FEFM-YOLO11: Underwater Object Detection Algorithm Based on Improved YOLO11
Underwater object detection technology is extensively applied in subsea resource exploration and benthic environmental monitoring; however, the underwater environment presents significant challenges due to limited visibility caused by insufficient illumination and turbid water quality, severely impe...
Saved in:
Published in | Neural processing letters Vol. 57; no. 5; p. 82 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1573-773X 1370-4621 1573-773X |
DOI | 10.1007/s11063-025-11805-2 |
Cover
Abstract | Underwater object detection technology is extensively applied in subsea resource exploration and benthic environmental monitoring; however, the underwater environment presents significant challenges due to limited visibility caused by insufficient illumination and turbid water quality, severely impeding detection tasks. To address these challenges and enhance precision, this paper proposes FEFM-YOLO11—an enhanced YOLO11-based underwater object detection algorithm. Primarily, the algorithm substitutes two C3K2 modules in the backbone with a Feature Enhancement Module (FEM). Employing a multi-branch dilated convolutional structure, the FEM increases feature diversity, expands the network’s local receptive field, and enhances semantic representation of small objects, thereby strengthening detection capabilities. Subsequently, a Context-Aware Fusion Module (CAFM) is introduced in the Neck, which effectively models global and local features through integrated local feature capture (convolutional operations) and global feature extraction (attention mechanisms), consequently improving denoising performance. Furthermore, a dedicated small-target detection layer is incorporated to specifically boost detection performance for smaller underwater objects. Finally, the Wise IoU loss function was used for comprehensive evaluation and performance optimization, and the collaborative integration of these components effectively reduced the problem of missed detections caused by occlusion in dense cluster targets. Experimental results on the URPC2020 dataset demonstrate that the improved algorithm achieves enhancements of 2.0% points in mAP@50 and 1.9% points in mAP@50:95 compared to the baseline, confirming that FEFM-YOLO11 elevates detection precision and validates the feasibility and effectiveness of the proposed methodology. |
---|---|
AbstractList | Underwater object detection technology is extensively applied in subsea resource exploration and benthic environmental monitoring; however, the underwater environment presents significant challenges due to limited visibility caused by insufficient illumination and turbid water quality, severely impeding detection tasks. To address these challenges and enhance precision, this paper proposes FEFM-YOLO11—an enhanced YOLO11-based underwater object detection algorithm. Primarily, the algorithm substitutes two C3K2 modules in the backbone with a Feature Enhancement Module (FEM). Employing a multi-branch dilated convolutional structure, the FEM increases feature diversity, expands the network’s local receptive field, and enhances semantic representation of small objects, thereby strengthening detection capabilities. Subsequently, a Context-Aware Fusion Module (CAFM) is introduced in the Neck, which effectively models global and local features through integrated local feature capture (convolutional operations) and global feature extraction (attention mechanisms), consequently improving denoising performance. Furthermore, a dedicated small-target detection layer is incorporated to specifically boost detection performance for smaller underwater objects. Finally, the Wise IoU loss function was used for comprehensive evaluation and performance optimization, and the collaborative integration of these components effectively reduced the problem of missed detections caused by occlusion in dense cluster targets. Experimental results on the URPC2020 dataset demonstrate that the improved algorithm achieves enhancements of 2.0% points in mAP@50 and 1.9% points in mAP@50:95 compared to the baseline, confirming that FEFM-YOLO11 elevates detection precision and validates the feasibility and effectiveness of the proposed methodology. |
