Modern Methods of Mathematical Modeling of the Development of Hydrodynamic Instabilities and Turbulent Mixing
The study of the development of perturbations under the influence of various hydrodynamic instabilities, as well as the transition to turbulent mixing and turbulence, has been a subject of considerable interest over the past decades. This is primarily due to the importance of these phenomena in vari...
Saved in:
Published in | Mathematical models and computer simulations Vol. 13; no. 2; pp. 311 - 327 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.03.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The study of the development of perturbations under the influence of various hydrodynamic instabilities, as well as the transition to turbulent mixing and turbulence, has been a subject of considerable interest over the past decades. This is primarily due to the importance of these phenomena in various fields of science and engineering. In addition, it should be noted that studies of the characteristics of turbulent flows, for example, have still not been completed. This is inspiring a great deal of interest in this topic, both in the sense of physical theory and in the sense of developing new approaches to the mathematical modeling of the corresponding problems. The capabilities of modern computer technology make it possible to carry out numerical experiments in two-dimensional and three-dimensional setups and analyze the features of the new numerical methods. Presently, numerous methods with many modifications are used in practice. This review focuses on the most promising among them. |
---|---|
AbstractList | The study of the development of perturbations under the influence of various hydrodynamic instabilities, as well as the transition to turbulent mixing and turbulence, has been a subject of considerable interest over the past decades. This is primarily due to the importance of these phenomena in various fields of science and engineering. In addition, it should be noted that studies of the characteristics of turbulent flows, for example, have still not been completed. This is inspiring a great deal of interest in this topic, both in the sense of physical theory and in the sense of developing new approaches to the mathematical modeling of the corresponding problems. The capabilities of modern computer technology make it possible to carry out numerical experiments in two-dimensional and three-dimensional setups and analyze the features of the new numerical methods. Presently, numerous methods with many modifications are used in practice. This review focuses on the most promising among them. |
Author | Zmitrenko, N. V. Gasilov, V. A. Tishkin, V. F. Kuchugov, P. A. Ladonkina, M. E. Poveschenko, Y. A. |
Author_xml | – sequence: 1 givenname: V. F. surname: Tishkin fullname: Tishkin, V. F. email: v.f.tishkin@mail.ru organization: Keldysh Institute for Applied Mathematics, Russian Academy of Sciences – sequence: 2 givenname: V. A. surname: Gasilov fullname: Gasilov, V. A. organization: Keldysh Institute for Applied Mathematics, Russian Academy of Sciences – sequence: 3 givenname: N. V. surname: Zmitrenko fullname: Zmitrenko, N. V. organization: Keldysh Institute for Applied Mathematics, Russian Academy of Sciences – sequence: 4 givenname: P. A. surname: Kuchugov fullname: Kuchugov, P. A. organization: Keldysh Institute for Applied Mathematics, Russian Academy of Sciences – sequence: 5 givenname: M. E. surname: Ladonkina fullname: Ladonkina, M. E. organization: Keldysh Institute for Applied Mathematics, Russian Academy of Sciences – sequence: 6 givenname: Y. A. surname: Poveschenko fullname: Poveschenko, Y. A. organization: Keldysh Institute for Applied Mathematics, Russian Academy of Sciences |
BookMark | eNp9kMtOwzAQRS1UJErpB7CLxLrgR5o4S1QerdSIBWUdOfG4dZXYxXYR_XscFYEEAm_GunPP2HPP0cBYAwhdEnxNCEtvninOMU45pQRTTPL0BA17aYLTAg--7pyeobH3WxwPozlnfIi60kpwJikhbKz0iVVJKcIGOhF0I9qkb7farPtGlJM7eIPW7jowoZfmB-msPBjR6SZZGB9ErVsdNPhEGJms9q7et7231O9xygU6VaL1MP6sI_TycL-azSfLp8fF7HY5aSgj6YQwmgJmoiiyad1IXsgiq4FTUHlW00ylqZJTxUGCZIUCYEKqDHIylXWRAedshK6Oc3fOvu7Bh2pr987EJys6jfnQPq7oyo-uxlnvHaiq0SHubU1wQrcVwVUfb_Ur3kiSH-TO6U64w78MPTI-es0a3Pef_oY-AFVvjd0 |
CitedBy_id | crossref_primary_10_1134_S0965542523040085 crossref_primary_10_1134_S0965542522040030 crossref_primary_10_1134_S0015462823602590 crossref_primary_10_20948_mm_2024_04_05 |
Cites_doi | 10.1016/0021-9991(89)90226-X 10.1137/S003614450036757X 10.2514/6.2001-879 10.1016/0021-9991(79)90145-1 10.1134/S2070048219010101 10.1006/jcph.1996.0130 10.1016/j.jcp.2014.04.001 10.1134/S0965542508030111 10.1134/S207004821003004X 10.1142/9789814313193_0005 10.1201/9781482273991 10.1016/0041-5553(62)90062-9 10.1016/0021-9991(87)90031-3 10.1016/0021-9991(85)90183-4 10.1017/CBO9780511840531 10.1134/S0965542515010133 10.1134/S207004821404005X 10.1007/978-1-4612-2708-3_18 10.1137/0721016 10.1016/j.jcp.2007.02.023 10.4208/cicp.2009.09.055 10.1016/0021-9991(89)90222-2 10.1006/jcph.2000.6459 10.1098/rsta.2012.0217 10.1007/BFb0096353 10.1016/j.jcp.2007.05.011 10.1006/jcph.1993.1101 10.1007/BF01060030 10.1016/0041-5553(63)90351-3 10.1093/imanum/6.4.381 10.1134/S0361768817030082 10.1016/0021-9991(79)90051-2 10.1002/fld.4187 10.1016/0041-5553(90)90093-8 10.1134/S2070048210040034 10.1002/cpa.3160070112 10.1103/PhysRevE.97.013104 10.1080/10618569808940837 10.1016/j.jcp.2013.04.012 10.1016/j.apnum.2020.01.005 10.1007/978-3-642-55711-8_82 10.1016/j.jcp.2005.08.022 10.1016/j.compfluid.2017.09.004 10.1006/jcph.2002.7191 10.1006/jcph.1997.5745 10.1090/qam/11999 10.1016/j.jcp.2013.07.031 10.1016/0021-9991(91)90277-R 10.1016/0041-5553(88)90127-9 10.1137/0721001 10.2514/6.2015-0822 10.1002/nme.1620320403 10.1137/S0036142901384162 10.1016/S0377-0427(99)00156-9 10.1016/j.crme.2005.07.008 10.1016/j.jcp.2006.12.017 10.1006/jcph.2001.6853 10.1016/j.jcp.2016.04.030 10.1111/j.1365-246X.2007.03421.x 10.1051/m2an:2004024 10.2514/1.36541 10.1093/mnras/stt1890 10.2514/6.1991-1592 10.1007/978-3-642-48246-5 10.2514/1.28314 10.1016/j.jcp.2004.06.014 10.1007/978-3-662-03915-1 10.1098/rspa.2001.0926 10.20948/prepr-2016-136 10.1016/j.compfluid.2009.07.003 10.2514/6.1992-439 10.1063/1.1688328 10.1016/j.jcp.2004.10.028 10.4171/012-1/13 10.1016/0021-9991(74)90019-9 10.1007/BF02674128 10.1016/0041-5553(80)90283-9 10.1017/S002211207200268X 10.1006/jcph.2000.6679 10.1134/S0965542513020097 10.1016/j.jcp.2007.04.004 10.1016/0021-9991(88)90177-5 10.1016/0021-9991(75)90002-9 10.1134/S2070048217050064 10.1103/PhysRevE.91.043002 10.1006/jcph.1994.1187 10.1017/S0022112090002221 10.2514/3.12149 10.1006/jcph.1996.5632 10.1134/S0965542507120081 10.1016/j.jcp.2004.05.020 10.1016/j.apnum.2019.01.008 10.1002/fld.338 10.1016/j.proeng.2013.08.011 10.1007/BF02672918 10.2514/6.1985-483 10.1080/10618562.2017.1387251 10.1007/978-1-4419-7916-2 10.1016/0021-9991(84)90142-6 10.1063/1.4993464 10.1137/S0036142901389025 10.1002/fld.3950 10.1016/j.jcp.2009.06.041 10.2514/3.9724 10.1006/jcph.1998.5892 10.1016/j.ijheatmasstransfer.2009.11.035 10.1002/fld.1134 10.1016/0021-9991(77)90094-8 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 10.1016/0021-9991(84)90073-1 10.1016/j.jcp.2016.04.003 10.20948/prepr-2019-14 10.1137/S0036142997316712 10.1016/j.jcp.2009.07.007 10.1137/0724022 10.1016/0021-9991(84)90143-8 10.1006/jcph.1998.5970 10.1007/BF01330059 10.1023/A:1015126814947 10.2514/6.2009-1303 10.1146/annurev.fl.28.010196.000401 10.1016/0021-9991(91)90217-9 10.1016/0021-9991(89)90035-1 10.1016/S0010-4655(97)00083-0 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2021. ISSN 2070-0482, Mathematical Models and Computer Simulations, 2021, Vol. 13, No. 2, pp. 311–327. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2020, published in Matematicheskoe Modelirovanie, 2020, Vol. 32, No. 8, pp. 57–90. |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2021. ISSN 2070-0482, Mathematical Models and Computer Simulations, 2021, Vol. 13, No. 2, pp. 311–327. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2020, published in Matematicheskoe Modelirovanie, 2020, Vol. 32, No. 8, pp. 57–90. |
DBID | AAYXX CITATION |
DOI | 10.1134/S2070048221020174 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 2070-0490 |
EndPage | 327 |
ExternalDocumentID | 10_1134_S2070048221020174 |
GroupedDBID | -5D -5G -BR -EM -~C 06D 0R~ 0VY 1N0 29M 2JY 2KG 2VQ 2~H 30V 4.4 408 409 40D 40E 6NX 8TC 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AUKKA AXYYD BA0 BAPOH BGNMA CAG COF DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IZIGR I~X J-C J9A JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J OAM P9R PT4 QOS R89 RIG RLLFE ROL RSV S1Z S27 S3B SDH SHX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XU3 ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ |
ID | FETCH-LOGICAL-c2314-1324e03a9965bcd89d96be82ef76b26f44fd5f8eded39fee3adf6e715db96e883 |
IEDL.DBID | AGYKE |
ISSN | 2070-0482 |
IngestDate | Wed Aug 13 08:21:51 EDT 2025 Tue Jul 01 03:44:38 EDT 2025 Thu Apr 24 23:05:03 EDT 2025 Fri Feb 21 02:48:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | hydrodynamic instabilities mathematical modeling accurate numerical methods turbulent mixing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2314-1324e03a9965bcd89d96be82ef76b26f44fd5f8eded39fee3adf6e715db96e883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2517427004 |
