Classical analgesic drugs modulate nociceptive-like escape behavior in Drosophila melanogaster larvae

Introduction: Nociceptive stimulus triggers escape responses in Drosophila melanogaster larvae, characterized by 360° rolling behavior along its own body axis. Therefore, it is possible to study analgesic drugs based on this stereo­typical nociceptive-like escape behavior. Here, we aimed to develop...

Full description

Saved in:
Bibliographic Details
Published inResearch results in pharmacology (English ed.) Vol. 8; no. 4; pp. 185 - 196
Main Authors Santos-Silva, Thamyris, Lopes, Caio Fábio Baeta, Gumarães, Jennifer Diniz Soares, Valer, Felipe Berti, Kuhn, Gustavo Campos Silva, Romero, Thiago Roberto Lima, Naves, Lígia Araújo, Duarte, Igor Dimitri Gama
Format Journal Article
LanguageEnglish
Published Belgorod National Research University 22.12.2022
Online AccessGet full text

Cover

Loading…
Abstract Introduction: Nociceptive stimulus triggers escape responses in Drosophila melanogaster larvae, characterized by 360° rolling behavior along its own body axis. Therefore, it is possible to study analgesic drugs based on this stereo­typical nociceptive-like escape behavior. Here, we aimed to develop an analgesic predictive validity test of thermal nociception through D. melanogaster larvae. Materials and methods: We evaluated the effect of classical analgesics (morphine, dipyrone, acetylsalicylic acid (ASA) and dexamethasone (DXM)) in the rolling behavior latency of D. melanogaster larvae exposed to thermal-acute noxious stimulus and nociceptive sensitization paradigm. Drugs were injected into hemocoel (100 nL) before nocicep­tive measurement. Results and discussion: Rolling behavior latency was increased by morphine (2, 4, 8 and 16 ng) in dose-dependent manner. Naloxone (4 ng) fully reversed maximum effect of morphine. Dipyrone (32, 64 and 128 ng) and DXM (8 and 16 ng) elicited dose-dependent antinociceptive effects. Exposure of larvae to 97% of maximal infrared intensity induced nociceptive sensitization, i.e., latency changed from 12 to 7.5 seconds. ASA (25, 50 and 100 ng) and DXM (4, 8 and 16 ng) were administered 150 min after nociceptive sensitization and displayed reverse sensitization in rapid onset (30 min after injection). DXM (16 ng), injected prior to nociceptive sensitization, displayed a delay in the onset of action (150 min after injection). Locomotor behaviors were not affected by analgesic substances. Conclusion: Our findings open perspectives for evaluation and discovery of antinociceptive drugs using D. melano­gaster larvae model. Graphical abstract:
AbstractList Introduction: Nociceptive stimulus triggers escape responses in Drosophila melanogaster larvae, characterized by 360° rolling behavior along its own body axis. Therefore, it is possible to study analgesic drugs based on this stereo­typical nociceptive-like escape behavior. Here, we aimed to develop an analgesic predictive validity test of thermal nociception through D. melanogaster larvae. Materials and methods: We evaluated the effect of classical analgesics (morphine, dipyrone, acetylsalicylic acid (ASA) and dexamethasone (DXM)) in the rolling behavior latency of D. melanogaster larvae exposed to thermal-acute noxious stimulus and nociceptive sensitization paradigm. Drugs were injected into hemocoel (100 nL) before nocicep­tive measurement. Results and discussion: Rolling behavior latency was increased by morphine (2, 4, 8 and 16 ng) in dose-dependent manner. Naloxone (4 ng) fully reversed