA. V.“Features of the application of the Galerkin method to the solution of the spatial Navier-Stokes equations on unstructured hexahedral meshes,” Uch. ZapTsAGI2009XL4159
– reference: KrasnovM. M.LadonkinaM. E.Discontinuous Galerkin method on three-dimensional tetrahedral grids. The use of template metaprogramming of the C++ languageProgram. Comput. Software20174317218336578451455.6521410.1134/S0361768817030082
– reference: GatskiT. B.BonnetJ.-P.Compressibility, Turbulence and High Speed Flow2009OxfordElsevier
– reference: W. D. Schultz, “Two-dimensional Lagrangian hydrodynamic difference equations,” in Fundamental Methods in Hydrodynamics, Ed. by B. Alder, S. Fernbach, M. Rotenberg, Ser. Methods of Computational Physics: Advances in Research and Applications, Vol. 3 (Academic Press, New York, 1964).
– reference: CockburnB.ShuC.-W.The local discontinuous Galerkin method for time-dependent convection-diffusion systemSIAM J. Numer. Anal.1998352440246316558540927.6511810.1137/S0036142997316712
– reference: GottliebS.ShuC.-W.TadmorE.Strong stability-preserving high-order time discretization methodsSIAM Rev.2001438911218546470967.6509810.1137/S003614450036757X
– reference: LadonkinaM. E.NeklyudovaO. A.TishkinV. F.Constructing a limiter based on averaging the solutions for the discontinuous Galerkin methodMath. Models Comput. Simul.2019116173384931710.1134/S2070048219010101
– reference: BoldarevA. S.GasilovV. A.OlkhovskayaO. G.On the solution of hyperbolic equations using unstructured gridsMat. Model.19968517813994550981.65506
– reference: WilcoxD. C.Turbulence Modeling for CFD2006La Cañnada, CADCW Industries
– reference: ShuC.-W.OsherS.Efficient implementation of essentially non-oscillatory shock-capturing schemes, IIJ. Comput. Phys.198983327810101620674.6506110.1016/0021-9991(89)90222-2
– reference: LadonkinaM. E.NeklyudovaO. A.TishkinV. F.Application of the RKDG method for gas dynamics problemsMath. Models Comput. Simul.2014639740733707971313.7609010.1134/S207004821404005X
– reference: WoodwardP.ColellaP.The numerical simulation of two-dimensional fluid flow with strong shocksJ. Comput. Phys.1984541151737485690573.7605710.1016/0021-9991(84)90142-6
– reference: C. Hirsch, Numerical Computation of Internal and External Flows, Vol. 2: Computational Methods for Inviscid and Viscous Flows (Wiley, New York, 1990).
– reference: MorganB. E.WickettM. E.Three-equation model for the self-similar growth of Rayleigh-Taylor and Richtmyer-Meshkov instabilitiesPhys. Rev. E201591043002347103010.1103/PhysRevE.91.043002
– reference: JamesonA.YoonS.Lower-upper implicit schemes with multiple grids for the Euler equationsAIAA J.19872592993510.2514/3.9724
– reference: OsherS.Riemann solvers, the entropy condition, and difference approximationSIAM J. Numer. Anal.1984212172357363270592.6506910.1137/0721016
– reference: HawkenD. F.GottliebJ. J.HansenJ. S.Review of some adaptive node-movement techniques in finite-element and finite-difference solutions of partial differential equationsJ. Comput. Phys.19919525430211178440733.6505710.1016/0021-9991(91)90277-R
– reference: LadonkinaM. E.NeklyudovaO. A.TishkinV. F.ChevaninV. S.A version of essentially nonoscillatory high-order accurate difference schemes for systems of conservation lawsMath. Models Comput. Simul.20102304316264994410.1134/S207004821003004X
– reference: VlasenkoV. V.VolkovA. V.TroshinA. I.“Choice of an approximation method for viscous terms in the Galerkin method with discontinuous basis functions,” Uch. ZapTsAGI2013XLIV1840
– reference: E. Tadmor and J. Tanner, “An adaptive order Godunov type central scheme,” in Hyperbolic Problems: Theory, Numerics, Applications, Proc. 9th Int. Conf. on Hyperbolic Problems, CalTech, Pasadena, March 2002, Ed. by T. Y. Hou and E. Tadmor (Springer, Berlin, Heidelberg, 2003), pp. 871−880.
– reference: GolovizninV. M.A balance-characteristic method for the numerical solution of gas dynamic equationsDokl. Akad. Nauk200540345946422160331079.35006
– reference: G. P. Warren, W. K. Anderson, J. L. Thomas, and S. L. Krist, “Grid convergence for adaptive methods,” in 10th Computational Fluid Dynamics Conference, Honolulu, HI, USA, June 24−26,1991, AIAA 91-1592. https://doi.org/10.2514/6.1991-1592.