PQPubID | 2044391 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2517427004 crossref_citationtrail_10_1134_S2070048221020174 crossref_primary_10_1134_S2070048221020174 springer_journals_10_1134_S2070048221020174 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210300 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210300 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: Heidelberg |
PublicationTitle | Mathematical models and computer simulations |
PublicationTitleAbbrev | Math Models Comput Simul |
PublicationYear | 2021 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | BoldarevA. S.GasilovV. A.OlkhovskayaO. G.On the solution of hyperbolic equations using unstructured gridsMat. Model.19968517813994550981.65506 ShuC.-W.High order WENO and DG methods for time-dependent convection-dominated PDEs: A brief survey of several recent developmentsJ. Comput. Phys.201631659861334943711349.6548610.1016/j.jcp.2016.04.030 VlasenkoV. V.VolkovA. V.TroshinA. I.“Choice of an approximation method for viscous terms in the Galerkin method with discontinuous basis functions,” Uch. ZapTsAGI2013XLIV1840 OstapenkoV. V.On monotonicity of difference schemesSib. Math. J.199839959972165068910.1007/BF02672918 FedorenkoR. P.The application of difference schemes of high accuracy to the numerical solution of hyperbolic equationsUSSR Comput. Math. Math. Phys.19632135513650139.1080310.1016/0041-5553(63)90351-3 DiyankovO. V.GlazyrinI. V.KoshelevS. V.MAG – two-dimensional resistive MHD code using an arbitrary moving coordinate systemComput. Phys. Commun.199710676940976.7652410.1016/S0010-4655(97)00083-0 BalbásJ.TadmorE.WuC.-C.Non-oscillatory central schemes for one- and two-dimensional MHD equations: IJ. Comput. Phys.200420126128520988581195.7630410.1016/j.jcp.2004.05.020 M. Strelets, “Detached Eddy Simulation of massively separated flows,” in 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, January 8−11,2001, AIAA Paper 2001−879. https://doi.org/10.2514/6.2001-879 VolkovA. V.LyapunovC. V.“Monotonization of a finite element method in problems of gas dynamics,” Uch. ZapTsAGI2009XL1527 ChetverushkinB. N.Kinetically Consistent Schemes in Gas Dynamics1999MoscowIzd. Mosk. Gos. Univ.1189.76359 KleinR. I.Star formation with 3-D adaptive mesh refinement: The collapse and fragmentation of molecular cloudsJ. Comput. Appl. Math.201110912315210.1016/S0377-0427(99)00156-90946.76059 LutskyA. E.PlenkinA. V.“Numerical simulation of shock waves interaction with boundary layers on adaptive grids,” KIAM Preprint No. 1362016MoscowKeldysh Inst. Appl. Math. RAS10.20948/prepr-2016-136 DimonteG.YoungsD. L.DimitsA.A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: The Alpha-group collaborationPhys. Fluids200416166816931186.7614310.1063/1.1688328 LadonkinaM. E.NeklyudovaO. A.TishkinV. F.Application of the RKDG method for gas dynamics problemsMath. Models Comput. Simul.2014639740733707971313.7609010.1134/S207004821404005X van LeerB.Towards the ultimate conservative difference schemes. III. Upstream-centered finite-difference schemes for ideal compressible flowJ. Comput. Phys.1977232632750339.7603910.1016/0021-9991(77)90094-8 ShuC.-W.OsherS.Efficient implementation of essentially non-oscillatory shock-capturing schemesJ. Comput. Phys.1988774394719549150653.6507210.1016/0021-9991(88)90177-5 OsherS.Riemann solvers, the entropy condition, and difference approximationSIAM J. Numer. Anal.1984212172357363270592.6506910.1137/0721016 W. H. Reed and T. R. Hill, “Triangular mesh methods for the neutron transport equation,” Report LA-UR-73-479, Los Alamos Scientific Laboratory, University of California, Los Alamos, NM, USA, 1973. doi: https://www. osti.gov/servlets/purl/4491151 E. Tadmor and J. Tanner, “An adaptive order Godunov type central scheme,” in Hyperbolic Problems: Theory, Numerics, Applications, Proc. 9th Int. Conf. on Hyperbolic Problems, CalTech, Pasadena, March 2002, Ed. by T. Y. Hou and E. Tadmor (Springer, Berlin, Heidelberg, 2003), pp. 871−880. RodionovA. V.“On the use of Boussinesq approximation in turbulent supersonic jet modeling,” IntJ. Heat Mass Transp.2010538899011183.8005410.1016/j.ijheatmasstransfer.2009.11.035 Proc. ECCOMAS Thematic Conference: European Workshop on High Order Nonlinear Numerical Methods for Evolutionary PDEs: Theory and Applications (HONOM 2017), Stuttgart, Germany, March 27−31, 2017. IserlesA.Generalized leapfrog methodsIMA J. Numer. Anal.198663813929682650637.6508910.1093/imanum/6.4.381 GottliebS.ShuC.-W.TadmorE.Strong stability-preserving high-order time discretization methodsSIAM Rev.2001438911218546470967.6509810.1137/S003614450036757X P. R. Spalart and S. R. Allmaras, “A one-equation turbulence model for aerodynamics flows,” in 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, January 6−9,1992, AIAA Paper 92-439. https://doi.org/10.2514/6.1992-439 ShuC.-W.OsherS.Efficient implementation of essentially non-oscillatory shock-capturing schemes, IIJ. Comput. Phys.198983327810101620674.6506110.1016/0021-9991(89)90222-2 SmagorinskyJ.General circulation experiments with the primitive equations. I. The basic experimentMon. Weather Rev.1963919916410.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 LadonkinaM. E.NeklyudovaO. A.TishkinV. F.Constructing a limiter based on averaging the solutions for the discontinuous Galerkin methodMath. Models Comput. Simul.2019116173384931710.1134/S2070048219010101 KhattriS. K.Grid generation and adaptation by functionalsComput. Appl. Math.20072623524923377101182.65185 KurganovA.TadmorE.New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equationsJ. Comput. Phys.200016024128217567660987.6508510.1006/jcph.2000.6459 ColellaP.WoodwardP. R.The piecewise parabolic method (PPM) for gas-dynamical simulationsJ. Comput. Phys.1984541742010531.7608210.1016/0021-9991(84)90143-8 HawkenD. F.GottliebJ. J.HansenJ. S.Review of some adaptive node-movement techniques in finite-element and finite-difference solutions of partial differential equationsJ. Comput. Phys.19919525430211178440733.6505710.1016/0021-9991(91)90277-R VolkovK. N.EmelyanovV. N.Simulation of Large Vortices in Calculations of Turbulent Flows2008MoscowFizmatlit SamarskiiA. A.TishkinV. F.FavorskiiA. P.ShashkovM. Yu.Operator difference schemesDiffer. Uravn.19811713171327625569 GolovizninV. M.SamarskiiA. A.Finite difference approximation of convective transport with spatial splitting of the time derivativeMat. Model.1998108610017587791189.76364 DumbserM.KäserM.de la PuenteJ.Arbitrary high-order finite volume schemes for seismic wave propagation on unstructured meshes in 2D and 3DGeophys. J. Int.200717166569410.1111/j.1365-246X.2007.03421.x ToroE. F.Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction1999Berlin, HeidelbergSpringer0923.7600410.1007/978-3-662-03915-1 R. H. Cohen and A. A. Mirin, “ASCI turbulence and instability modeling using the piecewise parabolic method,” Report UCRL-TB-125580, Rev. 4, Lawrence Livermore National Laboratory, 1999. KlöcknerA.WarburtonT.BridgeJ.HesthavenJ. S.Nodal discontinuous Galerkin methods on graphics processorsJ. Comput. Phys.20092287863788225733361175.6511110.1016/j.jcp.2009.06.041 HartenA.OsherS.Uniformly high-order accurate nonoscillatory schemes. ISIAM J. Numer. Anal.1987272793098813650627.6510210.1137/0724022 ChouP. Y.On velocity correlations and the solutions of the equations of turbulent fluctuationsQ. Appl. Math.194533854119990061.4530210.1090/qam/11999 R.B. Christensen, “Godunov methods on a staggered mesh an improved artificial viscosity,” Report UCRL-JC-105269, Lawrence Livermore National Laboratory, 1991. DumbserM.KäserM.TitarevV. A.ToroE. F.Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systemsJ. Comput. Phys.200722620424323563571124.6507410.1016/j.jcp.2007.04.004 NastaseC. R.MavriplisD. J.High-order discontinuous Galerkin methods using an hp-multigrid approachJ. Comput. Phys.20062133303571089.6510010.1016/j.jcp.2005.08.022 MignoneA.High-order conservative reconstruction schemes for finite volume methods in cylindrical and spherical coordinatesJ. Comput. Phys.201427078481432094121349.7636410.1016/j.jcp.2014.04.001 ChoiH.LiuJ.-G.The reconstruction of upwind fluxes for conservation laws: Its behavior in dynamic and steady state calculationsJ. Comput. Phys.198814423725616380870935.7604810.1006/jcph.1998.5970 MoczP.VogelsbergerM.SijackiD.A discontinuous Galerkin method for solving the fluid and magnetohydrodynamic equations in astrophysical simulationsMon. Not. R. Astron. Soc.201443739741410.1093/mnras/stt1890 YeeH. C.WarmingR. F.HartenA.Implicit total variation diminishing (TVD) schemes for steady-state calculationsJ. Comput. Phys.1985573273607829860631.7608710.1016/0021-9991(85)90183-4 HartenA.On a class of high resolution total-variation-stable finite-difference schemesSIAM. J. Numer. Anal.1984211237312100547.6506210.1137/0721001 Dar’inN. A.MazhukinV. I.SamarskiiA. A.A finite-difference method for solving the equations of gas dynamics using adaptive nets which are dynamically associated with the solutionUSSR Comput. Math. Math. Phys.1988281641740850.7643710.1016/0041-5553(88)90127-9 PopovM. V.UstyugovS. D.Piecewise parabolic method on a local stencil for ideal magnetohydrodynamicsComput. Math. Math. Phys.20084847749924265031201.7615110.1134/S0965542508030111 ToroE. F.TitarevV. A.ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensionsJ. Comput. Phys.200520219621521028821061.6510310.1016/j.jcp.2004.06.014 PopovM. V.UstyugovS. D.Piecewise parabolic method on local stencil for gasdynamic simulationsComput. Math. Math. Phys.20074719701989239496410.1134/S0965542507120081 KrasnovM. M.KuchugovP. A.LadonkinaM. E.TishkinV. F.Discontinuous Galerkin method on three-dimensional tetrahedral grids: Using the operator programming methodMath. Models Comput. Simul.2017952954336387761374.7610110.1134/S2070048217050064 [Electronic Source] http://www.astro.virginia.edu/VITA/ATHENA/bow-shock.html (Accessed March 1, 2015). RogovB. V.High-order accurate monotone compact running scheme for multidimensional hyperbolic equationsComput. Math. Math. Phys.20135320521432490261274.6523910.1134/S0965542513020097 T. Haga and K. Sawada, “An improved slope limiter for high-order spectral volume methods solving the 3D compressible Euler equations” (2009). ZalesakS. T.Fully multidimensional flux-corrected transport algorithms for fluidsJ. Comput. Phys.1979313353625347860416.7600210.1016/0021-9991(79)90051-2 A. K V. M. Goloviznin (4223_CR29) 1998; 10 O. V. Diyankov (4223_CR151) 1997; 106 M. Dumbser (4223_CR74) 2005; 333 V. V. Ostapenko (4223_CR39) 1998; 38 M. E. Ladonkina (4223_CR124) 2019; 11 I. Abalakin (4223_CR77) 2016; 81 G. Beckett (4223_CR155) 2001; 167 F. R. Menter (4223_CR10) 1994; 32 J. Balbás (4223_CR84) 2004; 201 G. Dimonte (4223_CR170) 2004; 16 A. Harten (4223_CR53) 1989; 83 S. Osher (4223_CR51) 1984; 21 A. V. Volkov (4223_CR105) 2009; XL K. N. Volkov (4223_CR20) 2008 M. Dumbser (4223_CR121) 2010; 39 S. B. Pope (4223_CR17) 2000 M. M. Krasnov (4223_CR113) 2017; 43 V. P. Kolgan (4223_CR41) 1972; 3 I. V. Popov (4223_CR145) 2010; 2 B. Cockburn (4223_CR126) 1998; 35 4223_CR36 4223_CR34 4223_CR35 V. V. Ostapenko (4223_CR38) 1998; 39 B. V. Rogov (4223_CR33) 2019; 139 H. Luo (4223_CR119) 2007; 225 4223_CR101 P. Mocz (4223_CR141) 2014; 437 R. I. Klein (4223_CR161) 2011; 109 C.-W. Shu (4223_CR118) 2016; 316 A. Harten (4223_CR54) 1987; 24 O. Antepara (4223_CR167) 2013; 61 J. Smagorinsky (4223_CR15) 1963; 91 4223_CR103 4223_CR102 N. A. Dar’in (4223_CR154) 1988; 28 D. N. Arnold (4223_CR109) 2002; 39 A. Harten (4223_CR48) 1987; 27 A. E. Lutsky (4223_CR163) 2016 G.-S. Jiang (4223_CR62) 1996; 126 J. Zhu (4223_CR120) 2013; 248 Yu. A. Poveshchenko (4223_CR152) 2019 M. E. Ladonkina (4223_CR114) 2014; 6 R. J. Spiteri (4223_CR129) 2002; 40 P. Woodward (4223_CR89) 1984; 54 4223_CR69 J. F. Dannenhoffer (4223_CR159) 1991; 32 B. N. Chetverushkin (4223_CR1) 2003 A. Jameson (4223_CR135) 1987; 25 V. Dolejší (4223_CR133) 2008; 4 M. Dubiner (4223_CR75) 1991; 6 M. E. Ladonkina (4223_CR67) 2010; 2 4223_CR116 V. V. Vlasenko (4223_CR127) 2013; XLIV 4223_CR66 M. V. Popov (4223_CR96) 2007; 47 F. Bassi (4223_CR108) 2002; 40 M. Dumbser (4223_CR63) 2007; 171 A. L. Afendikov (4223_CR164) 2015 B. van Leer (4223_CR43) 1977; 23 R. P. Fedorenko (4223_CR40) 1963; 2 B. E. Morgan (4223_CR11) 2015; 91 P. Colella (4223_CR92) 1990; 213 A. A. Samarskii (4223_CR26) 1981; 17 4223_CR122 M. M. Krasnov (4223_CR139) 2015; 27 S. K. Khattri (4223_CR162) 2007; 26 4223_CR125 A. Kurganov (4223_CR83) 2000; 160 A. Mignone (4223_CR25) 2014; 270 P. Bakhvalov (4223_CR78) 2017; 157 A. Iserles (4223_CR28) 1986; 6 B. N. Chetverushkin (4223_CR147) 1999 T. B. Gatski (4223_CR3) 2009 K. V. Vyaznikov (4223_CR57) 1989; 1 D. F. Hawken (4223_CR158) 1991; 95 A. I. Zhmakin (4223_CR47) 1980; 20 B. van Leer (4223_CR44) 1979; 32 A. Harten (4223_CR58) 1997; 131 A. Suresh (4223_CR99) 1997; 136 K. Hanjalic (4223_CR9) 1972; 52 R. Hartmann (4223_CR132) 2006; 3 P. Y. Chou (4223_CR13) 1945; 3 P. Colella (4223_CR90) 1984; 54 R. Hartmann (4223_CR131) 2006; 51 M. Dumbser (4223_CR64) 2005 B. V. Rogov (4223_CR31) 2013; 53 B. Cockburn (4223_CR104) 1998; 141 H. C. Yee (4223_CR52) 1985; 57 M. Lesieur (4223_CR16) 1996; 28 (4223_CR22) 2010 D. L. Book (4223_CR45) 1975; 18 4223_CR137 4223_CR86 M. M. Krasnov (4223_CR111) 2017; 815 S. D. Ustyugov (4223_CR98) 2009; 228 M. M. Krasnov (4223_CR112) 2017; 9 4223_CR80 P. Arminjon (4223_CR143) 1993; 106 E. F. Toro (4223_CR68) 1999 4223_CR2 M. M. Krasnov (4223_CR140) 2015; 55 M. J. Berger (4223_CR160) 1984; 53 W. J. Rider (4223_CR100) 2007; 225 J. Chan (4223_CR138) 2015; 318 4223_CR5 4223_CR7 4223_CR79 V. V. Rusanov (4223_CR82) 1962; 1 4223_CR150 M. V. Popov (4223_CR97) 2008; 48 C.-W. Shu (4223_CR60) 1989; 83 K. Yasue (4223_CR134) 2010; 7 4223_CR144 4223_CR149 A. V. Volkov (4223_CR123) 2009; XL 4223_CR146 V. A. Titarev (4223_CR70) 2002; 17 G. Li (4223_CR168) 2017; 31 S. Gottlieb (4223_CR128) 2001; 43 V. M. Goloviznin (4223_CR30) 2005; 403 S. T. Zalesak (4223_CR46) 1979; 31 4223_CR24 C. R. Nastase (4223_CR106) 2006; 213 S. Karni (4223_CR88) 2004; 38 J. Rotta (4223_CR14) 1951; 129 4223_CR27 S. M. Bosnyakov (4223_CR110) 2018; 30 4223_CR156 B. van Leer (4223_CR42) 1974; 14 P. Arminjon (4223_CR87) 1998; 9 4223_CR153 4223_CR21 L. Krivodonova (4223_CR117) 2007; 226 C.-W. Shu (4223_CR59) 1988; 77 K. Yasue (4223_CR115) 2010; 7 4223_CR157 A. S. Boldarev (4223_CR148) 1996; 8 H. Luo (4223_CR107) 2008; 46 D. C. Wilcox (4223_CR8) 2008; 46 M. Dumbser (4223_CR65) 2005; 333 D.-K. Mao (4223_CR55) 1991; 92 X.-D. Liu (4223_CR61) 1994; 115 P. D. Lax (4223_CR81) 1954; 7 M. J. Berger (4223_CR93) 1989; 82 M. Dumbser (4223_CR73) 2005 B. E. Morgan (4223_CR12) 2018; 97 A. V. Rodionov (4223_CR6) 2010; 53 4223_CR18 4223_CR19 A. Harten (4223_CR50) 1984; 21 E. F. Toro (4223_CR72) 2005; 202 4223_CR94 B. Thornber (4223_CR169) 2017; 29 4223_CR166 4223_CR165 V. V. Ostapenko (4223_CR37) 1998; 39 A. Harten (4223_CR49) 1987; 71 W. J. Rider (4223_CR95) 2014; 76 S. M. Bakhrakh (4223_CR23) 1981; 257 A. Klöckner (4223_CR136) 2009; 228 M. D. Bragin (4223_CR32) 2020; 151 D. C. Wilcox (4223_CR4) 2006 4223_CR91 H. Choi (4223_CR56) 1988; 144 M. Dumbser (4223_CR76) 2007; 226 M. M. Basko (4223_CR142) 1990; 30 V. A. Titarev (4223_CR71) 2005; 204 J. Qiu (4223_CR85) 2002; 183 P. Rasetarinera (4223_CR130) 2001; 172 |
References_xml | – reference: VolkovK. N.EmelyanovV. N.Simulation of Large Vortices in Calculations of Turbulent Flows2008MoscowFizmatlit – reference: R. H. Cohen and A. A. Mirin, “ASCI turbulence and instability modeling using the piecewise parabolic method,” Report UCRL-TB-125580, Rev. 4, Lawrence Livermore National Laboratory, 1999. – reference: DannenhofferJ. F.A comparison of adaptive-grid redistribution and embedding for steady transonic flowsInt. J. Numer. Methods Eng.1991326536630825.7652810.1002/nme.1620320403 – reference: ToroE. F.TitarevV. A.ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensionsJ. Comput. Phys.200520219621521028821061.6510310.1016/j.jcp.2004.06.014 – reference: LutskyA. E.PlenkinA. V.“Numerical simulation of shock waves interaction with boundary layers on adaptive grids,” KIAM Preprint No. 1362016MoscowKeldysh Inst. Appl. Math. RAS10.20948/prepr-2016-136 – reference: DumbserM.KäserM.TitarevV. A.ToroE. F.Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systemsJ. Comput. Phys.200722620424323563571124.6507410.1016/j.jcp.2007.04.004 – reference: RottaJ.Statistische Theorie nichthomogener TurbulenzZ. Physik1951129547572455230042.4330410.1007/BF01330059 – reference: KarniS.KirrE.KurganovA.PetrovaG.Compressible two-phase flows by central and upwind schemesESIAM: Math. Modell. Numer. Anal.20043847749320757561079.7604510.1051/m2an:2004024 – reference: BalbásJ.TadmorE.WuC.-C.Non-oscillatory central schemes for one- and two-dimensional MHD equations: IJ. Comput. Phys.200420126128520988581195.7630410.1016/j.jcp.2004.05.020 – reference: BraginM. D.RogovB. V.Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equationsAppl. Numer. Math.202015122924540523281434.6517610.1016/j.apnum.2020.01.005 – reference: BakhvalovP.KozubskayaT.EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshesComp. Fluids201715731232437066871390.7655010.1016/j.compfluid.2017.09.004 – reference: AfendikovA. L.DavydovA. A.“Algorithm for multilevel mesh adaptation with wavelet-based criteria for gas dynamic problems,” KIAM Preprint No. 972015MoscowKeldysh Inst. Appl. Math. RAS – reference: AbalakinI.BakhvalovP.KozubskayaT.Edge-based reconstruction schemes for unstructured tetrahedral meshesInt. J. Numer. Methods Fluids201681331356350515510.1002/fld.4187 – reference: DiyankovO. V.GlazyrinI. V.KoshelevS. V.MAG – two-dimensional resistive MHD code using an arbitrary moving coordinate systemComput. Phys. Commun.199710676940976.7652410.1016/S0010-4655(97)00083-0 – reference: W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Section 10.1.2. Lax Method,” Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge Univ. Press, Cambridge, 2007). – reference: HartenA.OsherS.Uniformly high-order accurate nonoscillatory schemes. ISIAM J. Numer. Anal.1987272793098813650627.6510210.1137/0724022 – reference: BosnyakovS. M.MikhailovS. V.PodaruevV. Yu.TroshinA.I.Unsteady high-order accurate discontinuous Galerkin method for turbulent flow modelingMat. Model.20183037563799877 – reference: MorganB. E.SchillingO.HartlandT. A.Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixingPhys. Rev. E20189701310410.1103/PhysRevE.97.013104 – reference: P. J. Roache, Computational Fluid Dynamics (Hermosa, Albuquerque, NM, 1976; Mir, Moscow, 1980). – reference: T. Haga and K. Sawada, “An improved slope limiter for high-order spectral volume methods solving the 3D compressible Euler equations” (2009). – reference: ThornberB.GriffondJ.PoujadeO.Late-time growth rate, mixing, and anisotropy in multimode narrowband Richtmyer-Meshkov instability: The θ–group collaborationPhys. Fluids20172910510710.1063/1.4993464 – reference: HartenA.EngquistB.OsherS.ChakravarthyS. R.Uniformly high order accuracy essentially non-oscillatory schemes, IIIJ. Comput. Phys.1987712313038972440652.6506710.1016/0021-9991(87)90031-3 – reference: ChetverushkinB. N.TishkinV. F.Mathematical Modeling: Problems and Results2003MoscowNauka – reference: TitarevV. A.ToroE. F.ADER schemes for three-dimensional non-linear hyperbolic systemsJ. Comput. Phys.200520471573621318591060.6564110.1016/j.jcp.2004.10.028 – reference: YasueK.FurudateM.OhnishiN.SawadaK.Implicit discontinuous Galerkin method for RANS simulation utilizing pointwise relaxation algorithmCommun. Comput. Phys.2010751053326729551364.7610110.4208/cicp.2009.09.055 – reference: P. R. Spalart and S. R. Allmaras, “A one-equation turbulence model for aerodynamics flows,” in 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, January 6−9,1992, AIAA Paper 92-439. https://doi.org/10.2514/6.1992-439 – reference: ChanJ.WangZ.ModaveA.GPU-accelerated discontinuous Galerkin methods on hybrid meshesJ. Comput. Phys.201531814216835039921349.6544310.1016/j.jcp.2016.04.003 – reference: E. F. Toro and V. A. Titarev, “Solution of the generalized Riemann problem for advection-reaction equations,” Proc. R. Soc. Lond. A 458 (2018), 271−281 (2002). – reference: MoczP.VogelsbergerM.SijackiD.A discontinuous Galerkin method for solving the fluid and magnetohydrodynamic equations in astrophysical simulationsMon. Not. R. Astron. Soc.201443739741410.1093/mnras/stt1890 – reference: Yu. V. Yanilkin, V. P. Statsenko, and V. I. Kozlov, Mathematical Modeling of Turbulent Mixing in Compressible Media (RFYaTs–VNIITF, Sarov, 2009) [in Russian]. – reference: P. R. Spalart, W.-H. Jou, M. Stretlets, and S. R. Allmaras, “Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach,” in Advances in DNS/LES, Proc. First AFOSR Int. Conf. on DNS/LES, Ruston, LA, USA, August 4−8,1997, pp. 137−147. – reference: ColellaP.WoodwardP. R.The piecewise parabolic method (PPM) for gas-dynamical simulationsJ. Comput. Phys.1984541742010531.7608210.1016/0021-9991(84)90143-8 – reference: RogovB. V.Dispersive and dissipative properties of the fully discrete bicompact schemes of the fourth order of spatial approximation for hyperbolic equationsAppl. Numer. Math.201913913615539131821416.6528110.1016/j.apnum.2019.01.008 – reference: S. R. Kennon and G. S. Dulikravich, “A posteriori optimization of computational grid,” in 23rd Aerospace Sciences Meeting, Reno, NV, USA, January 14−17,1985, AIAA-85-483. https://doi.org/10.2514/6.1985-483 – reference: F. F. Grinstein, A. A. Gowardhan, and J. R. Ristorcelli, “Implicit large eddy simulation of shock-driven material mixing,” Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 371 (2003), 20120217 (2013). – reference: S. K. Godunov, “A difference method for numerical computation of discontinuous solutions of the equations of hydrodynamics,” Mat. Sb. 47 (89) (3), 271−306 (1959). – reference: FedorenkoR. P.The application of difference schemes of high accuracy to the numerical solution of hyperbolic equationsUSSR Comput. Math. Math. Phys.19632135513650139.1080310.1016/0041-5553(63)90351-3 – reference: ZhmakinA. I.FursenkoA. A.On a monotonic shock-capturing difference schemeUSSR Comput. Math. Math. Phys.19802021822710.1016/0041-5553(80)90283-9 – reference: DumbserM.Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier–Stokes equationsComput. Fluids201039607626008091242.7616110.1016/j.compfluid.2009.07.003 – reference: BookD. L.BorisJ. P.HainK.Flux-corrected transport II: Generalization of the methodJ. Comput. Phys.1975182482830306.7600410.1016/0021-9991(75)90002-9 – reference: W. Huang and R. D. Russell, Adaptive Moving Mesh Methods, Applied Mathematical Sciences, Vol. 174 (Springer, New York, 2011). – reference: BakhrakhS. M.GlagolevaYu. P.SamigulinM. S.Calculation of gas dynamic flows using the method of concentrationsDokl. Akad. Nauk SSSR1981257566569 – reference: RasetarineraP.HussainiM. Y.An efficient implicit discontinuous spectral Galerkin methodJ. Comput. Phys.20011727187380986.6509310.1006/jcph.2001.6853 – reference: BassiF.RebayS.Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equationsInt. J. Numer. Methods. Fluids2002401972071058.7657010.1002/fld.338 – reference: PopovI. V.FryazinovI. V.Adaptive artificial viscosity for multidimensional gas dynamics for Euler variables in Cartesian coordinatesMath. Models Comput. Simul.2010242944226680321201.7603010.1134/S2070048210040034 – reference: PopovM. V.UstyugovS. D.Piecewise parabolic method on local stencil for gasdynamic simulationsComput. Math. Math. Phys.20074719701989239496410.1134/S0965542507120081 – reference: KrivodonovaL.Limiters for high-order discontinuous Galerkin methodsJ. Comput. Phys.200722687989623568621125.6509110.1016/j.jcp.2007.05.011 – reference: VyaznikovK. V.TishkinV. F.FavorskiiA. P.Construction of monotone high resolution difference schemes for hyperbolic systemsMat. Model.198919512010088670972.76521 – reference: HartenA.ENO schemes with subset resolutionJ. Comput. Phys.19898314818410101630696.6507810.1016/0021-9991(89)90226-X – reference: LesieurM.MetaisO.New trends in large-eddy simulations of turbulenceAnnu. Rev. Fluid. Mech.1996284582137116210.1146/annurev.fl.28.010196.000401 – reference: GrinsteinF. F.MargolinL. G.RiderW. J.Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics2010CambridgeCambridge Univ. Press – reference: PoveshchenkoYu. A.LadonkinaM. E.PodrygaV. O.“On a two-layer completely conservative difference scheme of gas dynamics in Eulerian variables with adaptive regularization of solution,” KIAM Preprint No. 142019MoscowKeldysh Inst. Appl. Math. RAS10.20948/prepr-2019-14 – reference: R.B. Christensen, “Godunov methods on a staggered mesh an improved artificial viscosity,” Report UCRL-JC-105269, Lawrence Livermore National Laboratory, 1991. – reference: RogovB. V.High-order accurate monotone compact running scheme for multidimensional hyperbolic equationsComput. Math. Math. Phys.20135320521432490261274.6523910.1134/S0965542513020097 – reference: ArnoldD. N.BrezziF.CockburnB.MariniL. D.Unified analysis of discontinuous Galerkin methods for elliptic problemsSIAM J. Numer. Anal.2002391749177918857151008.6508010.1137/S0036142901384162 – reference: KleinR. I.Star formation with 3-D adaptive mesh refinement: The collapse and fragmentation of molecular cloudsJ. Comput. Appl. Math.201110912315210.1016/S0377-0427(99)00156-90946.76059 – reference: M. Strelets, “Detached Eddy Simulation of massively separated flows,” in 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, January 8−11,2001, AIAA Paper 2001−879. https://doi.org/10.2514/6.2001-879 – reference: WilcoxD. C.Formulation of the k-ω turbulence model revisitedAIAA J.2008462823283810.2514/1.36541 – reference: HartmannR.HoustonP.Symmetric interior penalty DG methods for the compressible Navier-Stokes equations I: Method formulationInt. J. Numer. Anal. Model.2006312022085621129.76030 – reference: SmagorinskyJ.General circulation experiments with the primitive equations. I. The basic experimentMon. Weather Rev.1963919916410.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 – reference: JiangG.-S.ShuC.-W.Efficient implementation of weighted ENO schemesJ. Comput. Phys.199612620222813916270877.6506510.1006/jcph.1996.0130 – reference: BeckettG.MackenzieJ. A.RamageA.SloanD. M.On the numerical solution of one-dimensional PDEs using adaptive methods based on equidistributionJ. Comput. Phys.20011673723920985.6509710.1006/jcph.2000.6679 – reference: LiG.FuX.WangF.High-resolution multi-code implementation of unsteady Navier–Stokes flow solver based on paralleled overset adaptive mesh refinement and high-order low-dissipation hybrid schemesInt. J. Comput. Fluid Dyn.201731379395373530610.1080/10618562.2017.1387251 – reference: Proc. ECCOMAS Thematic Conference: European Workshop on High Order Nonlinear Numerical Methods for Evolutionary PDEs: Theory and Applications (HONOM 2017), Stuttgart, Germany, March 27−31, 2017. – reference: ArminjonP.DervieuxA.“Construction of TVD-like artificial viscosities on two-dimensional arbitrary FEM grids,” INRIA Research Report RR-1111, 1989J. Comput. Phys.199310617619812140180771.6506210.1006/jcph.1993.1101 – reference: DumbserM.Arbitrary High Order Schemes for the Solution of Hyperbolic Conservation Laws in Complex Domains2005AachenShaker Verlag – reference: KurganovA.TadmorE.New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equationsJ. Comput. Phys.200016024128217567660987.6508510.1006/jcph.2000.6459 – reference: SureshA.HuynhH. T.Accurate monotonicity-preserving schemes with Runge–Kutta time steppingJ. Comput. Phys.1997136839914686250886.6509910.1006/jcph.1997.5745 – reference: ShuC.-W.High order WENO and DG methods for time-dependent convection-dominated PDEs: A brief survey of several recent developmentsJ. Comput. Phys.201631659861334943711349.6548610.1016/j.jcp.2016.04.030 – reference: DolejšíV.Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flowsCommun. Comput. Phys.2008423127424409461364.76085 – reference: KolganV. P.“Application of the principle of minimum values of the derivative to the construction of finite-difference schemes for calculating discontinuous solutions of gas dynamics,” Uch. ZapTsAGI197236877 – reference: RiderW. J.Reconsidering remap methodsInt. J. Numer. Methods Fluids201476587610326841510.1002/fld.3950 – reference: A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Problems of the Numerical Solution of Hyperbolic Systems of Equations (Fizmatlit, Moscow, 2001) [in Russian]; English translation: Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Chapman & Hall/CRC, Boca Raton, FL, 2001). – reference: UstyugovS. D.PopovM. V.KritsukA. G.NormanM. L.Piecewise parabolic method on a local stencil for magnetized supersonic turbulence simulationJ. Comput. Phys.20092287614763325618341391.7658310.1016/j.jcp.2009.07.007 – reference: ZhuJ.ZhongX.ShuC.