Classical analgesic drugs modulate nociceptive-like escape behavior in Drosophila melanogaster larvae
Introduction: Nociceptive stimulus triggers escape responses in Drosophila melanogaster larvae, characterized by 360° rolling behavior along its own body axis. Therefore, it is possible to study analgesic drugs based on this stereotypical nociceptive-like escape behavior. Here, we aimed to develop...
Saved in:
Published in | Research results in pharmacology (English ed.) Vol. 8; no. 4; pp. 185 - 196 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Belgorod National Research University
22.12.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | Introduction: Nociceptive stimulus triggers escape responses in Drosophila melanogaster larvae, characterized by 360° rolling behavior along its own body axis. Therefore, it is possible to study analgesic drugs based on this stereotypical nociceptive-like escape behavior. Here, we aimed to develop an analgesic predictive validity test of thermal nociception through D. melanogaster larvae.
Materials and methods: We evaluated the effect of classical analgesics (morphine, dipyrone, acetylsalicylic acid (ASA) and dexamethasone (DXM)) in the rolling behavior latency of D. melanogaster larvae exposed to thermal-acute noxious stimulus and nociceptive sensitization paradigm. Drugs were injected into hemocoel (100 nL) before nociceptive measurement.
Results and discussion: Rolling behavior latency was increased by morphine (2, 4, 8 and 16 ng) in dose-dependent manner. Naloxone (4 ng) fully reversed maximum effect of morphine. Dipyrone (32, 64 and 128 ng) and DXM (8 and 16 ng) elicited dose-dependent antinociceptive effects. Exposure of larvae to 97% of maximal infrared intensity induced nociceptive sensitization, i.e., latency changed from 12 to 7.5 seconds. ASA (25, 50 and 100 ng) and DXM (4, 8 and 16 ng) were administered 150 min after nociceptive sensitization and displayed reverse sensitization in rapid onset (30 min after injection). DXM (16 ng), injected prior to nociceptive sensitization, displayed a delay in the onset of action (150 min after injection). Locomotor behaviors were not affected by analgesic substances.
Conclusion: Our findings open perspectives for evaluation and discovery of antinociceptive drugs using D. melanogaster larvae model.
Graphical abstract: |
---|---|
AbstractList | Introduction: Nociceptive stimulus triggers escape responses in Drosophila melanogaster larvae, characterized by 360° rolling behavior along its own body axis. Therefore, it is possible to study analgesic drugs based on this stereotypical nociceptive-like escape behavior. Here, we aimed to develop an analgesic predictive validity test of thermal nociception through D. melanogaster larvae.
Materials and methods: We evaluated the effect of classical analgesics (morphine, dipyrone, acetylsalicylic acid (ASA) and dexamethasone (DXM)) in the rolling behavior latency of D. melanogaster larvae exposed to thermal-acute noxious stimulus and nociceptive sensitization paradigm. Drugs were injected into hemocoel (100 nL) before nociceptive measurement.
Results and discussion: Rolling behavior latency was increased by morphine (2, 4, 8 and 16 ng) in dose-dependent manner. Naloxone (4 ng) fully reversed maximum effect of morphine. Dipyrone (32, 64 and 128 ng) and DXM (8 and 16 ng) elicited dose-dependent antinociceptive effects. Exposure of larvae to 97% of maximal infrared intensity induced nociceptive sensitization, i.e., latency changed from 12 to 7.5 seconds. ASA (25, 50 and 100 ng) and DXM (4, 8 and 16 ng) were administered 150 min after nociceptive sensitization and displayed reverse sensitization in rapid onset (30 min after injection). DXM (16 ng), injected prior to nociceptive sensitization, displayed a delay in the onset of action (150 min after injection). Locomotor behaviors were not affected by analgesic substances.
Conclusion: Our findings open perspectives for evaluation and discovery of antinociceptive drugs using D. melanogaster larvae model.