ArticleNumber | 82 |
Author | Wang, Qi Liu, Zhichuan |
Author_xml | – sequence: 1 givenname: Qi surname: Wang fullname: Wang, Qi email: 002086@nuist.edu.cn organization: School of Computer Science, Nanjing University of Information Science and Technology – sequence: 2 givenname: Zhichuan surname: Liu fullname: Liu, Zhichuan organization: School of Computer Science, Nanjing University of Information Science and Technology |
BookMark | eNp9kEFPAjEQhRuDiYD-AU-beK5OO1tavCGCEjF7kURPTbvbRQjsYrtI_PdW10RPnt5k8r55k9cjnaquHCHnDC4ZgLwKjMEAKXBBGVMgKD8iXSYkUinxufNnPiG9ENYAEePQJQ_TyfSRvmTzjLHrZFEVzh9M43yS2bXLm-TWNVFWdZWMNsvar5rXbXJjgiuSuJptd75-j3PLn5Lj0myCO_vRPllMJ0_jezrP7mbj0ZzmHBmnqBBBxX9AWSFVKUsJfJAqbko1dMyawqW5VCzFtBSisEY5JawcWuskSBTYJxft3Zj-tneh0et676sYqZGnA44KAKOLt67c1yF4V-qdX22N_9AM9Fdpui1Nx9L0d2maRwhbKERztXT-9_Q_1CexX21n |
Cites_doi | 10.1038/s40494-025-01565-6 10.1109/ICCV48922.2021.00349 10.1109/TPAMI.2016.2577031 10.1109/ICCV.2017.322 10.1007/978-3-319-46448-0_2 10.1109/TIM.2023.3346488 10.1109/ICCV.2019.00667 10.1016/j.ecoinf.2024.102680 10.1109/LGRS.2024.3370299 10.1109/CVPR.2016.91 10.1364/OE.510681 10.1109/TIM.2021.3132332 10.1109/ICCV.2015.169 10.1109/ICMEW53276.2021.9455997 10.1109/WACV.2018.00163 10.1109/TPAMI.2022.3164083 10.1109/TGRS.2024.3363057 10.1109/ACCESS.2024.3496925 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION JQ2 |
DOI | 10.1007/s11063-025-11805-2 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-773X |
ExternalDocumentID | 10_1007_s11063_025_11805_2 |
GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 203 29N 2J2 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 53G 5VS 67Z 6NX 77I 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABBBX ABBXA ABDBE ABDZT ABECU ABEEZ ABFSG ABFTD ABFTV ABHLI ABHQN ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACACY ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACSTC ACULB ADHHG ADHIR ADIMF ADKNI ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFGXO AFHIU AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 C24 C6C CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM MA- NB0 NPVJJ NQJWS O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT5 QOK QOS R89 R9I RHV RNS RPX RSV S16 S1Z S27 S3B SAP SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX CITATION JQ2 |
ID | FETCH-LOGICAL-c2312-38330857308b578f7f7026482af89e1bade4c781434f55dba8e85b79bbe707353 |
IEDL.DBID | C24 |
ISSN | 1573-773X 1370-4621 |
IngestDate | Sat Sep 06 11:17:51 EDT 2025 Thu Sep 11 00:23:43 EDT 2025 Thu Sep 04 04:30:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Loss function CAFM YOLO11 Object detection FEM |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2312-38330857308b578f7f7026482af89e1bade4c781434f55dba8e85b79bbe707353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1007/s11063-025-11805-2 |
PQID | 3246238003 |
PQPubID | 2043838 |
ParticipantIDs | proquest_journals_3246238003 crossref_primary_10_1007_s11063_025_11805_2 springer_journals_10_1007_s11063_025_11805_2 |
PublicationCentury | 2000 |
PublicationDate | 2025-10-01 |
PublicationDateYYYYMMDD | 2025-10-01 |
PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Neural processing letters |
PublicationTitleAbbrev | Neural Process Lett |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | 11805_CR9 11805_CR8 11805_CR7 11805_CR6 11805_CR5 11805_CR4 11805_CR3 11805_CR2 11805_CR1 11805_CR10 11805_CR11 11805_CR12 11805_CR13 11805_CR14 11805_CR15 11805_CR16 11805_CR17 11805_CR18 11805_CR19 11805_CR20 11805_CR21 11805_CR22 11805_CR23 11805_CR24 11805_CR25 11805_CR26 11805_CR27 |