maximum effect of morphine. Dipyrone (32, 64 and 128 ng) and DXM (8 and 16 ng) elicited dose-dependent antinociceptive effects. Exposure of larvae to 97% of maximal infrared intensity induced nociceptive sensitization, i.e., latency changed from 12 to 7.5 seconds. ASA (25, 50 and 100 ng) and DXM (4, 8 and 16 ng) were administered 150 min after nociceptive sensitization and displayed reverse sensitization in rapid onset (30 min after injection). DXM (16 ng), injected prior to nociceptive sensitization, displayed a delay in the onset of action (150 min after injection). Locomotor behaviors were not affected by analgesic substances. Conclusion: Our findings open perspectives for evaluation and discovery of antinociceptive drugs using D. melano­gaster larvae model. Graphical abstract:
Introduction: Nociceptive stimulus triggers escape responses in Drosophila melanogaster larvae, characterized by 360° rolling behavior along its own body axis. Therefore, it is possible to study analgesic drugs based on this stereotypical nociceptive-like escape behavior. Here, we aimed to develop an analgesic predictive validity test of thermal nociception through D. melanogaster larvae. Materials and methods: We evaluated the effect of classical analgesics (morphine, dipyrone, acetylsalicylic acid (ASA) and dexamethasone (DXM)) in the rolling behavior latency of D. melanogaster larvae exposed to thermal-acute noxious stimulus and nociceptive sensitization paradigm. Drugs were injected into hemocoel (100 nL) before nociceptive measurement. Results and discussion: Rolling behavior latency was increased by morphine (2, 4, 8 and 16 ng) in dose-dependent manner. Naloxone (4 ng) fully reversed maximum effect of morphine. Dipyrone (32, 64 and 128 ng) and DXM (8 and 16 ng) elicited dose-dependent antinociceptive effects. Exposure of larvae to 97% of maximal infrared intensity induced nociceptive sensitization, i.e., latency changed from 12 to 7.5 seconds. ASA (25, 50 and 100 ng) and DXM (4, 8 and 16 ng) were administered 150 min after nociceptive sensitization and displayed reverse sensitization in rapid onset (30 min after injection). DXM (16 ng), injected prior to nociceptive sensitization, displayed a delay in the onset of action (150 min after injection). Locomotor behaviors were not affected by analgesic substances. Conclusion: Our findings open perspectives for evaluation and discovery of antinociceptive drugs using D. melanogaster larvae model. Graphical abstract
Author Duarte, Igor Dimitri Gama
Lopes, Caio Fábio Baeta
Gumarães, Jennifer Diniz Soares
Romero, Thiago Roberto Lima
Santos-Silva, Thamyris
Kuhn, Gustavo Campos Silva
Valer, Felipe Berti
Naves, Lígia Araújo
Author_xml – sequence: 1
  givenname: Thamyris
  orcidid: 0000-0001-5129-5695
  surname: Santos-Silva
  fullname: Santos-Silva, Thamyris
– sequence: 2
  givenname: Caio Fábio Baeta
  orcidid: 0000-0002-0080-2308
  surname: Lopes
  fullname: Lopes, Caio Fábio Baeta
– sequence: 3
  givenname: Jennifer Diniz Soares
  orcidid: 0000-0002-7787-4553
  surname: Gumarães
  fullname: Gumarães, Jennifer Diniz Soares
– sequence: 4
  givenname: Felipe Berti
  orcidid: 0000-0001-6286-3811
  surname: Valer
  fullname: Valer, Felipe Berti
– sequence: 5
  givenname: Gustavo Campos Silva
  orcidid: 0000-0002-6280-7964
  surname: Kuhn
  fullname: Kuhn, Gustavo Campos Silva
– sequence: 6
  givenname: Thiago Roberto Lima
  orcidid: 0000-0001-9723-0395
  surname: Romero
  fullname: Romero, Thiago Roberto Lima
– sequence: 7
  givenname: Lígia Araújo