Graphical abstract: Introduction: Nociceptive stimulus triggers escape responses in Drosophila melanogaster larvae, characterized by 360° rolling behavior along its own body axis. Therefore, it is possible to study analgesic drugs based on this stereotypical nociceptive-like escape behavior. Here, we aimed to develop an analgesic predictive validity test of thermal nociception through D. melanogaster larvae. Materials and methods: We evaluated the effect of classical analgesics (morphine, dipyrone, acetylsalicylic acid (ASA) and dexamethasone (DXM)) in the rolling behavior latency of D. melanogaster larvae exposed to thermal-acute noxious stimulus and nociceptive sensitization paradigm. Drugs were injected into hemocoel (100 nL) before nociceptive measurement. Results and discussion: Rolling behavior latency was increased by morphine (2, 4, 8 and 16 ng) in dose-dependent manner. Naloxone (4 ng) fully reversed maximum effect of morphine. Dipyrone (32, 64 and 128 ng) and DXM (8 and 16 ng) elicited dose-dependent antinociceptive effects. Exposure of larvae to 97% of maximal infrared intensity induced nociceptive sensitization, i.e., latency changed from 12 to 7.5 seconds. ASA (25, 50 and 100 ng) and DXM (4, 8 and 16 ng) were administered 150 min after nociceptive sensitization and displayed reverse sensitization in rapid onset (30 min after injection). DXM (16 ng), injected prior to nociceptive sensitization, displayed a delay in the onset of action (150 min after injection). Locomotor behaviors were not affected by analgesic substances. Conclusion: Our findings open perspectives for evaluation and discovery of antinociceptive drugs using D. melanogaster larvae model. Graphical abstract |
Author | Duarte, Igor Dimitri Gama Lopes, Caio Fábio Baeta Gumarães, Jennifer Diniz Soares Romero, Thiago Roberto Lima Santos-Silva, Thamyris Kuhn, Gustavo Campos Silva Valer, Felipe Berti Naves, Lígia Araújo |
Author_xml | – sequence: 1 givenname: Thamyris orcidid: 0000-0001-5129-5695 surname: Santos-Silva fullname: Santos-Silva, Thamyris – sequence: 2 givenname: Caio Fábio Baeta orcidid: 0000-0002-0080-2308 surname: Lopes fullname: Lopes, Caio Fábio Baeta – sequence: 3 givenname: Jennifer Diniz Soares orcidid: 0000-0002-7787-4553 surname: Gumarães fullname: Gumarães, Jennifer Diniz Soares – sequence: 4 givenname: Felipe Berti orcidid: 0000-0001-6286-3811 surname: Valer fullname: Valer, Felipe Berti – sequence: 5 givenname: Gustavo Campos Silva orcidid: 0000-0002-6280-7964 surname: Kuhn fullname: Kuhn, Gustavo Campos Silva – sequence: 6 givenname: Thiago Roberto Lima orcidid: 0000-0001-9723-0395 surname: Romero fullname: Romero, Thiago Roberto Lima – sequence: 7 givenname: Lígia Araújo orcidid: 0000-0002-2668-4098 surname: Naves fullname: Naves, Lígia Araújo – sequence: 8 givenname: Igor Dimitri Gama orcidid: 0000-0003-3891-5225 surname: Duarte fullname: Duarte, Igor Dimitri Gama |