– reference: van LeerB.Towards the ultimate conservative difference scheme II: Monotonicity and conservation combined in a second order schemeJ. Comput. Phys.1974143613700276.6505510.1016/0021-9991(74)90019-9
– reference: PopeS. B.Turbulent Flows2000CambridgeCambridge Univ. Press0966.7600210.1017/CBO9780511840531
– reference: K. G. Powell, P. L. Roe, and J. Quirk, “Adaptive-mesh algorithms for computational fluid dynamics,” in Algorithmic Trends in Computational Fluid Dynamics, Ed. by M. Y. Hussaini, A. Kumar, and M. D. Salas, ICASE/NASA LaRC Series (Springer, New York, 1993), pp. 303−337.
– reference: RusanovV. V.The calculation of the interaction of non-stationary shock waves and obstaclesUSSR Comput. Math. Math. Phys.1962130432010.1016/0041-5553(62)90062-9
– reference: J. Peraire and P.-O. Persson, “High-Order Discontinuous Galerkin Methods for CFD,” in Adaptive High-Order Methods in Computational Fluid Dynamics, Ed. by Z. J. Wang, Advances in Computational Fluid Dynamics, Vol. 2 (World Scientic, Singapore, 2011), Chap. 5, pp. 119–152.
– reference: KrasnovM. M.Operator library for solving multidimensional mathematical physics problems on CUDAMat. Model.20152710912035481761340.65338
– reference: HanjalicK.LaunderB. E.A Reynolds stress model of turbulence and its application to thin shear flowsJ. Fluid Mech.1972526096380239.7606910.1017/S002211207200268X
– reference: NastaseC. R.MavriplisD. J.High-order discontinuous Galerkin methods using an hp-multigrid approachJ. Comput. Phys.20062133303571089.6510010.1016/j.jcp.2005.08.022
– reference: SamarskiiA. A.TishkinV. F.FavorskiiA. P.ShashkovM. Yu.Operator difference schemesDiffer. Uravn.19811713171327625569
– reference: ChouP. Y.On velocity correlations and the solutions of the equations of turbulent fluctuationsQ. Appl. Math.194533854119990061.4530210.1090/qam/11999
– reference: ArminjonP.ViallonM.-C.MadraneA.A finite volume extension of the Lax-Friedrichs and Nessyahu-Tadmor schemes for conservation laws on unstructured gridsInt. J. Comput. Fluid Dyn.1998912216096130913.7606310.1080/10618569808940837
– reference: DumbserM.MunzC.-D.ADER discontinuous Galerkin schemes for aeroacousticsC. R. Mec.20053336836871107.7604410.1016/j.crme.2005.07.008
– reference: YeeH. C.WarmingR. F.HartenA.Implicit total variation diminishing (TVD) schemes for steady-state calculationsJ. Comput. Phys.1985573273607829860631.7608710.1016/0021-9991(85)90183-4
– reference: KrasnovM. M.KuchugovP. A.LadonkinaM. E.TishkinV. F.Discontinuous Galerkin method on three-dimensional tetrahedral grids: Using the operator programming methodMath. Models Comput. Simul.2017952954336387761374.7610110.1134/S2070048217050064
– reference: MenterF. R.Two-equation eddy-viscosity turbulence models for engineering applicationsAIAA J.1994321598160510.2514/3.12149
– reference: RodionovA. V.“On the use of Boussinesq approximation in turbulent supersonic jet modeling,” IntJ. Heat Mass Transp.2010538899011183.8005410.1016/j.ijheatmasstransfer.2009.11.035
– reference: ZalesakS. T.Fully multidimensional flux-corrected transport algorithms for fluidsJ. Comput. Phys.1979313353625347860416.7600210.1016/0021-9991(79)90051-2
– reference: E. V. Stupochenko, S. A. Losev, and A. I. Osipov, Relaxation Processes in Shock Waves (Nauka, Moscow, 1965) [in Russian]; English translation: Ye. V. Stupochenko, S. A. Losev, and A. I. Osipov, Relaxation in Shock Waves (Springer, New York, 1967).