  orcidid: 0000-0002-2668-4098
  surname: Naves
  fullname: Naves, Lígia Araújo
– sequence: 8
  givenname: Igor Dimitri Gama
  orcidid: 0000-0003-3891-5225
  surname: Duarte
  fullname: Duarte, Igor Dimitri Gama
BookMark eNpVkMtKQzEURYMo-PwFyQ_cmtxXkqHUV0FwouAsnCQnt6npzSWpBf_eWkV0dDZnsDZ7nZLDMY1IyCVns0YqcZXztIS8BptiGj5mcqZ4o9gBOan7TlaN5K-Hf_IxuShlxRirOyZaVZ8QnEcoJViIFEaIA-4ydfl9KHSd3HuEDdIx2WBx2oQtVjG8IcViYUJqcAnbkDINI73JqaRpGSLQNUYY0wBlg5lGyFvAc3LkIRa8-Lln5OXu9nn-UD0-3S_m14-VrRvOKseMEw03qJipnXTQWy9bbk0rOmGMUNJIzqySsu-NU66TkoFthaiFBN5Dc0YW31yXYKWnHNaQP3SCoPePlAcNeRNsRC2BccHBtL6BFnpnPFfcQ-flrsQbv2P13yy7m1Yy-l8eZ_rLvf7vXku9d998AgMygWM
Cites_doi 10.1126/science.114.2954.149
10.1007/s00441-020-03264-z
10.1016/j.bbrc.2017.03.116
10.1016/j.tma.2019.09.004
10.1080/17460441.2019.1569624
10.1016/S0092-8674(03)00272-1
10.1186/s12974-020-1703-1
10.7554/eLife.26016
10.1038/nn.4416
10.1016/j.neubiorev.2020.11.014
10.3791/3837
10.1002/dvdy.22737
10.1101/gr.169901
10.1371/journal.pone.0078704
10.3791/61911
10.1016/j.mad.2004.06.010
10.1016/j.cub.2017.06.068
10.4161/fly.5.4.17810
10.1371/journal.pone.0025890
10.1177/0261192919899853
10.1016/j.cophys.2019.07.001
10.1186/s12861-015-0062-0
10.1016/j.neubiorev.2020.12.032
10.1139/gen-2020-0037
10.1186/s12866-020-01848-x
10.24875/RIC.20000380
10.1021/acschemneuro.8b00150
10.1523/JNEUROSCI.3262-09.2010
10.1016/j.ydbio.2022.02.013
10.1111/j.1471-4159.1990.tb13297.x
10.1172/JCI108132
10.1016/j.jneumeth.2020.108997
10.1111/jabr.12124
10.1016/j.steroids.2015.06.015
10.1016/j.mod.2015.06.002
10.1186/1471-213X-5-4
10.1111/gbb.12545
10.1073/pnas.2113645119
10.2478/pjvs-2014-0030
10.1016/S0021-9258(19)38604-1
10.1002/arch.20085
10.1371/journal.pone.0023180
10.1093/emboj/18.21.5892
10.1073/pnas.1820840116
10.1098/rstb.2019.0282
10.1007/s00359-009-0482-z
10.1038/nm.2235
10.1124/pr.110.003293
10.1016/j.tips.2018.11.002
10.1038/s41598-022-23236-3
10.1242/bio.052928
10.1101/2022.03.08.483420
10.1093/genetics/154.3.1203
10.1016/0143-4179(83)90012-4
10.1016/0304-3959(88)90026-7
10.1016/j.cub.2007.11.029
10.1016/0090-6980(86)90195-4
10.1242/dev.017590
10.1083/jcb.140.1.143
10.1002/smll.202004182
10.1242/dmm.049549
10.1371/journal.pone.0211897
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3897/rrpharmacology.8.91390
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2658-381X
EndPage 196
ExternalDocumentID oai_doaj_org_article_8a0171ab4f3a4a6dbf191fa5f88b8fbf
10_3897_rrpharmacology_8_91390
GroupedDBID 7X7
8FI
AAYXX
ABDBF
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CITATION
EAP
EN8
ESX
GROUPED_DOAJ
IAO
IHR
INH
ITC
M~E
PIMPY
PQQKQ
FYUFA
ID FETCH-LOGICAL-c2310-d0bd731be90b2d8da6cf841cb4757bb798b810c98866bd9d5880ac477278a16a3
IEDL.DBID DOA
ISSN 2658-381X
IngestDate Tue Oct 22 15:12:03 EDT 2024
Fri Dec 06 01:53:49 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2310-d0bd731be90b2d8da6cf841cb4757bb798b810c98866bd9d5880ac477278a16a3
ORCID 0000-0001-6286-3811
0000-0001-9723-0395
0000-0002-2668-4098
0000-0001-5129-5695
0000-0002-6280-7964
0000-0002-0080-2308
0000-0002-7787-4553
0000-0003-3891-5225
OpenAccessLink https://doaj.org/article/8a0171ab4f3a4a6dbf191fa5f88b8fbf
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_8a0171ab4f3a4a6dbf191fa5f88b8fbf
crossref_primary_10_3897_rrpharmacology_8_91390
PublicationCentury 2000
PublicationDate 2022-12-22
PublicationDateYYYYMMDD 2022-12-22
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-22
  day: 22
PublicationDecade 2020
PublicationTitle Research results in pharmacology (English ed.)