BookMark | eNpVkMtKQzEURYMo-PwFyQ_cmtxXkqHUV0FwouAsnCQnt6npzSWpBf_eWkV0dDZnsDZ7nZLDMY1IyCVns0YqcZXztIS8BptiGj5mcqZ4o9gBOan7TlaN5K-Hf_IxuShlxRirOyZaVZ8QnEcoJViIFEaIA-4ydfl9KHSd3HuEDdIx2WBx2oQtVjG8IcViYUJqcAnbkDINI73JqaRpGSLQNUYY0wBlg5lGyFvAc3LkIRa8-Lln5OXu9nn-UD0-3S_m14-VrRvOKseMEw03qJipnXTQWy9bbk0rOmGMUNJIzqySsu-NU66TkoFthaiFBN5Dc0YW31yXYKWnHNaQP3SCoPePlAcNeRNsRC2BccHBtL6BFnpnPFfcQ-flrsQbv2P13yy7m1Yy-l8eZ_rLvf7vXku9d998AgMygWM |
Cites_doi | 10.1126/science.114.2954.149 10.1007/s00441-020-03264-z 10.1016/j.bbrc.2017.03.116 10.1016/j.tma.2019.09.004 10.1080/17460441.2019.1569624 10.1016/S0092-8674(03)00272-1 10.1186/s12974-020-1703-1 10.7554/eLife.26016 10.1038/nn.4416 10.1016/j.neubiorev.2020.11.014 10.3791/3837 10.1002/dvdy.22737 10.1101/gr.169901 10.1371/journal.pone.0078704 10.3791/61911 10.1016/j.mad.2004.06.010 10.1016/j.cub.2017.06.068 10.4161/fly.5.4.17810 10.1371/journal.pone.0025890 10.1177/0261192919899853 10.1016/j.cophys.2019.07.001 10.1186/s12861-015-0062-0 10.1016/j.neubiorev.2020.12.032 10.1139/gen-2020-0037 10.1186/s12866-020-01848-x 10.24875/RIC.20000380 10.1021/acschemneuro.8b00150 10.1523/JNEUROSCI.3262-09.2010 10.1016/j.ydbio.2022.02.013 10.1111/j.1471-4159.1990.tb13297.x 10.1172/JCI108132 10.1016/j.jneumeth.2020.108997 10.1111/jabr.12124 10.1016/j.steroids.2015.06.015 10.1016/j.mod.2015.06.002 10.1186/1471-213X-5-4 10.1111/gbb.12545 10.1073/pnas.2113645119 10.2478/pjvs-2014-0030 10.1016/S0021-9258(19)38604-1 10.1002/arch.20085 10.1371/journal.pone.0023180 10.1093/emboj/18.21.5892 10.1073/pnas.1820840116 10.1098/rstb.2019.0282 10.1007/s00359-009-0482-z 10.1038/nm.2235 10.1124/pr.110.003293 10.1016/j.tips.2018.11.002 10.1038/s41598-022-23236-3 10.1242/bio.052928 10.1101/2022.03.08.483420 10.1093/genetics/154.3.1203 10.1016/0143-4179(83)90012-4 10.1016/0304-3959(88)90026-7 10.1016/j.cub.2007.11.029 10.1016/0090-6980(86)90195-4 10.1242/dev.017590 10.1083/jcb.140.1.143 10.1002/smll.202004182 10.1242/dmm.049549 10.1371/journal.pone.0211897 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3897/rrpharmacology.8.91390 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 2658-381X |
EndPage | 196 |
ExternalDocumentID | oai_doaj_org_article_8a0171ab4f3a4a6dbf191fa5f88b8fbf 10_3897_rrpharmacology_8_91390 |
GroupedDBID | 7X7 8FI AAYXX ABDBF AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CITATION EAP EN8 ESX GROUPED_DOAJ IAO IHR INH ITC M~E PIMPY PQQKQ FYUFA |
ID | FETCH-LOGICAL-c2310-d0bd731be90b2d8da6cf841cb4757bb798b810c98866bd9d5880ac477278a16a3 |
IEDL.DBID | DOA |
ISSN | 2658-381X |
IngestDate | Tue Oct 22 15:12:03 EDT 2024 Fri Dec 06 01:53:49 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2310-d0bd731be90b2d8da6cf841cb4757bb798b810c98866bd9d5880ac477278a16a3 |
ORCID | 0000-0001-6286-3811 0000-0001-9723-0395 0000-0002-2668-4098 0000-0001-5129-5695 0000-0002-6280-7964 0000-0002-0080-2308 0000-0002-7787-4553 0000-0003-3891-5225 |
OpenAccessLink | https://doaj.org/article/8a0171ab4f3a4a6dbf191fa5f88b8fbf |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8a0171ab4f3a4a6dbf191fa5f88b8fbf crossref_primary_10_3897_rrpharmacology_8_91390 |
PublicationCentury | 2000 |
PublicationDate | 2022-12-22 |
