FEFM-YOLO11: Underwater Object Detection Algorithm Based on Improved YOLO11

Underwater object detection technology is extensively applied in subsea resource exploration and benthic environmental monitoring; however, the underwater environment presents significant challenges due to limited visibility caused by insufficient illumination and turbid water quality, severely impe...

Full description

Saved in:
Bibliographic Details
Published inNeural processing letters Vol. 57; no. 5; p. 82
Main Authors Wang, Qi, Liu, Zhichuan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1573-773X
1370-4621
1573-773X
DOI10.1007/s11063-025-11805-2

Cover

Abstract Underwater object detection technology is extensively applied in subsea resource exploration and benthic environmental monitoring; however, the underwater environment presents significant challenges due to limited visibility caused by insufficient illumination and turbid water quality, severely impeding detection tasks. To address these challenges and enhance precision, this paper proposes FEFM-YOLO11—an enhanced YOLO11-based underwater object detection algorithm. Primarily, the algorithm substitutes two C3K2 modules in the backbone with a Feature Enhancement Module (FEM). Employing a multi-branch dilated convolutional structure, the FEM increases feature diversity, expands the network’s local receptive field, and enhances semantic representation of small objects, thereby strengthening detection capabilities. Subsequently, a Context-Aware Fusion Module (CAFM) is introduced in the Neck, which effectively models global and local features through integrated local feature capture (convolutional operations) and global feature extraction (attention mechanisms), consequently improving denoising performance. Furthermore, a dedicated small-target detection layer is incorporated to specifically boost detection performance for smaller underwater objects. Finally, the Wise IoU loss function was used for comprehensive evaluation and performance optimization, and the collaborative integration of these components effectively reduced the problem of missed detections caused by occlusion in dense cluster targets. Experimental results on the URPC2020 dataset demonstrate that the improved algorithm achieves enhancements of 2.0% points in mAP@50 and 1.9% points in mAP@50:95 compared to the baseline, confirming that FEFM-YOLO11 elevates detection precision and validates the feasibility and effectiveness of the proposed methodology.
AbstractList Underwater object detection technology is extensively applied in subsea resource exploration and benthic environmental monitoring; however, the underwater environment presents significant challenges due to limited visibility caused by insufficient illumination and turbid water quality, severely impeding detection tasks. To address these challenges and enhance precision, this paper proposes FEFM-YOLO11—an enhanced YOLO11-based underwater object detection algorithm. Primarily, the algorithm substitutes two C3K2 modules in the backbone with a Feature Enhancement Module (FEM). Employing a multi-branch dilated convolutional structure, the FEM increases feature diversity, expands the network’s local receptive field, and enhances semantic representation of small objects, thereby strengthening detection capabilities. Subsequently, a Context-Aware Fusion Module (CAFM) is introduced in the Neck, which effectively models global and local features through integrated local feature capture (convolutional operations) and global feature extraction (attention mechanisms), consequently improving denoising performance. Furthermore, a dedicated small-target detection layer is incorporated to specifically boost detection performance for smaller underwater objects. Finally, the Wise IoU loss function was used for comprehensive evaluation and performance optimization, and the collaborative integration of these components effectively reduced the problem of missed detections caused by occlusion in dense cluster targets. Experimental results on the URPC2020 dataset demonstrate that the improved algorithm achieves enhancements of 2.0% points in mAP@50 and 1.9% points in mAP@50:95 compared to the baseline, confirming that FEFM-YOLO11 elevates detection precision and validates the feasibility and effectiveness of the proposed methodology.