PublicationYear 2022
Publisher Belgorod National Research University
Publisher_xml – name: Belgorod National Research University
References 91390_B36
91390_B37
91390_B38
91390_B39
91390_B30
91390_B31
91390_B32
91390_B33
91390_B34
91390_B35
91390_B47
91390_B48
91390_B49
91390_B40
91390_B41
91390_B42
91390_B43
91390_B44
91390_B45
91390_B46
91390_B14
91390_B58
91390_B9
91390_B15
91390_B59
91390_B16
91390_B17
91390_B6
91390_B18
91390_B5
91390_B19
91390_B8
91390_B7
Shinozaki (91390_B52) 1957; 13
91390_B50
91390_B51
91390_B53
91390_B10
91390_B54
91390_B11
91390_B55
91390_B12
91390_B56
91390_B13
91390_B57
91390_B60
91390_B2
91390_B1
91390_B4
91390_B3
91390_B25
91390_B26
91390_B27
91390_B28
91390_B29
91390_B61
91390_B62
91390_B63
91390_B20
91390_B64
91390_B21
91390_B22
91390_B23
91390_B24
References_xml – ident: 91390_B18
  doi: 10.1126/science.114.2954.149
– ident: 91390_B38
  doi: 10.1007/s00441-020-03264-z
– ident: 91390_B56
  doi: 10.1016/j.bbrc.2017.03.116
– ident: 91390_B31
  doi: 10.1016/j.tma.2019.09.004
– ident: 91390_B46
  doi: 10.1080/17460441.2019.1569624
– ident: 91390_B58
  doi: 10.1016/S0092-8674(03)00272-1
– ident: 91390_B25
  doi: 10.1186/s12974-020-1703-1
– ident: 91390_B6
  doi: 10.7554/eLife.26016
– ident: 91390_B34
  doi: 10.1038/nn.4416
– volume: 13
  start-page: 470
  year: 1957
  ident: 91390_B52
  article-title: The specific heat of insects.
  publication-title: Journal of The Faculty of Science Hokkaido University
  contributor:
    fullname: Shinozaki
– ident: 91390_B37
  doi: 10.1016/j.neubiorev.2020.11.014
– ident: 91390_B8
  doi: 10.3791/3837
– ident: 91390_B22
  doi: 10.1002/dvdy.22737
– ident: 91390_B20
  doi: 10.1101/gr.169901
– ident: 91390_B47
  doi: 10.1371/journal.pone.0078704
– ident: 91390_B32
  doi: 10.3791/61911
– ident: 91390_B54
  doi: 10.1016/j.mad.2004.06.010
– ident: 91390_B64
  doi: 10.1016/j.cub.2017.06.068
– ident: 91390_B41
  doi: 10.4161/fly.5.4.17810
– ident: 91390_B60
  doi: 10.1371/journal.pone.0025890
– ident: 91390_B55
  doi: 10.1177/0261192919899853
– ident: 91390_B61
  doi: 10.1016/j.cophys.2019.07.001
– ident: 91390_B2
  doi: 10.1186/s12861-015-0062-0
– ident: 91390_B12
  doi: 10.1016/j.neubiorev.2020.12.032
– ident: 91390_B36
  doi: 10.1139/gen-2020-0037
– ident: 91390_B3
  doi: 10.1186/s12866-020-01848-x
– ident: 91390_B11
  doi: 10.24875/RIC.20000380
– ident: 91390_B10
  doi: 10.1021/acschemneuro.8b00150
– ident: 91390_B63
  doi: 10.1523/JNEUROSCI.3262-09.2010
– ident: 91390_B29
  doi: 10.1016/j.ydbio.2022.02.013
– ident: 91390_B49
  doi: 10.1111/j.1471-4159.1990.tb13297.x
– ident: 91390_B48
  doi: 10.1172/JCI108132
– ident: 91390_B1
  doi: 10.1016/j.jneumeth.2020.108997
– ident: 91390_B62
  doi: 10.1111/jabr.12124
– ident: 91390_B27
  doi: 10.1016/j.steroids.2015.06.015
– ident: 91390_B51
  doi: 10.1016/j.mod.2015.06.002
– ident: 91390_B40
  doi: 10.1186/1471-213X-5-4
– ident: 91390_B24
  doi: 10.1111/gbb.12545
– ident: 91390_B17
  doi: 10.1073/pnas.2113645119
– ident: 91390_B26
  doi: 10.2478/pjvs-2014-0030
– ident: 91390_B28