PublicationDateYYYYMMDD | 2022-12-22 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | Research results in pharmacology (English ed.) |
PublicationYear | 2022 |
Publisher | Belgorod National Research University |
Publisher_xml | – name: Belgorod National Research University |
References | 91390_B36 91390_B37 91390_B38 91390_B39 91390_B30 91390_B31 91390_B32 91390_B33 91390_B34 91390_B35 91390_B47 91390_B48 91390_B49 91390_B40 91390_B41 91390_B42 91390_B43 91390_B44 91390_B45 91390_B46 91390_B14 91390_B58 91390_B9 91390_B15 91390_B59 91390_B16 91390_B17 91390_B6 91390_B18 91390_B5 91390_B19 91390_B8 91390_B7 Shinozaki (91390_B52) 1957; 13 91390_B50 91390_B51 91390_B53 91390_B10 91390_B54 91390_B11 91390_B55 91390_B12 91390_B56 91390_B13 91390_B57 91390_B60 91390_B2 91390_B1 91390_B4 91390_B3 91390_B25 91390_B26 91390_B27 91390_B28 91390_B29 91390_B61 91390_B62 91390_B63 91390_B20 91390_B64 91390_B21 91390_B22 91390_B23 91390_B24 |
References_xml | – ident: 91390_B18 doi: 10.1126/science.114.2954.149 – ident: 91390_B38 doi: 10.1007/s00441-020-03264-z – ident: 91390_B56 doi: 10.1016/j.bbrc.2017.03.116 – ident: 91390_B31 doi: 10.1016/j.tma.2019.09.004 – ident: 91390_B46 doi: 10.1080/17460441.2019.1569624 – ident: 91390_B58 doi: 10.1016/S0092-8674(03)00272-1 – ident: 91390_B25 doi: 10.1186/s12974-020-1703-1 – ident: 91390_B6 doi: 10.7554/eLife.26016 – ident: 91390_B34 doi: 10.1038/nn.4416 – volume: 13 start-page: 470 year: 1957 ident: 91390_B52 article-title: The specific heat of insects. publication-title: Journal of The Faculty of Science Hokkaido University contributor: fullname: Shinozaki – ident: 91390_B37 doi: 10.1016/j.neubiorev.2020.11.014 – ident: 91390_B8 doi: 10.3791/3837 – ident: 91390_B22 doi: 10.1002/dvdy.22737 – ident: 91390_B20 doi: 10.1101/gr.169901 – ident: 91390_B47 doi: 10.1371/journal.pone.0078704 – ident: 91390_B32 doi: 10.3791/61911 – ident: 91390_B54 doi: 10.1016/j.mad.2004.06.010 – ident: 91390_B64 doi: 10.1016/j.cub.2017.06.068 – ident: 91390_B41 doi: 10.4161/fly.5.4.17810 – ident: 91390_B60 doi: 10.1371/journal.pone.0025890 – ident: 91390_B55 doi: 10.1177/0261192919899853 – ident: 91390_B61 doi: 10.1016/j.cophys.2019.07.001 – ident: 91390_B2 doi: 10.1186/s12861-015-0062-0 – ident: 91390_B12 doi: 10.1016/j.neubiorev.2020.12.032 – ident: 91390_B36 doi: 10.1139/gen-2020-0037 – ident: 91390_B3 doi: 10.1186/s12866-020-01848-x – ident: 91390_B11 doi: 10.24875/RIC.20000380 – ident: 91390_B10 doi: 10.1021/acschemneuro.8b00150 – ident: 91390_B63 doi: 10.1523/JNEUROSCI.3262-09.2010 – ident: 91390_B29 doi: 10.1016/j.ydbio.2022.02.013 – ident: 91390_B49 doi: 10.1111/j.1471-4159.1990.tb13297.x – ident: 91390_B48 doi: 10.1172/JCI108132 – ident: 91390_B1 doi: 10.1016/j.jneumeth.2020.108997 – ident: 91390_B62 doi: 10.1111/jabr.12124 – ident: 91390_B27 doi: 10.1016/j.steroids.2015.06.015 – ident: 91390_B51 doi: 10.1016/j.mod.2015.06.002 – ident: 91390_B40 doi: 10.1186/1471-213X-5-4 – ident: 91390_B24 doi: 10.1111/gbb.12545 – ident: 91390_B17 doi: 10.1073/pnas.2113645119 – ident: 91390_B26 doi: 10.2478/pjvs-2014-0030 – ident: 