– reference: MignoneA.High-order conservative reconstruction schemes for finite volume methods in cylindrical and spherical coordinatesJ. Comput. Phys.201427078481432094121349.7636410.1016/j.jcp.2014.04.001
– reference: QiuJ.ShuC.-W.On the construction, comparison, and local characteristic decomposition for high order central WENO schemesJ. Comput. Phys.200218318720919445311018.6510610.1006/jcph.2002.7191
– reference: AnteparaO.LehmkuhlO.ChivaJ.BorrellR.Parallel adaptive mesh refinement simulation of the flow around a square cylinder at Re = 22 000Procedia Eng.20136124625010.1016/j.proeng.2013.08.011
– reference: van LeerB.Towards the ultimate conservative difference schemes. III. Upstream-centered finite-difference schemes for ideal compressible flowJ. Comput. Phys.1977232632750339.7603910.1016/0021-9991(77)90094-8
– reference: PopovM. V.UstyugovS. D.Piecewise parabolic method on a local stencil for ideal magnetohydrodynamicsComput. Math. Math. Phys.20084847749924265031201.7615110.1134/S0965542508030111
– reference: ChoiH.LiuJ.-G.The reconstruction of upwind fluxes for conservation laws: Its behavior in dynamic and steady state calculationsJ. Comput. Phys.198814423725616380870935.7604810.1006/jcph.1998.5970
– reference: LuoH.BaumJ. D.LöhnerR.Fast p-multigrid discontinuous Galerkin method for compressible flow at all speedsAIAA J.20084663565210.2514/1.28314
– reference: OstapenkoV. V.On monotonicity of difference schemesSib. Math. J.199839959972165068910.1007/BF02672918
– reference: M. Dumbser and C.-D. Munz, “Arbitrary high order discontinuous Galerkin schemes,” in Numerical Methods for Hyperbolic and Kinetic Problems, Ed. by S. Cordier, T. Goudon, M. Gutnic, and E. Sonnendrücker, IRMA Lectures in Mathematics and Theoretical Physics 7 (EMS Publishing House, Zürich, 2005), pp. 295−333.
– reference: DimonteG.YoungsD. L.DimitsA.A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: The Alpha-group collaborationPhys. Fluids200416166816931186.7614310.1063/1.1688328
– reference: GolovizninV. M.SamarskiiA. A.Finite difference approximation of convective transport with spatial splitting of the time derivativeMat. Model.1998108610017587791189.76364
– reference: LuoH.BaumJ. D.LöhnerR.A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured gridsJ. Comput. Phys.200722568671323466971122.6508910.1016/j.jcp.2006.12.017
– reference: K. J. Fidkowski and D. L. Darmofal, “Output-based error estimation and mesh adaptation in computational fluid dynamics: Overview and recent results,” in 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, FL, January 5−8,2009, AIAA 2009-1303. https://doi.org/10.2514/6.2009-1303
– reference: B. Cockburn, “An introduction to the discontinuous Galerkin method for convection-dominated problems,” in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Ed. by A. Quarteroni, Lecture Notes in Mathematics (Springer, Berlin, Heidelberg, 1998), Vol. 1697, pp. 151−268.
– reference: Dar’inN. A.MazhukinV. I.SamarskiiA. A.A finite-difference method for solving the equations of gas dynamics using adaptive nets which are dynamically associated with the solutionUSSR Comput. Math. Math. Phys.1988281641740850.7643710.1016/0041-5553(88)90127-9
– reference: KlöcknerA.WarburtonT.BridgeJ.HesthavenJ. S.Nodal discontinuous Galerkin methods on graphics processorsJ. Comput. Phys.20092287863788225733361175.6511110.1016/j.jcp.2009.06.041
– reference: HartmannR.Adaptive discontinuous Galerkin methods with shock-capturing for the compressible Navier-Stokes equationsInt. J. Numer. Methods Fluids2006511131115622423821106.7604110.1002/fld.1134
– volume: 83
  start-page: 148
  year: 1989
  ident: 4223_CR53
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(89)90226-X
– volume: 43
  start-page: 89
  year: 2001
  ident: 4223_CR128
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450036757X
– ident: 4223_CR19
  doi: 10.2514/6.2001-879
– volume: 32
  start-page: 101
  year: 1979
  ident: 4223_CR44
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(79)90145-1
– volume: 11
  start-page: 61
  year: 2019
  ident: 4223_CR124
  publication-title: Math. Models Comput. Simul.
  doi: 10.1134/S2070048219010101
– volume: 126
  start-page: 202
  year: 1996
  ident: 4223_CR62
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0130
– volume: 270
  start-page: 784
  year: 2014
  ident: 4223_CR25
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.04.001
– volume: 48
  start-page: 477
  year: 2008
  ident: 4223_CR97
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S0965542508030111
– volume-title: Simulation of Large Vortices in Calculations of Turbulent Flows
  year: 2008
  ident: 4223_CR20
– volume: 2
  start-page: 304
  year: 2010
  ident: 4223_CR67
  publication-title: Math. Models Comput. Simul.