  doi: 10.1016/S0021-9258(19)38604-1
– ident: 91390_B4
  doi: 10.1002/arch.20085
– ident: 91390_B30
  doi: 10.1371/journal.pone.0023180
– ident: 91390_B5
  doi: 10.1093/emboj/18.21.5892
– ident: 91390_B9
  doi: 10.1073/pnas.1820840116
– ident: 91390_B33
  doi: 10.1098/rstb.2019.0282
– ident: 91390_B53
  doi: 10.1007/s00359-009-0482-z
– ident: 91390_B15
  doi: 10.1038/nm.2235
– ident: 91390_B44
  doi: 10.1124/pr.110.003293
– ident: 91390_B45
  doi: 10.1016/j.tips.2018.11.002
– ident: 91390_B23
  doi: 10.1038/s41598-022-23236-3
– ident: 91390_B13
  doi: 10.1242/bio.052928
– ident: 91390_B39
  doi: 10.1101/2022.03.08.483420
– ident: 91390_B7
  doi: 10.1093/genetics/154.3.1203
– ident: 91390_B42
  doi: 10.1016/0143-4179(83)90012-4
– ident: 91390_B35
  doi: 10.1038/nn.4416
– ident: 91390_B19
  doi: 10.1016/0304-3959(88)90026-7
– ident: 91390_B21
  doi: 10.1016/j.cub.2007.11.029
– ident: 91390_B43
  doi: 10.1016/0090-6980(86)90195-4
– ident: 91390_B57
  doi: 10.1242/dev.017590
– ident: 91390_B16
  doi: 10.1083/jcb.140.1.143
– ident: 91390_B14
  doi: 10.1002/smll.202004182
– ident: 91390_B59
  doi: 10.1242/dmm.049549
– ident: 91390_B50
  doi: 10.1371/journal.pone.0211897
SSID ssj0002507492
Score 2.257019
Snippet Introduction: Nociceptive stimulus triggers escape responses in Drosophila melanogaster larvae, characterized by 360° rolling behavior along its own body axis....
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 185
Title Classical analgesic drugs modulate nociceptive-like escape behavior in Drosophila melanogaster larvae
URI https://doaj.org/article/8a0171ab4f3a4a6dbf191fa5f88b8fbf
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwviKd7ygDrV1HES2xl5VRUSiIFK3aJzbKOKNkVpi8S_x5e0ECYWtsiKHOs7x3cn330fIZdcCsOFs0y4NGYJaMcybiJmitgXsvCxsnij-_gkB8PkYZSOWlJfWBPW0AM3wPU0IKMLmMTHkIC0xocMw0PqtTbaG1-fvly0kik8g4NjV0kmmpbg4JNVrwrL_uaC_rzSV8iHyX95oxZpf-1d-jtkexUW0utmObtkw5V7pPPczPXZpS8_bVLzLu3Q59ZX9omrpS0RbgolCneEZ2qr5eucTmcWBbocLYMV6hKWD8cm4zdH3Rxrn-i6T5-OS3pX1aoG4wnQqZtAOXsF5FGgExQQcgdk2L9_uR2wlX4CKzBqY5Ybq-LIuIC-sNpCwF4nUWESlSpjVBYQjHiRaS2lsZlNw78MRRLibaUhkhAfks1yVrojQrXKgAOkzscGK1Kh0DEoa6Ti3kvIjklvjWP-3tBk5CG9QOTz38jnOq-RPyY3CPf320hzXQ8E4-cr4-d_Gf_kPyY5JVsCexoiwYQ4I5uLaunOQ6SxMBf1pvoCUyrZYA
link.rule.ids 314,780,784,864,2102,27924,27925
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classical+analgesic+drugs+modulate+nociceptive-like+escape+behavior+in+Drosophila+melanogaster+larvae&rft.jtitle=Research+results+in+pharmacology+%28English+ed.%29&rft.au=Santos-Silva%2C+Thamyris&rft.au=Lopes%2C+Caio+F%C3%A1bio+Baeta&rft.au=Gumar%C3%A3es%2C+Jennifer+Diniz+Soares&rft.au=Valer%2C+Felipe+Berti&rft.date=2022-12-22&rft.issn=2658-381X&rft.eissn=2658-381X&rft.volume=8&rft.issue=4&rft.spage=185&rft.epage=196&rft_id=info:doi/10.3897%2Frrpharmacology.8.91390&rft.externalDBID=n%2Fa&rft.externalDocID=10_3897_rrpharmacology_8_91390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2658-381X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2658-381X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2658-381X&client=summon