References_xml | – ident: 11805_CR20 – ident: 11805_CR16 – ident: 11805_CR22 doi: 10.1038/s40494-025-01565-6 – ident: 11805_CR26 doi: 10.1109/ICCV48922.2021.00349 – ident: 11805_CR5 doi: 10.1109/TPAMI.2016.2577031 – ident: 11805_CR12 – ident: 11805_CR10 – ident: 11805_CR6 doi: 10.1109/ICCV.2017.322 – ident: 11805_CR7 doi: 10.1007/978-3-319-46448-0_2 – ident: 11805_CR14 doi: 10.1109/TIM.2023.3346488 – ident: 11805_CR25 doi: 10.1109/ICCV.2019.00667 – ident: 11805_CR1 – ident: 11805_CR11 doi: 10.1016/j.ecoinf.2024.102680 – ident: 11805_CR3 – ident: 11805_CR15 doi: 10.1109/LGRS.2024.3370299 – ident: 11805_CR8 doi: 10.1109/CVPR.2016.91 – ident: 11805_CR9 – ident: 11805_CR19 – ident: 11805_CR2 doi: 10.1364/OE.510681 – ident: 11805_CR17 doi: 10.1109/TIM.2021.3132332 – ident: 11805_CR4 doi: 10.1109/ICCV.2015.169 – ident: 11805_CR27 doi: 10.1109/ICMEW53276.2021.9455997 – ident: 11805_CR21 doi: 10.1109/WACV.2018.00163 – ident: 11805_CR23 doi: 10.1109/TPAMI.2022.3164083 – ident: 11805_CR24 – ident: 11805_CR13 doi: 10.1109/TGRS.2024.3363057 – ident: 11805_CR18 doi: 10.1109/ACCESS.2024.3496925 |
SSID | ssj0010020 |
Score | 2.3895469 |
Snippet | Underwater object detection technology is extensively applied in subsea resource exploration and benthic environmental monitoring; however, the underwater... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 82 |
SubjectTerms | Accuracy Algorithms Artificial Intelligence Complex Systems Computational Intelligence Computer Science Design Environmental monitoring Feature extraction Localization Modules Object recognition Occlusion Performance evaluation Semantics Target detection Telematics Underwater Water quality |
Title | FEFM-YOLO11: Underwater Object Detection Algorithm Based on Improved YOLO11 |
URI | https://link.springer.com/article/10.1007/s11063-025-11805-2 https://www.proquest.com/docview/3246238003 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hdmHhjSiUygMbWGqduHHYQmmoKKULldopsmMHhpIiWsTf5-wkikAwsFiRY2e4y_m-870ALjTKP0tddL8S1Pe6kobSy6hgQT8zHpoU0uYOTx77o5l_P-fzMilsXUW7Vy5Jd1LXyW5ovVifI6e2bBmnePA2OdrutmHDwOY4VH0LcKpMj_l933cVVOPKH65Qp2HiPdgpoSGJCl7uw5bJD2C3artASik8hHE8jCd0MX2Y9nrXxDUu-pR2xVTZSxVyazYuvion0fJ5hcb_yyu5QWWlCU4Vlwj4XOw_glk8fBqMaNkTgaaIxBhFg9KzRelxUChsWZAFXRukxmQmQtNTUhs_tWWsPD_jXCspjOAqCJUyAUoz946hka9ycwLESEQvWqaImVK08kKhU8mkCDOtkVEqaMFlRabkrSh9kdRFji1REyRq4oiasBa0K0ompRisE0RrCK8Qk3otuKqoW7_--2un_1t-BtvMMdgG2bWhsXn_MOcIFjaqA83objEedtw_Ysf-AMcZi74AXXe2uQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4YOOhFfEYUtQdvWgL7YHe9obKivC6QwKlpt101KhhYYuKvd7oPNxI9cNlstu2mmc5Mv-k8CnAhUf6NII7uFy61zBqnHjdD6hpOI1QmmhRc5w73-o32yHoc2-M0KWyRRbtnLslYU-fJbmi9aJ-jTXXZMpui4i1aaIPXClBs3k86rR_vgcZAaYLM3yN_b0I5slxxhsZ7jF-CUTa7JLTktbqMRDX4WincuO70d2A7BZ2kmXDJLmyo6R6UsgsdSCrf-9DxW36PTgbdQb1-TeIrkT657jEQ-riG3Kkojtyakubb02z-Ej2_kxvcBiXBT8nxBL4n4w9g5LeGt22a3rZAA8R4BkVT1dTl7vEhUIxDJ3RqOvzN4KHrqbrgUlmBLpBlWqFtS8Fd5drC8YRQDuoJ2zyEwnQ2VUdAFEdcJHmAaCxA-9FzZcAN7nqhlMgCwinDZUZ-9pEU1WB5-WRNJ4Z0YjGdmFGGSrZCLBWwBUMciMAN0a5ZhquM4Hnz_387Xq_7OWy2h70u6z70OyewZcTrp0P5KlCI5kt1ipAkEmcpB34Dz-DTfA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQkRALb0ShgAc2sNrGSZOwlbZRoS8GKpXJsmMbkCCtShB_n7OTEEAwsERRbGf4Lpf7zvcwQmcS9N-JbXa_CIhLG5yEnGoSOH5LKwouBTe1w6Nxqz91b2be7EsVv812L0KSWU2D6dKUpPWF1PWy8A08GRN_9IhpYeYR-Amvusb0mXBtq_MZRzBsKC-V-X3dd3NUcswfYVFrbaIttJHTRNzO5LqNVlSygzaLIxhwrpG7aBD1ohG5nwwnzeYltocYvXMzYyLMBgvuqtTmWiW4_fwwXz6ljy_4CgyXxPAo21CA-2z9HppGvbtOn-TnI5AYWJlDwLmkpkE9XAQonva13zAJaw7XQaiagkvlxqalFXW150nBAxV4wg-FUD5otkf3USWZJ-oAYcWByUgeA3-KAccwkDF3eBBqKUFowq-i8wImtsjaYLCy4bEBlQGozILKnCqqFUiyXCVeGTA3oFrAT2kVXRTolsN_v-3wf9NP0dptN2LD6_HgCK07VtYm966GKunyTR0Dh0jFif1MPgARyrq3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FEFM-YOLO11%3A+Underwater+Object+Detection+Algorithm+Based+on+Improved+YOLO11&rft.jtitle=Neural+processing+letters&rft.au=Wang%2C+Qi&rft.au=Liu%2C+Zhichuan&rft.date=2025-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=57&rft.issue=5&rft.spage=82&rft_id=info:doi/10.1007%2Fs11063-025-11805-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-773X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-773X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-773X&client=summon |