  doi: 10.1134/S207004821003004X
– ident: 4223_CR101
– ident: 4223_CR122
  doi: 10.1142/9789814313193_0005
– ident: 4223_CR35
  doi: 10.1201/9781482273991
– volume-title: Arbitrary High Order Schemes for the Solution of Hyperbolic Conservation Laws in Complex Domains
  year: 2005
  ident: 4223_CR64
– volume: 1
  start-page: 304
  year: 1962
  ident: 4223_CR82
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(62)90062-9
– ident: 4223_CR144
– ident: 4223_CR18
– volume: 71
  start-page: 231
  year: 1987
  ident: 4223_CR49
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(87)90031-3
– volume: 57
  start-page: 327
  year: 1985
  ident: 4223_CR52
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(85)90183-4
– volume-title: Turbulent Flows
  year: 2000
  ident: 4223_CR17
  doi: 10.1017/CBO9780511840531
– volume: 55
  start-page: 140
  year: 2015
  ident: 4223_CR140
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S0965542515010133
– volume: 6
  start-page: 397
  year: 2014
  ident: 4223_CR114
  publication-title: Math. Models Comput. Simul.
  doi: 10.1134/S207004821404005X
– ident: 4223_CR166
  doi: 10.1007/978-1-4612-2708-3_18
– volume: 21
  start-page: 217
  year: 1984
  ident: 4223_CR51
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0721016
– volume: 225
  start-page: 1827
  year: 2007
  ident: 4223_CR100
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.02.023
– volume: 7
  start-page: 510
  year: 2010
  ident: 4223_CR134
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.2009.09.055
– volume: 83
  start-page: 32
  year: 1989
  ident: 4223_CR60
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(89)90222-2
– volume-title: Kinetically Consistent Schemes in Gas Dynamics
  year: 1999
  ident: 4223_CR147
– volume: 160
  start-page: 241
  year: 2000
  ident: 4223_CR83
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6459
– ident: 4223_CR24
– ident: 4223_CR21
  doi: 10.1098/rsta.2012.0217
– ident: 4223_CR116
  doi: 10.1007/BFb0096353
– volume: 226
  start-page: 879
  year: 2007
  ident: 4223_CR117
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.05.011
– volume: 4
  start-page: 231
  year: 2008
  ident: 4223_CR133
  publication-title: Commun. Comput. Phys.
– volume: 106
  start-page: 176
  year: 1993
  ident: 4223_CR143
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1993.1101
– ident: 4223_CR150
– volume: 1
  start-page: 95
  year: 1989
  ident: 4223_CR57
  publication-title: Mat. Model.
– volume: 6
  start-page: 345
  year: 1991
  ident: 4223_CR75
  publication-title: J. Sci. Comput.
  doi: 10.1007/BF01060030
– volume: 2
  start-page: 1355
  year: 1963
  ident: 4223_CR40
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(63)90351-3
– volume: 6
  start-page: 381
  year: 1986
  ident: 4223_CR28
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/6.4.381
– volume-title: Arbitrary High Order Schemes for the Solution of Hyperbolic Conservation Laws in Complex Domains
  year: 2005
  ident: 4223_CR73
– volume: 43
  start-page: 172
  year: 2017
  ident: 4223_CR113
  publication-title: Program. Comput. Software
  doi: 10.1134/S0361768817030082
– ident: 4223_CR80
– ident: 4223_CR149
– volume: 31
  start-page: 335
  year: 1979
  ident: 4223_CR46
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(79)90051-2
– volume: 81
  start-page: 331
  year: 2016
  ident: 4223_CR77
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.4187
– volume: 30
  start-page: 176
  year: 1990
  ident: 4223_CR142
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(90)90093-8
– volume: 2
  start-page: 429
  year: 2010
  ident: 4223_CR145
  publication-title: Math. Models Comput. Simul.
  doi: 10.1134/S2070048210040034
– volume: 7
  start-page: 159
  year: 1954
  ident: 4223_CR81
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160070112
– ident: 4223_CR94
– volume: 97
  start-page: 013104
  year: 2018
  ident: 4223_CR12
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.97.013104
– volume: 9
  start-page: 1
  year: 1998
  ident: 4223_CR87
  publication-title: Int. J. Comput. Fluid Dyn.
  doi: 10.1080/10618569808940837
– volume: XL
  start-page: 41
  year: 2009
  ident: 4223_CR105
  publication-title: TsAGI
– volume: 248
  start-page: 200
  year: 2013
  ident: 4223_CR120
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.04.012
– ident: 4223_CR79
– volume: 151
  start-page: 229
  year: 2020
  ident: 4223_CR32
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2020.01.005
– volume: 26
  start-page: 235
  year: 2007
  ident: 4223_CR162
  publication-title: Comput. Appl. Math.