-W.QiuJ.Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshesJ. Comput. Phys.201324820022030661491349.6550110.1016/j.jcp.2013.04.012 – reference: ShuC.-W.OsherS.Efficient implementation of essentially non-oscillatory shock-capturing schemesJ. Comput. Phys.1988774394719549150653.6507210.1016/0021-9991(88)90177-5 – reference: LaxP. D.Weak solutions of nonlinear hyperbolic equations and their numerical computationComm. Pure Appl. Math.19547159193660400055.1940410.1002/cpa.3160070112 – reference: KrasnovM. M.KuchugovP. A.LadonkinaM. E.Numerical solution of the Navier-Stokes equations by discontinuous Galerkin methodJ. Phys.: Conf. Ser.2017815012015 – reference: VolkovA. V.LyapunovC. V.“Monotonization of a finite element method in problems of gas dynamics,” Uch. ZapTsAGI2009XL1527 – reference: [Electronic Source] http://www.astro.virginia.edu/VITA/ATHENA/bow-shock.html (Accessed March 1, 2015). – reference: S. M. Bakhrakh and V. F. Spiridonov, “Method of concentrations for computing nonstationary flows of continuum,” Vopr. At. Nauki Tekh., Ser. Mat. Model. Fiz. Prots., No. 4, 32−36 (1999). – reference: V. F. Kuropatenko, “A method of constructing difference schemes for the numerical integration of the equations of gas dynamics,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 3, 75−83 (1962). – reference: J. Lou, Y. Xia, L. Luo, H. Luo, J. R. Edwards, and F. Mueller, “OpenACC-based GPU acceleration of a p-multigrid discontinuous Galerkin method for compressible flows on 3D unstructured grids,” in 53rd AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, Kissimmee, FL, January 5−9,2015, AIAA 2015-0822, pp. 1–12. – reference: OstapenkoV. V.On strong monotonicity of three-point difference schemesSib. Math. J.19983911741183167265710.1007/BF02674128 – reference: RiderW. J.GreenoughJ. A.KammJ. R.Accurate monotonicity- and extrema-preserving methods through adaptive nonlinear hybridizationsJ. Comput. Phys.20072251827184823492051343.7603610.1016/j.jcp.2007.02.023 – reference: KrasnovM. M.Parallel algorithm for computing points on a computation front hyperplaneComput. Math. Math. Phys.2015551401471318.6501310.1134/S0965542515010133 – reference: HartenA.On a class of high resolution total-variation-stable finite-difference schemesSIAM. J. Numer. Anal.1984211237312100547.6506210.1137/0721001 – reference: SpiteriR. J.RuuthS. J.A new class of optimal high-order strong-stability-preserving time discretization methodsSIAM J. Numer. Anal.20024046949119216661020.6506410.1137/S0036142901389025 – reference: DumbserM.KäserM.de la PuenteJ.Arbitrary high-order finite volume schemes for seismic wave propagation on unstructured meshes in 2D and 3DGeophys. J. Int.200717166569410.1111/j.1365-246X.2007.03421.x – reference: ChetverushkinB. N.Kinetically Consistent Schemes in Gas Dynamics1999MoscowIzd. Mosk. Gos. Univ.1189.76359 – reference: IserlesA.Generalized leapfrog methodsIMA J. Numer. Anal.198663813929682650637.6508910.1093/imanum/6.4.381 – reference: HartenA.OsherS.Uniformly high-order accurate essentially nonoscillatory schemes. ISIAM J. Numer. Anal.1987242793098813650627.6510210.1137/0724022 – reference: TitarevV. A.ToroE. F.ADER: Arbitrary high order Godunov approachJ. Sci. Comput.20021760961819107551024.7602810.1023/A:1015126814947 – reference: OstapenkoV. V.On the strong monotonicity of nonlinear difference schemesComput. Math. Math. Phys.1998381119113316386380964.65084 – reference: MaoD.-K.A treatment of discontinuities in shock-capturing finite difference methodsJ. Comput. Phys.19919242245510942580716.6508610.1016/0021-9991(91)90217-9 – reference: DubinerM.Spectral methods on triangles and other domainsJ. Sci. Comput.1991634539011549030742.7605910.1007/BF01060030 – reference: LiuX.-D.OsherS.ChanT.Weighted essentially non-oscillatory schemesJ. Comput. Phys.199411520021213003400811.6507610.1006/jcph.1994.1187 – reference: ToroE. F.Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction1999Berlin, HeidelbergSpringer0923.7600410.1007/978-3-662-03915-1 – reference: HartenA.EngquistB.OsherS.ChakravarthlyS. R.Uniformly high order accurate essentially non-oscillatory scheme, IIIJ. Comput. Phys.19971313470866.6505810.1006/jcph.1996.5632 – reference: A. Kolmogoroff, “The local structure of turbulence in incompressible viscous fluid for very large Reynold’s numbers,” C. R. (Doklady) Acad. Sci. URSS (N.S.) 30, 301–305 (1941). – reference: van LeerB.Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s methodJ. Comput. Phys.1979321011361364.6522310.1016/0021-9991(79)90145-1 – reference: ColellaP.HendersonL. F.The von Neumann paradox for the diffraction of weak shock wavesJ. Fluid Mech.19902137194105153710.1017/S0022112090002221 – reference: BergerM. J.OligerJ.Adaptive mesh refinement for hyperbolic partial differential equationsJ. Comput. Phys.1984534845127391120536.6507110.1016/0021-9991(84)90073-1 – reference: BaskoM. M.The method of artificial viscosity for computing one-dimensional flowsUSSR Comput. Math. Math. Phys.19903017618210558210727.7608110.1016/0041-5553(90)90093-8 – reference: BergerM. J.ColellaP.Local adaptive mesh refinement for shock hydrodynamicsJ. Comput. Phys.19898264840665.7607010.1016/0021-9991(89)90035-1 – reference: CockburnB.ShuC-W.The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systemsJ. Comput. Phys.199814119922416196520920.6505910.1006/jcph.1998.5892 – reference: W. H. Reed and T. R. Hill, “Triangular mesh methods for the neutron transport equation,” Report LA-UR-73-479, Los Alamos Scientific Laboratory, University of California, Los Alamos, NM, USA, 1973. doi: https://www. osti.gov/servlets/purl/4491151 – reference: K. Lipnikov, G. Manzini, and M. Shashkov, “Mimetic finite difference method,” J. Comput. Phys. 257, Part B, 1163–1227 (2014). – reference: KhattriS. K.Grid generation and adaptation by functionalsComput. Appl. Math.20072623524923377101182.65185 – reference: VolkovA. V.“Features of the application of the Galerkin method to the solution of the spatial Navier-Stokes equations on unstructured hexahedral meshes,” Uch. ZapTsAGI2009XL4159 – reference: KrasnovM. M.LadonkinaM. E.Discontinuous Galerkin method on three-dimensional tetrahedral grids. The use of template metaprogramming of the C++ languageProgram. Comput. Software20174317218336578451455.6521410.1134/S0361768817030082 – reference: GatskiT. B.BonnetJ.-P.Compressibility, Turbulence and High Speed Flow2009OxfordElsevier – reference: W. D. Schultz, “Two-dimensional Lagrangian hydrodynamic difference equations,” in Fundamental Methods in Hydrodynamics, Ed. by B. Alder, S. Fernbach, M. Rotenberg, Ser. Methods of Computational Physics: Advances in Research and Applications, Vol. 3 (Academic Press, New York, 1964). – reference: CockburnB.ShuC.-W.The local discontinuous Galerkin method for time-dependent convection-diffusion systemSIAM J. Numer. Anal.1998352440246316558540927.6511810.1137/S0036142997316712 – reference: GottliebS.ShuC.-W.TadmorE.Strong stability-preserving high-order time discretization methodsSIAM Rev.2001438911218546470967.6509810.1137/S003614450036757X – reference: LadonkinaM. E.NeklyudovaO. A.TishkinV. F.Constructing a limiter based on averaging the solutions for the discontinuous Galerkin methodMath. Models Comput. Simul.2019116173384931710.1134/S2070048219010101 – reference: BoldarevA. S.GasilovV. A.OlkhovskayaO. G.On the solution of hyperbolic equations using unstructured gridsMat. Model.19968517813994550981.65506 – reference: WilcoxD. C.Turbulence Modeling for CFD2006La Cañnada, CADCW Industries – reference: ShuC.-W.OsherS.Efficient implementation of essentially non-oscillatory shock-capturing schemes, IIJ. Comput. Phys.198983327810101620674.6506110.1016/0021-9991(89)90222-2 – reference: LadonkinaM. E.NeklyudovaO. A.TishkinV. F.Application of the RKDG method for gas dynamics problemsMath. Models Comput. Simul.2014639740733707971313.7609010.1134/S207004821404005X – reference: WoodwardP.ColellaP.The numerical simulation of two-dimensional fluid flow with strong shocksJ. Comput. Phys.1984541151737485690573.7605710.1016/0021-9991(84)90142-6 – reference: C. Hirsch, Numerical Computation of Internal and External Flows, Vol. 2: Computational Methods for Inviscid and Viscous Flows (Wiley, New York, 1990). – reference: MorganB. E.WickettM. E.Three-equation model for the self-similar growth of Rayleigh-Taylor and Richtmyer-Meshkov instabilitiesPhys. Rev. E201591043002347103010.1103/PhysRevE.91.043002 – reference: JamesonA.YoonS.Lower-upper implicit schemes with multiple grids for the Euler equationsAIAA J.19872592993510.2514/3.9724 – reference: OsherS.Riemann solvers, the entropy condition, and difference approximationSIAM J. Numer. Anal.1984212172357363270592.6506910.1137/0721016 – reference: HawkenD. F.GottliebJ. J.HansenJ. S.Review of some adaptive node-movement techniques in finite-element and finite-difference solutions of partial differential equationsJ. Comput. Phys.19919525430211178440733.6505710.1016/0021-9991(91)90277-R – reference: LadonkinaM. E.NeklyudovaO. A.TishkinV. F.ChevaninV. S.A version of essentially nonoscillatory high-order accurate difference schemes for systems of conservation lawsMath. Models Comput. Simul.20102304316264994410.1134/S207004821003004X – reference: VlasenkoV. V.VolkovA. V.TroshinA. I.