ArticleNumber 82
Author Wang, Qi
Liu, Zhichuan
Author_xml – sequence: 1
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
  email: 002086@nuist.edu.cn
  organization: School of Computer Science, Nanjing University of Information Science and Technology
– sequence: 2
  givenname: Zhichuan
  surname: Liu
  fullname: Liu, Zhichuan
  organization: School of Computer Science, Nanjing University of Information Science and Technology
BookMark eNp9kEFPAjEQhRuDiYD-AU-beK5OO1tavCGCEjF7kURPTbvbRQjsYrtI_PdW10RPnt5k8r55k9cjnaquHCHnDC4ZgLwKjMEAKXBBGVMgKD8iXSYkUinxufNnPiG9ENYAEePQJQ_TyfSRvmTzjLHrZFEVzh9M43yS2bXLm-TWNVFWdZWMNsvar5rXbXJjgiuSuJptd75-j3PLn5Lj0myCO_vRPllMJ0_jezrP7mbj0ZzmHBmnqBBBxX9AWSFVKUsJfJAqbko1dMyawqW5VCzFtBSisEY5JawcWuskSBTYJxft3Zj-tneh0et676sYqZGnA44KAKOLt67c1yF4V-qdX22N_9AM9Fdpui1Nx9L0d2maRwhbKERztXT-9_Q_1CexX21n
Cites_doi 10.1038/s40494-025-01565-6
10.1109/ICCV48922.2021.00349
10.1109/TPAMI.2016.2577031
10.1109/ICCV.2017.322
10.1007/978-3-319-46448-0_2
10.1109/TIM.2023.3346488
10.1109/ICCV.2019.00667
10.1016/j.ecoinf.2024.102680
10.1109/LGRS.2024.3370299
10.1109/CVPR.2016.91
10.1364/OE.510681
10.1109/TIM.2021.3132332
10.1109/ICCV.2015.169
10.1109/ICMEW53276.2021.9455997
10.1109/WACV.2018.00163
10.1109/TPAMI.2022.3164083
10.1109/TGRS.2024.3363057
10.1109/ACCESS.2024.3496925
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s11063-025-11805-2
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-773X
ExternalDocumentID 10_1007_s11063_025_11805_2
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29N
2J2
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
53G
5VS
67Z
6NX
77I
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARTL
AASML
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABEEZ
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACACY
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACSTC
ACULB
ADHHG
ADHIR
ADIMF
ADKNI
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFGXO
AFHIU
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
C24
C6C
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
MA-
NB0
NPVJJ
NQJWS
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT5
QOK
QOS
R89
R9I
RHV
RNS
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c2312-38330857308b578f7f7026482af89e1bade4c781434f55dba8e85b79bbe707353
IEDL.DBID C24
ISSN 1573-773X
1370-4621
IngestDate Sat Sep 06 11:17:51 EDT 2025
Thu Sep 11 00:23:43 EDT 2025
Thu Sep 04 04:30:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Loss function
CAFM
YOLO11
Object detection
FEM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2312-38330857308b578f7f7026482af89e1bade4c781434f55dba8e85b79bbe707353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s11063-025-11805-2
PQID 3246238003
PQPubID 2043838
ParticipantIDs proquest_journals_3246238003
crossref_primary_10_1007_s11063_025_11805_2
springer_journals_10_1007_s11063_025_11805_2
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Neural processing letters
PublicationTitleAbbrev Neural Process Lett
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 11805_CR9
11805_CR8
11805_CR7
11805_CR6
11805_CR5
11805_CR4
11805_CR3
11805_CR2
11805_CR1
11805_CR10
11805_CR11
11805_CR12
11805_CR13
11805_CR14
11805_CR15
11805_CR16
11805_CR17
11805_CR18
11805_CR19
11805_CR20
11805_CR21
11805_CR22
11805_CR23
11805_CR24
11805_CR25
11805_CR26
11805_CR27
References_xml – ident: 11805_CR20
– ident: 11805_CR16
– ident: 11805_CR22
  doi: 10.1038/s40494-025-01565-6
– ident: 11805_CR26
  doi: 10.1109/ICCV48922.2021.00349
– ident: 11805_CR5
  doi: 10.1109/TPAMI.2016.2577031
– ident: 11805_CR12