– volume: 257
  start-page: 566
  year: 1981
  ident: 4223_CR23
  publication-title: Dokl. Akad. Nauk SSSR
– ident: 4223_CR86
  doi: 10.1007/978-3-642-55711-8_82
– volume: 213
  start-page: 330
  year: 2006
  ident: 4223_CR106
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.08.022
– volume: 157
  start-page: 312
  year: 2017
  ident: 4223_CR78
  publication-title: Comp. Fluids
  doi: 10.1016/j.compfluid.2017.09.004
– volume: 183
  start-page: 187
  year: 2002
  ident: 4223_CR85
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2002.7191
– volume: 136
  start-page: 83
  year: 1997
  ident: 4223_CR99
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1997.5745
– volume: 3
  start-page: 38
  year: 1945
  ident: 4223_CR13
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/11999
– ident: 4223_CR27
  doi: 10.1016/j.jcp.2013.07.031
– volume: 95
  start-page: 254
  year: 1991
  ident: 4223_CR158
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(91)90277-R
– volume: 28
  start-page: 164
  year: 1988
  ident: 4223_CR154
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(88)90127-9
– volume: 21
  start-page: 1
  year: 1984
  ident: 4223_CR50
  publication-title: SIAM. J. Numer. Anal.
  doi: 10.1137/0721001
– ident: 4223_CR137
  doi: 10.2514/6.2015-0822
– volume: 32
  start-page: 653
  year: 1991
  ident: 4223_CR159
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620320403
– ident: 4223_CR91
– volume: 39
  start-page: 1749
  year: 2002
  ident: 4223_CR109
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142901384162
– volume: 109
  start-page: 123
  year: 2011
  ident: 4223_CR161
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(99)00156-9
– volume: 8
  start-page: 51
  year: 1996
  ident: 4223_CR148
  publication-title: Mat. Model.
– volume: 333
  start-page: 683
  year: 2005
  ident: 4223_CR74
  publication-title: C. R. Mec.
  doi: 10.1016/j.crme.2005.07.008
– volume: 225
  start-page: 686
  year: 2007
  ident: 4223_CR119
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.12.017
– volume: 172
  start-page: 718
  year: 2001
  ident: 4223_CR130
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6853
– ident: 4223_CR34
– volume: 316
  start-page: 598
  year: 2016
  ident: 4223_CR118
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.04.030
– volume: 10
  start-page: 86
  year: 1998
  ident: 4223_CR29
  publication-title: Mat. Model.
– volume: 7
  start-page: 510
  year: 2010
  ident: 4223_CR115
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.2009.09.055
– volume: 171
  start-page: 665
  year: 2007
  ident: 4223_CR63
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2007.03421.x
– volume: 38
  start-page: 477
  year: 2004
  ident: 4223_CR88
  publication-title: ESIAM: Math. Modell. Numer. Anal.
  doi: 10.1051/m2an:2004024
– volume: 46
  start-page: 2823
  year: 2008
  ident: 4223_CR8
  publication-title: AIAA J.
  doi: 10.2514/1.36541
– volume: 27
  start-page: 109
  year: 2015
  ident: 4223_CR139
  publication-title: Mat. Model.
– volume: 437
  start-page: 397
  year: 2014
  ident: 4223_CR141
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stt1890
– ident: 4223_CR2
– ident: 4223_CR165
  doi: 10.2514/6.1991-1592
– volume: 38
  start-page: 1119
  year: 1998
  ident: 4223_CR39
  publication-title: Comput. Math. Math. Phys.
– volume: 17
  start-page: 1317
  year: 1981
  ident: 4223_CR26
  publication-title: Differ. Uravn.
– ident: 4223_CR146
  doi: 10.1007/978-3-642-48246-5
– volume: 46
  start-page: 635
  year: 2008
  ident: 4223_CR107
  publication-title: AIAA J.
  doi: 10.2514/1.28314
– volume: 202
  start-page: 196
  year: 2005
  ident: 4223_CR72
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.06.014
– volume-title: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
  year: 1999
  ident: 4223_CR68
  doi: 10.1007/978-3-662-03915-1
– ident: 4223_CR69
  doi: 10.1098/rspa.2001.0926
– volume-title: “Numerical simulation of shock waves interaction with boundary layers on adaptive grids,” KIAM Preprint No. 136
  year: 2016
  ident: 4223_CR163
  doi: 10.20948/prepr-2016-136
– volume: 39
  start-page: 60
  year: 2010
  ident: 4223_CR121
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2009.07.003
– volume-title: “Algorithm for multilevel mesh adaptation with wavelet-based criteria for gas dynamic problems,” KIAM Preprint No. 97
  year: 2015
  ident: 4223_CR164
– ident: 4223_CR7
  doi: 10.2514/6.1992-439
– volume: 16
  start-page: 1668
  year: 2004
  ident: 4223_CR170
  publication-title: Phys. Fluids
  doi: 10.1063/1.1688328
– volume: 204
  start-page: 715
  year: 2005
  ident: 4223_CR71
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.10.028
– ident: 4223_CR66
  doi: 10.4171/012-1/13
– volume: 14
  start-page: 361
  year: 1974
  ident: 4223_CR42
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(74)90019-9
– volume: 39
  start-page: 1174
  year: 1998
  ident: 4223_CR38
  publication-title: Sib. Math. J.