“Choice of an approximation method for viscous terms in the Galerkin method with discontinuous basis functions,” Uch. ZapTsAGI2013XLIV1840 – reference: E. Tadmor and J. Tanner, “An adaptive order Godunov type central scheme,” in Hyperbolic Problems: Theory, Numerics, Applications, Proc. 9th Int. Conf. on Hyperbolic Problems, CalTech, Pasadena, March 2002, Ed. by T. Y. Hou and E. Tadmor (Springer, Berlin, Heidelberg, 2003), pp. 871−880. – reference: GolovizninV. M.A balance-characteristic method for the numerical solution of gas dynamic equationsDokl. Akad. Nauk200540345946422160331079.35006 – reference: G. P. Warren, W. K. Anderson, J. L. Thomas, and S. L. Krist, “Grid convergence for adaptive methods,” in 10th Computational Fluid Dynamics Conference, Honolulu, HI, USA, June 24−26,1991, AIAA 91-1592. https://doi.org/10.2514/6.1991-1592. – reference: van LeerB.Towards the ultimate conservative difference scheme II: Monotonicity and conservation combined in a second order schemeJ. Comput. Phys.1974143613700276.6505510.1016/0021-9991(74)90019-9 – reference: PopeS. B.Turbulent Flows2000CambridgeCambridge Univ. Press0966.7600210.1017/CBO9780511840531 – reference: K. G. Powell, P. L. Roe, and J. Quirk, “Adaptive-mesh algorithms for computational fluid dynamics,” in Algorithmic Trends in Computational Fluid Dynamics, Ed. by M. Y. Hussaini, A. Kumar, and M. D. Salas, ICASE/NASA LaRC Series (Springer, New York, 1993), pp. 303−337. – reference: RusanovV. V.The calculation of the interaction of non-stationary shock waves and obstaclesUSSR Comput. Math. Math. Phys.1962130432010.1016/0041-5553(62)90062-9 – reference: J. Peraire and P.-O. Persson, “High-Order Discontinuous Galerkin Methods for CFD,” in Adaptive High-Order Methods in Computational Fluid Dynamics, Ed. by Z. J. Wang, Advances in Computational Fluid Dynamics, Vol. 2 (World Scientic, Singapore, 2011), Chap. 5, pp. 119–152. – reference: KrasnovM. M.Operator library for solving multidimensional mathematical physics problems on CUDAMat. Model.20152710912035481761340.65338 – reference: HanjalicK.LaunderB. E.A Reynolds stress model of turbulence and its application to thin shear flowsJ. Fluid Mech.1972526096380239.7606910.1017/S002211207200268X – reference: NastaseC. R.MavriplisD. J.High-order discontinuous Galerkin methods using an hp-multigrid approachJ. Comput. Phys.20062133303571089.6510010.1016/j.jcp.2005.08.022 – reference: SamarskiiA. A.TishkinV. F.FavorskiiA. P.ShashkovM. Yu.Operator difference schemesDiffer. Uravn.19811713171327625569 – reference: ChouP. Y.On velocity correlations and the solutions of the equations of turbulent fluctuationsQ. Appl. Math.194533854119990061.4530210.1090/qam/11999 – reference: ArminjonP.ViallonM.-C.MadraneA.A finite volume extension of the Lax-Friedrichs and Nessyahu-Tadmor schemes for conservation laws on unstructured gridsInt. J. Comput. Fluid Dyn.1998912216096130913.7606310.1080/10618569808940837 – reference: DumbserM.MunzC.-D.ADER discontinuous Galerkin schemes for aeroacousticsC. R. Mec.20053336836871107.7604410.1016/j.crme.2005.07.008 – reference: YeeH. C.WarmingR. F.HartenA.Implicit total variation diminishing (TVD) schemes for steady-state calculationsJ. Comput. Phys.1985573273607829860631.7608710.1016/0021-9991(85)90183-4 – reference: KrasnovM. M.KuchugovP. A.LadonkinaM. E.TishkinV. F.Discontinuous Galerkin method on three-dimensional tetrahedral grids: Using the operator programming methodMath. Models Comput. Simul.2017952954336387761374.7610110.1134/S2070048217050064 – reference: MenterF. R.Two-equation eddy-viscosity turbulence models for engineering applicationsAIAA J.1994321598160510.2514/3.12149 – reference: RodionovA. V.“On the use of Boussinesq approximation in turbulent supersonic jet modeling,” IntJ. Heat Mass Transp.2010538899011183.8005410.1016/j.ijheatmasstransfer.2009.11.035 – reference: ZalesakS. T.Fully multidimensional flux-corrected transport algorithms for fluidsJ. Comput. Phys.1979313353625347860416.7600210.1016/0021-9991(79)90051-2 – reference: E. V. Stupochenko, S. A. Losev, and A. I. Osipov, Relaxation Processes in Shock Waves (Nauka, Moscow, 1965) [in Russian]; English translation: Ye. V. Stupochenko, S. A. Losev, and A. I. Osipov, Relaxation in Shock Waves (Springer, New York, 1967). – reference: MignoneA.High-order conservative reconstruction schemes for finite volume methods in cylindrical and spherical coordinatesJ. Comput. Phys.201427078481432094121349.7636410.1016/j.jcp.2014.04.001 – reference: QiuJ.ShuC.-W.On the construction, comparison, and local characteristic decomposition for high order central WENO schemesJ. Comput. Phys.200218318720919445311018.6510610.1006/jcph.2002.7191 – reference: AnteparaO.LehmkuhlO.ChivaJ.BorrellR.Parallel adaptive mesh refinement simulation of the flow around a square cylinder at Re = 22 000Procedia Eng.20136124625010.1016/j.proeng.2013.08.011 – reference: van LeerB.Towards the ultimate conservative difference schemes. III. Upstream-centered finite-difference schemes for ideal compressible flowJ. Comput. Phys.1977232632750339.7603910.1016/0021-9991(77)90094-8 – reference: PopovM. V.UstyugovS. D.Piecewise parabolic method on a local stencil for ideal magnetohydrodynamicsComput. Math. Math. Phys.20084847749924265031201.7615110.1134/S0965542508030111 – reference: ChoiH.LiuJ.-G.The reconstruction of upwind fluxes for conservation laws: Its behavior in dynamic and steady state calculationsJ. Comput. Phys.198814423725616380870935.7604810.1006/jcph.1998.5970 – reference: LuoH.BaumJ. D.LöhnerR.Fast p-multigrid discontinuous Galerkin method for compressible flow at all speedsAIAA J.20084663565210.2514/1.28314 – reference: OstapenkoV. V.On monotonicity of difference schemesSib. Math. J.199839959972165068910.1007/BF02672918 – reference: M. Dumbser and C.-D. Munz, “Arbitrary high order discontinuous Galerkin schemes,” in Numerical Methods for Hyperbolic and Kinetic Problems, Ed. by S. Cordier, T. Goudon, M. Gutnic, and E. Sonnendrücker, IRMA Lectures in Mathematics and Theoretical Physics 7 (EMS Publishing House, Zürich, 2005), pp. 295−333. – reference: DimonteG.YoungsD. L.DimitsA.A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: The Alpha-group collaborationPhys. Fluids200416166816931186.7614310.1063/1.1688328 – reference: GolovizninV. M.SamarskiiA. A.Finite difference approximation of convective transport with spatial splitting of the time derivativeMat. Model.1998108610017587791189.76364 – reference: LuoH.BaumJ. D.LöhnerR.A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured gridsJ. Comput. Phys.200722568671323466971122.6508910.1016/j.jcp.2006.12.017 – reference: K. J. Fidkowski and D. L. Darmofal, “Output-based error estimation and mesh adaptation in computational fluid dynamics: Overview and recent results,” in 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, FL, January 5−8,2009, AIAA 2009-1303. https://doi.org/10.2514/6.2009-1303 – reference: B. Cockburn, “An introduction to the discontinuous Galerkin method for convection-dominated problems,” in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Ed. by A. Quarteroni, Lecture Notes in Mathematics (Springer, Berlin, Heidelberg, 1998), Vol. 1697, pp. 151−268. – reference: Dar’inN. A.MazhukinV. I.SamarskiiA. A.A finite-difference method for solving the equations of gas dynamics using adaptive nets which are dynamically associated with the solutionUSSR Comput. Math. Math. Phys.1988281641740850.7643710.1016/0041-5553(88)90127-9 – reference: KlöcknerA.WarburtonT.BridgeJ.HesthavenJ. S.Nodal discontinuous Galerkin methods on graphics processorsJ. Comput. Phys.20092287863788225733361175.6511110.1016/j.jcp.2009.06.041 – reference: HartmannR.Adaptive discontinuous Galerkin methods with shock-capturing for the compressible Navier-Stokes equationsInt. J. Numer. Methods Fluids2006511131115622423821106.7604110.1002/fld.1134 – volume: 83 start-page: 148 year: 1989 ident: 4223_CR53 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(89)90226-X – volume: 43 start-page: 89 year: 2001 ident: 4223_CR128 publication-title: SIAM Rev. doi: 10.1137/S003614450036757X – ident: 4223_CR19 doi: 10.2514/6.2001-879 – volume: 32 start-page: 101 year: 1979 ident: 4223_CR44 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(79)90145-1 – volume: 11 start-page: 61 year: 2019 ident: 4223_CR124 publication-title: Math. Models Comput. Simul. doi: 10.1134/S2070048219010101 – volume: 126 start-page: 202 year: 1996 ident: 4223_CR62 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.0130 – volume: 270 start-page: 784 year: 2014 ident: 4223_CR25 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.04.001 – volume: 48 start-page: 477 year: 2008 ident: 4223_CR97 publication-title: Comput. Math. Math. Phys. doi: 10.1134/S0965542508030111 – volume-title: Simulation of Large Vortices in Calculations of Turbulent Flows year: 2008 ident: 4223_CR20 – volume: 2 start-page: 304 year: 2010 ident: 4223_CR67 publication-title: Math. Models Comput. Simul. doi: 10.1134/S207004821003004X – ident: 4223_CR101 – ident: 4223_CR122 doi: 10.1142/9789814313193_0005 – ident: 4223_CR35 doi: 10.1201/9781482273991 – volume-title: Arbitrary High Order Schemes for the Solution of Hyperbolic Conservation Laws in Complex Domains year: 2005 ident: 4223_CR64 – volume: 1 start-page: 304 year: 1962 ident: 4223_CR82 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(62)90062-9 – ident: 4223_CR144 – ident: 4223_CR18 – volume: 71 start-page: 231 year: 1987 ident: 4223_CR49 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(87)90031-3 – volume: 57 start-page: 327 year: 1985 ident: 4223_CR52 