– ident: 11805_CR10
– ident: 11805_CR6
  doi: 10.1109/ICCV.2017.322
– ident: 11805_CR7
  doi: 10.1007/978-3-319-46448-0_2
– ident: 11805_CR14
  doi: 10.1109/TIM.2023.3346488
– ident: 11805_CR25
  doi: 10.1109/ICCV.2019.00667
– ident: 11805_CR1
– ident: 11805_CR11
  doi: 10.1016/j.ecoinf.2024.102680
– ident: 11805_CR3
– ident: 11805_CR15
  doi: 10.1109/LGRS.2024.3370299
– ident: 11805_CR8
  doi: 10.1109/CVPR.2016.91
– ident: 11805_CR9
– ident: 11805_CR19
– ident: 11805_CR2
  doi: 10.1364/OE.510681
– ident: 11805_CR17
  doi: 10.1109/TIM.2021.3132332
– ident: 11805_CR4
  doi: 10.1109/ICCV.2015.169
– ident: 11805_CR27
  doi: 10.1109/ICMEW53276.2021.9455997
– ident: 11805_CR21
  doi: 10.1109/WACV.2018.00163
– ident: 11805_CR23
  doi: 10.1109/TPAMI.2022.3164083
– ident: 11805_CR24
– ident: 11805_CR13
  doi: 10.1109/TGRS.2024.3363057
– ident: 11805_CR18
  doi: 10.1109/ACCESS.2024.3496925
SSID ssj0010020
Score 2.3895469
Snippet Underwater object detection technology is extensively applied in subsea resource exploration and benthic environmental monitoring; however, the underwater...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 82
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Complex Systems
Computational Intelligence
Computer Science
Design
Environmental monitoring
Feature extraction
Localization
Modules
Object recognition
Occlusion
Performance evaluation
Semantics
Target detection
Telematics
Underwater
Water quality
Title FEFM-YOLO11: Underwater Object Detection Algorithm Based on Improved YOLO11
URI https://link.springer.com/article/10.1007/s11063-025-11805-2
https://www.proquest.com/docview/3246238003
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hdmHhjSiUygMbWGqduHHYQmmoKKULldopsmMHhpIiWsTf5-wkikAwsFiRY2e4y_m-870ALjTKP0tddL8S1Pe6kobSy6hgQT8zHpoU0uYOTx77o5l_P-fzMilsXUW7Vy5Jd1LXyW5ovVifI6e2bBmnePA2OdrutmHDwOY4VH0LcKpMj_l933cVVOPKH65Qp2HiPdgpoSGJCl7uw5bJD2C3artASik8hHE8jCd0MX2Y9nrXxDUu-pR2xVTZSxVyazYuvion0fJ5hcb_yyu5QWWlCU4Vlwj4XOw_glk8fBqMaNkTgaaIxBhFg9KzRelxUChsWZAFXRukxmQmQtNTUhs_tWWsPD_jXCspjOAqCJUyAUoz946hka9ycwLESEQvWqaImVK08kKhU8mkCDOtkVEqaMFlRabkrSh9kdRFji1REyRq4oiasBa0K0ompRisE0RrCK8Qk3otuKqoW7_--2un_1t-BtvMMdgG2bWhsXn_MOcIFjaqA83objEedtw_Ysf-AMcZi74AXXe2uQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4YOOhFfEYUtQdvWgL7YHe9obKivC6QwKlpt101KhhYYuKvd7oPNxI9cNlstu2mmc5Mv-k8CnAhUf6NII7uFy61zBqnHjdD6hpOI1QmmhRc5w73-o32yHoc2-M0KWyRRbtnLslYU-fJbmi9aJ-jTXXZMpui4i1aaIPXClBs3k86rR_vgcZAaYLM3yN_b0I5slxxhsZ7jF-CUTa7JLTktbqMRDX4WincuO70d2A7BZ2kmXDJLmyo6R6UsgsdSCrf-9DxW36PTgbdQb1-TeIrkT657jEQ-riG3Kkojtyakubb02z-Ej2_kxvcBiXBT8nxBL4n4w9g5LeGt22a3rZAA8R4BkVT1dTl7vEhUIxDJ3RqOvzN4KHrqbrgUlmBLpBlWqFtS8Fd5drC8YRQDuoJ2zyEwnQ2VUdAFEdcJHmAaCxA-9FzZcAN7nqhlMgCwinDZUZ-9pEU1WB5-WRNJ4Z0YjGdmFGGSrZCLBWwBUMciMAN0a5ZhquM4Hnz_387Xq_7OWy2h70u6z70OyewZcTrp0P5KlCI5kt1ipAkEmcpB34Dz-DTfA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQkRALb0ShgAc2sNrGSZOwlbZRoS8GKpXJsmMbkCCtShB_n7OTEEAwsERRbGf4Lpf7zvcwQmcS9N-JbXa_CIhLG5yEnGoSOH5LKwouBTe1w6Nxqz91b2be7EsVv812L0KSWU2D6dKUpPWF1PWy8A08GRN_9IhpYeYR-Amvusb0mXBtq_MZRzBsKC-V-X3dd3NUcswfYVFrbaIttJHTRNzO5LqNVlSygzaLIxhwrpG7aBD1ohG5nwwnzeYltocYvXMzYyLMBgvuqtTmWiW4_fwwXz6ljy_4CgyXxPAo21CA-2z9HppGvbtOn-TnI5AYWJlDwLmkpkE9XAQonva13zAJaw7XQaiagkvlxqalFXW150nBAxV4wg-FUD5otkf3USWZJ-oAYcWByUgeA3-KAccwkDF3eBBqKUFowq-i8wImtsjaYLCy4bEBlQGozILKnCqqFUiyXCVeGTA3oFrAT2kVXRTolsN_v-3wf9NP0dptN2LD6_HgCK07VtYm966GKunyTR0Dh0jFif1MPgARyrq3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FEFM-YOLO11%3A+Underwater+Object+Detection+Algorithm+Based+on+Improved+YOLO11&rft.jtitle=Neural+processing+letters&rft.au=Wang%2C+Qi&rft.au=Liu%2C+Zhichuan&rft.date=2025-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=57&rft.issue=5&rft.spage=82&rft_id=info:doi/10.1007%2Fs11063-025-11805-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-773X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-773X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-773X&client=summon