  doi: 10.1007/BF02674128
– volume: 3
  start-page: 68
  year: 1972
  ident: 4223_CR41
  publication-title: TsAGI
– volume: 20
  start-page: 218
  year: 1980
  ident: 4223_CR47
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(80)90283-9
– volume: 52
  start-page: 609
  year: 1972
  ident: 4223_CR9
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211207200268X
– volume: 167
  start-page: 372
  year: 2001
  ident: 4223_CR155
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6679
– ident: 4223_CR102
– volume: 53
  start-page: 205
  year: 2013
  ident: 4223_CR31
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S0965542513020097
– volume: 3
  start-page: 1
  year: 2006
  ident: 4223_CR132
  publication-title: Int. J. Numer. Anal. Model.
– volume: 226
  start-page: 204
  year: 2007
  ident: 4223_CR76
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.04.004
– volume: XLIV
  start-page: 18
  year: 2013
  ident: 4223_CR127
  publication-title: TsAGI
– volume: 77
  start-page: 439
  year: 1988
  ident: 4223_CR59
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(88)90177-5
– volume: 18
  start-page: 248
  year: 1975
  ident: 4223_CR45
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(75)90002-9
– volume: 9
  start-page: 529
  year: 2017
  ident: 4223_CR112
  publication-title: Math. Models Comput. Simul.
  doi: 10.1134/S2070048217050064
– volume: 91
  start-page: 043002
  year: 2015
  ident: 4223_CR11
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.91.043002
– volume: 115
  start-page: 200
  year: 1994
  ident: 4223_CR61
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1187
– volume: 213
  start-page: 71
  year: 1990
  ident: 4223_CR92
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112090002221
– volume: 32
  start-page: 1598
  year: 1994
  ident: 4223_CR10
  publication-title: AIAA J.
  doi: 10.2514/3.12149
– ident: 4223_CR36
– volume: 131
  start-page: 3
  year: 1997
  ident: 4223_CR58
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.5632
– volume: 47
  start-page: 1970
  year: 2007
  ident: 4223_CR96
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S0965542507120081
– volume: 201
  start-page: 261
  year: 2004
  ident: 4223_CR84
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.05.020
– volume: 139
  start-page: 136
  year: 2019
  ident: 4223_CR33
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2019.01.008
– volume: 40
  start-page: 197
  year: 2002
  ident: 4223_CR108
  publication-title: Int. J. Numer. Methods. Fluids
  doi: 10.1002/fld.338
– ident: 4223_CR103
– volume: 61
  start-page: 246
  year: 2013
  ident: 4223_CR167
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2013.08.011
– volume-title: Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics
  year: 2010
  ident: 4223_CR22
– volume: XL
  start-page: 15
  year: 2009
  ident: 4223_CR123
  publication-title: TsAGI
– volume: 403
  start-page: 459
  year: 2005
  ident: 4223_CR30
  publication-title: Dokl. Akad. Nauk
– volume: 39
  start-page: 959
  year: 1998
  ident: 4223_CR37
  publication-title: Sib. Math. J.
  doi: 10.1007/BF02672918
– ident: 4223_CR153
  doi: 10.2514/6.1985-483
– volume: 31
  start-page: 379
  year: 2017
  ident: 4223_CR168
  publication-title: Int. J. Comput. Fluid Dyn.
  doi: 10.1080/10618562.2017.1387251
– ident: 4223_CR157
  doi: 10.1007/978-1-4419-7916-2
– volume-title: Compressibility, Turbulence and High Speed Flow
  year: 2009
  ident: 4223_CR3
– volume: 54
  start-page: 115
  year: 1984
  ident: 4223_CR89
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(84)90142-6
– volume: 29
  start-page: 105107
  year: 2017
  ident: 4223_CR169
  publication-title: Phys. Fluids
  doi: 10.1063/1.4993464
– volume: 30
  start-page: 37
  year: 2018
  ident: 4223_CR110
  publication-title: Mat. Model.