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(85)90183-4 – volume-title: Turbulent Flows year: 2000 ident: 4223_CR17 doi: 10.1017/CBO9780511840531 – volume: 55 start-page: 140 year: 2015 ident: 4223_CR140 publication-title: Comput. Math. Math. Phys. doi: 10.1134/S0965542515010133 – volume: 6 start-page: 397 year: 2014 ident: 4223_CR114 publication-title: Math. Models Comput. Simul. doi: 10.1134/S207004821404005X – ident: 4223_CR166 doi: 10.1007/978-1-4612-2708-3_18 – volume: 21 start-page: 217 year: 1984 ident: 4223_CR51 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0721016 – volume: 225 start-page: 1827 year: 2007 ident: 4223_CR100 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.02.023 – volume: 7 start-page: 510 year: 2010 ident: 4223_CR134 publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.2009.09.055 – volume: 83 start-page: 32 year: 1989 ident: 4223_CR60 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(89)90222-2 – volume-title: Kinetically Consistent Schemes in Gas Dynamics year: 1999 ident: 4223_CR147 – volume: 160 start-page: 241 year: 2000 ident: 4223_CR83 publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6459 – ident: 4223_CR24 – ident: 4223_CR21 doi: 10.1098/rsta.2012.0217 – ident: 4223_CR116 doi: 10.1007/BFb0096353 – volume: 226 start-page: 879 year: 2007 ident: 4223_CR117 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.05.011 – volume: 4 start-page: 231 year: 2008 ident: 4223_CR133 publication-title: Commun. Comput. Phys. – volume: 106 start-page: 176 year: 1993 ident: 4223_CR143 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1993.1101 – ident: 4223_CR150 – volume: 1 start-page: 95 year: 1989 ident: 4223_CR57 publication-title: Mat. Model. – volume: 6 start-page: 345 year: 1991 ident: 4223_CR75 publication-title: J. Sci. Comput. doi: 10.1007/BF01060030 – volume: 2 start-page: 1355 year: 1963 ident: 4223_CR40 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(63)90351-3 – volume: 6 start-page: 381 year: 1986 ident: 4223_CR28 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/6.4.381 – volume-title: Arbitrary High Order Schemes for the Solution of Hyperbolic Conservation Laws in Complex Domains year: 2005 ident: 4223_CR73 – volume: 43 start-page: 172 year: 2017 ident: 4223_CR113 publication-title: Program. Comput. Software doi: 10.1134/S0361768817030082 – ident: 4223_CR80 – ident: 4223_CR149 – volume: 31 start-page: 335 year: 1979 ident: 4223_CR46 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(79)90051-2 – volume: 81 start-page: 331 year: 2016 ident: 4223_CR77 publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.4187 – volume: 30 start-page: 176 year: 1990 ident: 4223_CR142 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(90)90093-8 – volume: 2 start-page: 429 year: 2010 ident: 4223_CR145 publication-title: Math. Models Comput. Simul. doi: 10.1134/S2070048210040034 – volume: 7 start-page: 159 year: 1954 ident: 4223_CR81 publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.3160070112 – ident: 4223_CR94 – volume: 97 start-page: 013104 year: 2018 ident: 4223_CR12 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.97.013104 – volume: 9 start-page: 1 year: 1998 ident: 4223_CR87 publication-title: Int. J. Comput. Fluid Dyn. doi: 10.1080/10618569808940837 – volume: XL start-page: 41 year: 2009 ident: 4223_CR105 publication-title: TsAGI – volume: 248 start-page: 200 year: 2013 ident: 4223_CR120 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.04.012 – ident: 4223_CR79 – volume: 151 start-page: 229 year: 2020 ident: 4223_CR32 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2020.01.005 – volume: 26 start-page: 235 year: 2007 ident: 4223_CR162 publication-title: Comput. Appl. Math. – volume: 257 start-page: 566 year: 1981 ident: 4223_CR23 publication-title: Dokl. Akad. Nauk SSSR – ident: 4223_CR86 doi: 10.1007/978-3-642-55711-8_82 – volume: 213 start-page: 330 year: 2006 ident: 4223_CR106 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.08.022 – volume: 157 start-page: 312 year: 2017 ident: 4223_CR78 publication-title: Comp. Fluids doi: 10.1016/j.compfluid.2017.09.004 – volume: 183 start-page: 187 year: 2002 ident: 4223_CR85 publication-title: J. Comput. Phys. doi: 10.1006/jcph.2002.7191 – volume: 136 start-page: 83 year: 1997 ident: 4223_CR99 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1997.5745 – volume: 3 start-page: 38 year: 1945 ident: 4223_CR13 publication-title: Q. Appl. Math. doi: 10.1090/qam/11999 – ident: 4223_CR27 doi: 10.1016/j.jcp.2013.07.031 – volume: 95 start-page: 254 year: 1991 ident: 4223_CR158 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(91)90277-R – volume: 28 start-page: 164 year: 1988 ident: 4223_CR154 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(88)90127-9 – volume: 21 start-page: 1 year: 1984 ident: 4223_CR50 publication-title: SIAM. J. Numer. Anal. doi: 10.1137/0721001 – ident: 4223_CR137 doi: 10.2514/6.2015-0822 – volume: 32 start-page: 653 year: 1991 ident: 4223_CR159 publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620320403 – ident: 4223_CR91 – volume: 39 start-page: 1749 year: 2002 ident: 4223_CR109 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142901384162 – volume: 109 start-page: 123 year: 2011 ident: 4223_CR161 publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(99)00156-9 – volume: 8 start-page: 51 year: 1996 ident: 4223_CR148 publication-title: Mat. Model. – volume: 333 start-page: 683 year: 2005 ident: 4223_CR74 publication-title: C. R. Mec. doi: 10.1016/j.crme.2005.07.008 – volume: 225 start-page: 686 year: 2007 ident: 4223_CR119 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.12.017 – volume: 172 start-page: 718 year: 2001 ident: 4223_CR130 publication-title: J. Comput. Phys. doi: 10.1006/jcph.2001.6853 – ident: 4223_CR34 – volume: 316 start-page: 598 year: 2016 ident: 4223_CR118 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.04.030 – volume: 10 start-page: 86 year: 1998 ident: 4223_CR29 publication-title: Mat. Model. – volume: 7 start-page: 510 year: 2010 ident: 4223_CR115 publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.2009.09.055 – volume: 171 start-page: 665 year: 2007 ident: 4223_CR63 publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2007.03421.x – volume: 38 start-page: 477 year: 2004 ident: 4223_CR88 publication-title: ESIAM: Math. Modell. Numer. Anal. doi: 10.1051/m2an:2004024 – volume: 46 start-page: 2823 year: 2008 ident: 4223_CR8 publication-title: AIAA J. doi: 10.2514/1.36541 – volume: 27 start-page: 109 year: 2015 ident: 4223_CR139 publication-title: Mat. Model. – volume: 437 start-page: 397 year: 2014 ident: 4223_CR141 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stt1890 – ident: 4223_CR2 – ident: 4223_CR165 doi: 10.2514/6.1991-1592 – volume: 38 start-page: 1119 year: 1998 ident: 4223_CR39 publication-title: Comput. Math. Math. Phys. – volume: 17 start-page: 1317 year: 1981 ident: 4223_CR26 publication-title: Differ. Uravn. – ident: 4223_CR146 doi: 10.1007/978-3-642-48246-5 – volume: 46 start-page: 635 year: 2008 ident: 4223_CR107 publication-title: AIAA J. doi: 10.2514/1.28314 – volume: 202 start-page: 196 year: 2005 ident: 4223_CR72 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2004.06.014 – volume-title: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction year: 1999 ident: 4223_CR68 doi: 10.1007/978-3-662-03915-1 – ident: 4223_CR69 doi: 10.1098/rspa.2001.0926 – volume-title: “Numerical simulation of shock waves interaction with boundary layers on adaptive grids,” KIAM Preprint No. 136 year: 2016 ident: 4223_CR163 doi: 10.20948/prepr-2016-136 – volume: 39 start-page: 60 year: 2010 ident: 4223_CR121 publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2009.07.003 – volume-title: “Algorithm for multilevel mesh adaptation with wavelet-based criteria for gas dynamic problems,” KIAM Preprint No. 97 year: 2015 ident: 4223_CR164 – ident: 4223_CR7 doi: 10.2514/6.1992-439 – volume: 16 start-page: 1668 year: 2004 ident: 4223_CR170 publication-title: Phys. Fluids doi: 10.1063/1.1688328 – volume: 204 start-page: 715 year: 2005 ident: 4223_CR71 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2004.10.028 – ident: 4223_CR66 doi: 10.4171/012-1/13 – volume: 14 start-page: 361 year: 1974 ident: 4223_CR42 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(74)90019-9 – volume: 39 start-page: 1174 year: 1998 ident: 4223_CR38 publication-title: Sib. Math. J. doi: 10.1007/BF02674128 – volume: 3 start-page: 68 year: 1972 ident: 4223_CR41 publication-title: TsAGI – volume: 20 start-page: 218 year: 1980 ident: 4223_CR47 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(80)90283-9 – volume: 52 start-page: 609 year: 1972 ident: 4223_CR9 publication-title: J. Fluid Mech. doi: 10.1017/S002211207200268X – volume: 167 start-page: 372 year: 2001 ident: 4223_CR155 publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6679 – ident: 4223_CR102 – volume: 53 start-page: 205 year: 2013 ident: 4223_CR31 publication-title: Comput. Math. Math. Phys. doi: 10.1134/S0965542513020097 – volume: 3 start-page: 1 year: 2006 ident: 4223_CR132 publication-title: Int. J. Numer. Anal. Model. – volume: 226 start-page: 204 year: 2007 ident: 4223_CR76 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.04.004 – volume: XLIV start-page: 18 year: 2013 ident: 4223_CR127 publication-title: TsAGI – volume: 77 start-page: 439 year: 1988 ident: 4223_CR59 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(88)90177-5 – volume: 18 start-page: 