91390_B28 doi: 10.1016/S0021-9258(19)38604-1 – ident: 91390_B4 doi: 10.1002/arch.20085 – ident: 91390_B30 doi: 10.1371/journal.pone.0023180 – ident: 91390_B5 doi: 10.1093/emboj/18.21.5892 – ident: 91390_B9 doi: 10.1073/pnas.1820840116 – ident: 91390_B33 doi: 10.1098/rstb.2019.0282 – ident: 91390_B53 doi: 10.1007/s00359-009-0482-z – ident: 91390_B15 doi: 10.1038/nm.2235 – ident: 91390_B44 doi: 10.1124/pr.110.003293 – ident: 91390_B45 doi: 10.1016/j.tips.2018.11.002 – ident: 91390_B23 doi: 10.1038/s41598-022-23236-3 – ident: 91390_B13 doi: 10.1242/bio.052928 – ident: 91390_B39 doi: 10.1101/2022.03.08.483420 – ident: 91390_B7 doi: 10.1093/genetics/154.3.1203 – ident: 91390_B42 doi: 10.1016/0143-4179(83)90012-4 – ident: 91390_B35 doi: 10.1038/nn.4416 – ident: 91390_B19 doi: 10.1016/0304-3959(88)90026-7 – ident: 91390_B21 doi: 10.1016/j.cub.2007.11.029 – ident: 91390_B43 doi: 10.1016/0090-6980(86)90195-4 – ident: 91390_B57 doi: 10.1242/dev.017590 – ident: 91390_B16 doi: 10.1083/jcb.140.1.143 – ident: 91390_B14 doi: 10.1002/smll.202004182 – ident: 91390_B59 doi: 10.1242/dmm.049549 – ident: 91390_B50 doi: 10.1371/journal.pone.0211897 |
SSID | ssj0002507492 |
Score | 2.257019 |
Snippet | Introduction: Nociceptive stimulus triggers escape responses in Drosophila melanogaster larvae, characterized by 360° rolling behavior along its own body axis.... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 185 |
Title | Classical analgesic drugs modulate nociceptive-like escape behavior in Drosophila melanogaster larvae |
URI | https://doaj.org/article/8a0171ab4f3a4a6dbf191fa5f88b8fbf |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwviKd7ygDrV1HES2xl5VRUSiIFK3aJzbKOKNkVpi8S_x5e0ECYWtsiKHOs7x3cn330fIZdcCsOFs0y4NGYJaMcybiJmitgXsvCxsnij-_gkB8PkYZSOWlJfWBPW0AM3wPU0IKMLmMTHkIC0xocMw0PqtTbaG1-fvly0kik8g4NjV0kmmpbg4JNVrwrL_uaC_rzSV8iHyX95oxZpf-1d-jtkexUW0utmObtkw5V7pPPczPXZpS8_bVLzLu3Q59ZX9omrpS0RbgolCneEZ2qr5eucTmcWBbocLYMV6hKWD8cm4zdH3Rxrn-i6T5-OS3pX1aoG4wnQqZtAOXsF5FGgExQQcgdk2L9_uR2wlX4CKzBqY5Ybq-LIuIC-sNpCwF4nUWESlSpjVBYQjHiRaS2lsZlNw78MRRLibaUhkhAfks1yVrojQrXKgAOkzscGK1Kh0DEoa6Ti3kvIjklvjWP-3tBk5CG9QOTz38jnOq-RPyY3CPf320hzXQ8E4-cr4-d_Gf_kPyY5JVsCexoiwYQ4I5uLaunOQ6SxMBf1pvoCUyrZYA |
link.rule.ids | 314,780,784,864,2102,27924,27925 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classical+analgesic+drugs+modulate+nociceptive-like+escape+behavior+in+Drosophila+melanogaster+larvae&rft.jtitle=Research+results+in+pharmacology+%28English+ed.%29&rft.au=Santos-Silva%2C+Thamyris&rft.au=Lopes%2C+Caio+F%C3%A1bio+Baeta&rft.au=Gumar%C3%A3es%2C+Jennifer+Diniz+Soares&rft.au=Valer%2C+Felipe+Berti&rft.date=2022-12-22&rft.issn=2658-381X&rft.eissn=2658-381X&rft.volume=8&rft.issue=4&rft.spage=185&rft.epage=196&rft_id=info:doi/10.3897%2Frrpharmacology.8.91390&rft.externalDBID=n%2Fa&rft.externalDocID=10_3897_rrpharmacology_8_91390 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2658-381X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2658-381X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2658-381X&client=summon |