– volume: 40
  start-page: 469
  year: 2002
  ident: 4223_CR129
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142901389025
– volume: 76
  start-page: 587
  year: 2014
  ident: 4223_CR95
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.3950
– volume-title: Mathematical Modeling: Problems and Results
  year: 2003
  ident: 4223_CR1
– volume: 228
  start-page: 7863
  year: 2009
  ident: 4223_CR136
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.06.041
– volume: 25
  start-page: 929
  year: 1987
  ident: 4223_CR135
  publication-title: AIAA J.
  doi: 10.2514/3.9724
– volume: 141
  start-page: 199
  year: 1998
  ident: 4223_CR104
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1998.5892
– volume: 53
  start-page: 889
  year: 2010
  ident: 4223_CR6
  publication-title: J. Heat Mass Transp.
  doi: 10.1016/j.ijheatmasstransfer.2009.11.035
– volume: 51
  start-page: 1131
  year: 2006
  ident: 4223_CR131
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.1134
– ident: 4223_CR125
– volume: 23
  start-page: 263
  year: 1977
  ident: 4223_CR43
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(77)90094-8
– volume: 91
  start-page: 99
  year: 1963
  ident: 4223_CR15
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
– volume: 53
  start-page: 484
  year: 1984
  ident: 4223_CR160
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(84)90073-1
– volume: 333
  start-page: 683
  year: 2005
  ident: 4223_CR65
  publication-title: C. R. Mec.
  doi: 10.1016/j.crme.2005.07.008
– volume: 815
  start-page: 012015
  year: 2017
  ident: 4223_CR111
  publication-title: J. Phys.: Conf. Ser.
– volume: 318
  start-page: 142
  year: 2015
  ident: 4223_CR138
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.04.003
– volume-title: “On a two-layer completely conservative difference scheme of gas dynamics in Eulerian variables with adaptive regularization of solution,” KIAM Preprint No. 14
  year: 2019
  ident: 4223_CR152
  doi: 10.20948/prepr-2019-14
– volume: 35
  start-page: 2440
  year: 1998
  ident: 4223_CR126
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142997316712
– volume: 228
  start-page: 7614
  year: 2009
  ident: 4223_CR98
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.07.007
– volume: 27
  start-page: 279
  year: 1987
  ident: 4223_CR48
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0724022
– ident: 4223_CR5
– volume: 54
  start-page: 174
  year: 1984
  ident: 4223_CR90
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(84)90143-8
– volume: 144
  start-page: 237
  year: 1988
  ident: 4223_CR56
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1998.5970
– volume: 129
  start-page: 547
  year: 1951
  ident: 4223_CR14
  publication-title: Z. Physik
  doi: 10.1007/BF01330059
– volume: 17
  start-page: 609
  year: 2002
  ident: 4223_CR70
  publication-title: J. Sci. Comput.
  doi: 10.1023/A:1015126814947
– ident: 4223_CR156
  doi: 10.2514/6.2009-1303
– volume: 28
  start-page: 45
  year: 1996
  ident: 4223_CR16
  publication-title: Annu. Rev. Fluid. Mech.
  doi: 10.1146/annurev.fl.28.010196.000401
– volume: 92
  start-page: 422
  year: 1991
  ident: 4223_CR55
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(91)90217-9
– volume-title: Turbulence Modeling for CFD
  year: 2006
  ident: 4223_CR4
– volume: 24
  start-page: 279
  year: 1987
  ident: 4223_CR54
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0724022
– volume: 82
  start-page: 64
  year: 1989
  ident: 4223_CR93
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(89)90035-1
– volume: 106
  start-page: 76