248 year: 1975 ident: 4223_CR45 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(75)90002-9 – volume: 9 start-page: 529 year: 2017 ident: 4223_CR112 publication-title: Math. Models Comput. Simul. doi: 10.1134/S2070048217050064 – volume: 91 start-page: 043002 year: 2015 ident: 4223_CR11 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.91.043002 – volume: 115 start-page: 200 year: 1994 ident: 4223_CR61 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1187 – volume: 213 start-page: 71 year: 1990 ident: 4223_CR92 publication-title: J. Fluid Mech. doi: 10.1017/S0022112090002221 – volume: 32 start-page: 1598 year: 1994 ident: 4223_CR10 publication-title: AIAA J. doi: 10.2514/3.12149 – ident: 4223_CR36 – volume: 131 start-page: 3 year: 1997 ident: 4223_CR58 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.5632 – volume: 47 start-page: 1970 year: 2007 ident: 4223_CR96 publication-title: Comput. Math. Math. Phys. doi: 10.1134/S0965542507120081 – volume: 201 start-page: 261 year: 2004 ident: 4223_CR84 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2004.05.020 – volume: 139 start-page: 136 year: 2019 ident: 4223_CR33 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2019.01.008 – volume: 40 start-page: 197 year: 2002 ident: 4223_CR108 publication-title: Int. J. Numer. Methods. Fluids doi: 10.1002/fld.338 – ident: 4223_CR103 – volume: 61 start-page: 246 year: 2013 ident: 4223_CR167 publication-title: Procedia Eng. doi: 10.1016/j.proeng.2013.08.011 – volume-title: Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics year: 2010 ident: 4223_CR22 – volume: XL start-page: 15 year: 2009 ident: 4223_CR123 publication-title: TsAGI – volume: 403 start-page: 459 year: 2005 ident: 4223_CR30 publication-title: Dokl. Akad. Nauk – volume: 39 start-page: 959 year: 1998 ident: 4223_CR37 publication-title: Sib. Math. J. doi: 10.1007/BF02672918 – ident: 4223_CR153 doi: 10.2514/6.1985-483 – volume: 31 start-page: 379 year: 2017 ident: 4223_CR168 publication-title: Int. J. Comput. Fluid Dyn. doi: 10.1080/10618562.2017.1387251 – ident: 4223_CR157 doi: 10.1007/978-1-4419-7916-2 – volume-title: Compressibility, Turbulence and High Speed Flow year: 2009 ident: 4223_CR3 – volume: 54 start-page: 115 year: 1984 ident: 4223_CR89 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(84)90142-6 – volume: 29 start-page: 105107 year: 2017 ident: 4223_CR169 publication-title: Phys. Fluids doi: 10.1063/1.4993464 – volume: 30 start-page: 37 year: 2018 ident: 4223_CR110 publication-title: Mat. Model. – volume: 40 start-page: 469 year: 2002 ident: 4223_CR129 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142901389025 – volume: 76 start-page: 587 year: 2014 ident: 4223_CR95 publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.3950 – volume-title: Mathematical Modeling: Problems and Results year: 2003 ident: 4223_CR1 – volume: 228 start-page: 7863 year: 2009 ident: 4223_CR136 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.06.041 – volume: 25 start-page: 929 year: 1987 ident: 4223_CR135 publication-title: AIAA J. doi: 10.2514/3.9724 – volume: 141 start-page: 199 year: 1998 ident: 4223_CR104 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1998.5892 – volume: 53 start-page: 889 year: 2010 ident: 4223_CR6 publication-title: J. Heat Mass Transp. doi: 10.1016/j.ijheatmasstransfer.2009.11.035 – volume: 51 start-page: 1131 year: 2006 ident: 4223_CR131 publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.1134 – ident: 4223_CR125 – volume: 23 start-page: 263 year: 1977 ident: 4223_CR43 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(77)90094-8 – volume: 91 start-page: 99 year: 1963 ident: 4223_CR15 publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 – volume: 53 start-page: 484 year: 1984 ident: 4223_CR160 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(84)90073-1 – volume: 333 start-page: 683 year: 2005 ident: 4223_CR65 publication-title: C. R. Mec. doi: 10.1016/j.crme.2005.07.008 – volume: 815 start-page: 012015 year: 2017 ident: 4223_CR111 publication-title: J. Phys.: Conf. Ser. – volume: 318 start-page: 142 year: 2015 ident: 4223_CR138 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.04.003 – volume-title: “On a two-layer completely conservative difference scheme of gas dynamics in Eulerian variables with adaptive regularization of solution,” KIAM Preprint No. 14 year: 2019 ident: 4223_CR152 doi: 10.20948/prepr-2019-14 – volume: 35 start-page: 2440 year: 1998 ident: 4223_CR126 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142997316712 – volume: 228 start-page: 7614 year: 2009 ident: 4223_CR98 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.07.007 – volume: 27 start-page: 279 year: 1987 ident: 4223_CR48 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0724022 – ident: 4223_CR5 – volume: 54 start-page: 174 year: 1984 ident: 4223_CR90 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(84)90143-8 – volume: 144 start-page: 237 year: 1988 ident: 4223_CR56 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1998.5970 – volume: 129 start-page: 547 year: 1951 ident: 4223_CR14 publication-title: Z. Physik doi: 10.1007/BF01330059 – volume: 17 start-page: 609 year: 2002 ident: 4223_CR70 publication-title: J. Sci. Comput. doi: 10.1023/A:1015126814947 – ident: 4223_CR156 doi: 10.2514/6.2009-1303 – volume: 28 start-page: 45 year: 1996 ident: 4223_CR16 publication-title: Annu. Rev. Fluid. Mech. doi: 10.1146/annurev.fl.28.010196.000401 – volume: 92 start-page: 422 year: 1991 ident: 4223_CR55 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(91)90217-9 – volume-title: Turbulence Modeling for CFD year: 2006 ident: 4223_CR4 – volume: 24 start-page: 279 year: 1987 ident: 4223_CR54 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0724022 – volume: 82 start-page: 64 year: 1989 ident: 4223_CR93 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(89)90035-1 – volume: 106 start-page: 76 year: 1997 ident: 4223_CR151 publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(97)00083-0 |
SSID | ssj0000327838 |
Score | 2.1792073 |
Snippet | The study of the development of perturbations under the influence of various hydrodynamic instabilities, as well as the transition to turbulent mixing and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 311 |
SubjectTerms | Computational fluid dynamics Mathematical analysis Mathematical Modeling and Industrial Mathematics Mathematical models Mathematics Mathematics and Statistics Numerical methods Perturbation Simulation and Modeling Three dimensional analysis Turbulence Turbulent mixing Two dimensional analysis |
Title | Modern Methods of Mathematical Modeling of the Development of Hydrodynamic Instabilities and Turbulent Mixing |
URI | https://link.springer.com/article/10.1134/S2070048221020174 https://www.proquest.com/docview/2517427004 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWDgjSgU5IEJlJLGjzhjhSgVKCy0UpkiJ7YlBKSIthLw6znn0ZTykDrGZ5-S2PHd5c7fh9CpCozyjYYvjTDpUC5cRxjTdpgmTDPha5Hxp4R3vDegN0M2LM5xj8tq9zIlme3UOe8Ivbj3XAvFDgYNbCKsI7qK6uB-uLSG6p3rh9vq14pLLH1ExkXnWloVGFPkM3_V890iVW7mQmY0MzjdTdQvbzWvM3lqTSdxK_lcQHFc8lm20EbhgOJOvmK20YpOd9D6HCwhXIUzLNfxLnrJ6dJwmHFNj_HI4EoOmqzYnmm3AmjGc2VItqn3oWCPznnvsS1NyIHBIUDHMlW4P4VptZYPh4_voGUPDbpX_cueU5A0OAm4htSBaJZql0iIm1icKBGogMdaeNr4PPa4odQoZoRWWpHAaE2kMlz7babigGshyD6qpaNUHyAMrmRAE8MI5YoqQiV4R9JwCXt5W0mPNpBbTlSUFAjmlkjjOcoiGUKjH--1gc5mQ15z-I7_OjfL2Y-KL3kcWUg3arPzID4vJ7MS_6nscKneR2jNs8UyWXFbE9Umb1N9DN7OJD4pVvcXqI_yGw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHIADb8RgQA6cQB1d82h6nBBjsHUXNmmcqrZJJAR0iG0S8Otx-tjGeEg7Nk6stnZju3b8IXQmPS1dreBLIyy0KBe2JbSuWUwRpphwlUjxU_wOb_boXZ_183Pcw6LavUhJpjt1hjtCL-8d27RiB4MGNhH0iC6jFQohOKj1Sv3moTX9tWITAx-RYtHZBlYF1uT5zF_5fLdIUzdzLjOaGpzGJuoWt5rVmTxVx6OoGn_OdXFc8Fm20EbugOJ6pjHbaEklO2h9pi0hXPmTXq7DXfSSwaVhP8WaHuKBxlM6cDJkc6bdEGAYz5QhmaHmh4Q9OsO9x6Y0IWsMDgE6DhOJu2MQq7F82H98By57qNe47l41rRykwYrBNaQWRLNU2SSEuIlFsRSe9HikhKO0yyOHa0q1ZFooqSTxtFIklJort8Zk5HElBNlHpWSQqAOEwZX0aKwZoVxSSWgI3lGoeQh7eU2GDi0juxBUEOcdzA2QxnOQRjKEBj_eaxmdT5a8Zu07_ptcKaQf5F_yMDAt3ajJzgP5ohDmlPwns8OFZp-i1WbXbwft207rCK05pnAmLXSroNLobayOwfMZRSe5pn8BMSz1Cg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAc2BFl9YETKJDGS50jAkpZipAACU7BiW2pAkJFWwn4esZZKLuEOMZjW0k8zsxkxu8BrOvQ6ro1uNMoVx4T0vektTWPG8oNl3UjM_6U1qloXrKjK35V8Jx2y2r3MiWZn2lwKE1pb7ujbcFBwrbPA9_BsqNxQ_uIOsWGYYQ5aLsKjOwcXB8PfrP41FFJZLx0vqNYwTFFbvPbeT5ap4HL-SlLmhmfxiTclLed15zcbvV78Vby8gnR8R_PNQUThWNKdnJNmoYhk87A-Du4QrxqvWG8dmfhPqdRI62Mg7pLHiwZyHEmJ3Zn3Z0Am8m78iTX1HzW-O1-TtV9OyGuZCEHDMfAnahUk4s-LreziKTVfsJZ5uCysX-x2_QK8gYvQZeReRjlMuNThfEUjxMtQx2K2MjA2LqIA2EZs5pbabTRNLTGUKWtMPUa13EojJR0HirpQ2oWgKCLGbLEcsqEZpoyhV6TskLhN76mVcCq4JeLFiUFsrkj2LiLsgiHsujLe63CxtuQTg7r8Vvn5VITomKHdyMH9cZc1h7Fm-XCDsQ_Trb4p95rMHq214hODk-Pl2AscPU0Wf3bMlR6j32zgg5RL14tlP4V7Zv97g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modern+Methods+of+Mathematical+Modeling+of+the+Development+of+Hydrodynamic+Instabilities+and+Turbulent+Mixing&rft.jtitle=Mathematical+models+and+computer+simulations&rft.au=Tishkin%2C+V.+F.&rft.au=Gasilov%2C+V.+A.&rft.au=Zmitrenko%2C+N.+V.&rft.au=Kuchugov%2C+P.+A.&rft.date=2021-03-01&rft.issn=2070-0482&rft.eissn=2070-0490&rft.volume=13&rft.issue=2&rft.spage=311&rft.epage=327&rft_id=info:doi/10.1134%2FS2070048221020174&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S2070048221020174 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2070-0482&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2070-0482&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2070-0482&client=summon |