  year: 1997
  ident: 4223_CR151
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(97)00083-0
SSID ssj0000327838
Score 2.1792073
Snippet The study of the development of perturbations under the influence of various hydrodynamic instabilities, as well as the transition to turbulent mixing and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 311
SubjectTerms Computational fluid dynamics
Mathematical analysis
Mathematical Modeling and Industrial Mathematics
Mathematical models
Mathematics
Mathematics and Statistics
Numerical methods
Perturbation
Simulation and Modeling
Three dimensional analysis
Turbulence
Turbulent mixing
Two dimensional analysis
Title Modern Methods of Mathematical Modeling of the Development of Hydrodynamic Instabilities and Turbulent Mixing
URI https://link.springer.com/article/10.1134/S2070048221020174
https://www.proquest.com/docview/2517427004
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWDgjSgU5IEJlJLGjzhjhSgVKCy0UpkiJ7YlBKSIthLw6znn0ZTykDrGZ5-S2PHd5c7fh9CpCozyjYYvjTDpUC5cRxjTdpgmTDPha5Hxp4R3vDegN0M2LM5xj8tq9zIlme3UOe8Ivbj3XAvFDgYNbCKsI7qK6uB-uLSG6p3rh9vq14pLLH1ExkXnWloVGFPkM3_V890iVW7mQmY0MzjdTdQvbzWvM3lqTSdxK_lcQHFc8lm20EbhgOJOvmK20YpOd9D6HCwhXIUzLNfxLnrJ6dJwmHFNj_HI4EoOmqzYnmm3AmjGc2VItqn3oWCPznnvsS1NyIHBIUDHMlW4P4VptZYPh4_voGUPDbpX_cueU5A0OAm4htSBaJZql0iIm1icKBGogMdaeNr4PPa4odQoZoRWWpHAaE2kMlz7babigGshyD6qpaNUHyAMrmRAE8MI5YoqQiV4R9JwCXt5W0mPNpBbTlSUFAjmlkjjOcoiGUKjH--1gc5mQ15z-I7_OjfL2Y-KL3kcWUg3arPzID4vJ7MS_6nscKneR2jNs8UyWXFbE9Umb1N9DN7OJD4pVvcXqI_yGw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHIADb8RgQA6cQB1d82h6nBBjsHUXNmmcqrZJJAR0iG0S8Otx-tjGeEg7Nk6stnZju3b8IXQmPS1dreBLIyy0KBe2JbSuWUwRpphwlUjxU_wOb_boXZ_183Pcw6LavUhJpjt1hjtCL-8d27RiB4MGNhH0iC6jFQohOKj1Sv3moTX9tWITAx-RYtHZBlYF1uT5zF_5fLdIUzdzLjOaGpzGJuoWt5rVmTxVx6OoGn_OdXFc8Fm20EbugOJ6pjHbaEklO2h9pi0hXPmTXq7DXfSSwaVhP8WaHuKBxlM6cDJkc6bdEGAYz5QhmaHmh4Q9OsO9x6Y0IWsMDgE6DhOJu2MQq7F82H98By57qNe47l41rRykwYrBNaQWRLNU2SSEuIlFsRSe9HikhKO0yyOHa0q1ZFooqSTxtFIklJort8Zk5HElBNlHpWSQqAOEwZX0aKwZoVxSSWgI3lGoeQh7eU2GDi0juxBUEOcdzA2QxnOQRjKEBj_eaxmdT5a8Zu07_ptcKaQf5F_yMDAt3ajJzgP5ohDmlPwns8OFZp-i1WbXbwft207rCK05pnAmLXSroNLobayOwfMZRSe5pn8BMSz1Cg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAc2BFl9YETKJDGS50jAkpZipAACU7BiW2pAkJFWwn4esZZKLuEOMZjW0k8zsxkxu8BrOvQ6ro1uNMoVx4T0vektTWPG8oNl3UjM_6U1qloXrKjK35V8Jx2y2r3MiWZn2lwKE1pb7ujbcFBwrbPA9_BsqNxQ_uIOsWGYYQ5aLsKjOwcXB8PfrP41FFJZLx0vqNYwTFFbvPbeT5ap4HL-SlLmhmfxiTclLed15zcbvV78Vby8gnR8R_PNQUThWNKdnJNmoYhk87A-Du4QrxqvWG8dmfhPqdRI62Mg7pLHiwZyHEmJ3Zn3Z0Am8m78iTX1HzW-O1-TtV9OyGuZCEHDMfAnahUk4s-LreziKTVfsJZ5uCysX-x2_QK8gYvQZeReRjlMuNThfEUjxMtQx2K2MjA2LqIA2EZs5pbabTRNLTGUKWtMPUa13EojJR0HirpQ2oWgKCLGbLEcsqEZpoyhV6TskLhN76mVcCq4JeLFiUFsrkj2LiLsgiHsujLe63CxtuQTg7r8Vvn5VITomKHdyMH9cZc1h7Fm-XCDsQ_Trb4p95rMHq214hODk-Pl2AscPU0Wf3bMlR6j32zgg5RL14tlP4V7Zv97g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modern+Methods+of+Mathematical+Modeling+of+the+Development+of+Hydrodynamic+Instabilities+and+Turbulent+Mixing&rft.jtitle=Mathematical+models+and+computer+simulations&rft.au=Tishkin%2C+V.+F.&rft.au=Gasilov%2C+V.+A.&rft.au=Zmitrenko%2C+N.+V.&rft.au=Kuchugov%2C+P.+A.&rft.date=2021-03-01&rft.issn=2070-0482&rft.eissn=2070-0490&rft.volume=13&rft.issue=2&rft.spage=311&rft.epage=327&rft_id=info:doi/10.1134%2FS2070048221020174&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S2070048221020174
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2070-0482&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2070-0482&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2070-0482&client=summon