Achieving balanced mechanical properties in additively manufactured maraging steel matrix composites through phase engineering

In this work, we demonstrate a phase engineering strategy, based on a composite design of monomorphic diamond (MD) reinforced FV520B maraging steel, for controlling matrix phase constituents with high strength and ductility. Benefiting from the enhanced grain growth rate induced by the MD addition,...

Full description

Saved in:
Bibliographic Details
Published inVirtual and physical prototyping Vol. 20; no. 1
Main Authors Chen, Wei, Xu, Lianyong, Jiang, Wenchun, Lin, Danyang
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 31.12.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we demonstrate a phase engineering strategy, based on a composite design of monomorphic diamond (MD) reinforced FV520B maraging steel, for controlling matrix phase constituents with high strength and ductility. Benefiting from the enhanced grain growth rate induced by the MD addition, the solidification structure transition from planar to cellular and further to dendritic was achieved. The dissolved MD solute modifies the martensite-to-austenite transformation kinetics, promoting the stabilisation of a predominantly austenitic phase structure. Meanwhile, the elemental segregation around the cellular structure contributes to the massive formation of the M23C6 carbides. Consequently, the microstructural changes due to the MD particle addition result in an exceptional synergy of strength and ductility. This work provides a promising way to fabricate dispersion-strengthened maraging steels with high overall performance.
AbstractList In this work, we demonstrate a phase engineering strategy, based on a composite design of monomorphic diamond (MD) reinforced FV520B maraging steel, for controlling matrix phase constituents with high strength and ductility. Benefiting from the enhanced grain growth rate induced by the MD addition, the solidification structure transition from planar to cellular and further to dendritic was achieved. The dissolved MD solute modifies the martensite-to-austenite transformation kinetics, promoting the stabilisation of a predominantly austenitic phase structure. Meanwhile, the elemental segregation around the cellular structure contributes to the massive formation of the M23C6 carbides. Consequently, the microstructural changes due to the MD particle addition result in an exceptional synergy of strength and ductility. This work provides a promising way to fabricate dispersion-strengthened maraging steels with high overall performance.
Author Chen, Wei
Jiang, Wenchun
Xu, Lianyong
Lin, Danyang
Author_xml – sequence: 1
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
– sequence: 2
  givenname: Lianyong
  surname: Xu
  fullname: Xu, Lianyong
– sequence: 3
  givenname: Wenchun
  surname: Jiang
  fullname: Jiang, Wenchun
– sequence: 4
  givenname: Danyang
  surname: Lin
  fullname: Lin, Danyang
BookMark eNo9kUtPxCAUhYnRxOdPMOEPzAgFSrs0xlcyiRtdkwvcTjGd0kDH6MbfLvW1uueecD4g55QcjnFEQi45W3PWsCuupaq0atcVq9S6UrJSjB2Qk8VfVbrWh_9atcfkNOdXxqRggp-Qz2vXB3wL45ZaGGB06OkOXQ9jcDDQKcUJ0xww0zBS8D7M4Q2HD7qDcd-Bm_dpCUCC7YLIM-JQ1jmFd-riboo5zCU79ynutz2deshIcSyHEVNJnJOjDoaMF7_zjLzc3T7fPKw2T_ePN9eblasEZyvBJdi2UXUj-eJosFLUqLQVLfdtrX3jLFe85dIyhTWTnXcelXdWat0JcUYef7g-wquZUihP_jARgvk2YtoaKN90AxqmdIWN1Y65TipEWy7mRYNuC1-3haV-WC7FnBN2_zzOzFKI-SvELIWY30LEFxnxgqI
Cites_doi 10.1016/j.actamat.2020.09.023
10.1126/science.abg1487
10.1016/j.compositesb.2022.109745
10.1016/j.compositesb.2024.111237
10.1016/j.actamat.2018.07.060
10.1016/j.carbon.2017.03.055
10.1016/j.actamat.2020.07.063
10.1126/science.add7857
10.1016/j.msea.2019.01.072
10.1016/j.addma.2020.101195
10.1016/j.addma.2021.101927
10.1002/adfm.202570042
10.1016/j.addma.2022.102918
10.1016/j.actamat.2018.03.017
10.1080/21663831.2019.1631224
10.1016/j.addma.2021.101971
10.1016/j.jmapro.2020.09.052
10.1016/j.corsci.2024.112276
10.1038/nature23894
10.1038/s41467-024-45732-y
10.1016/j.addma.2019.100801
10.1016/j.jmrt.2021.12.015
10.1016/j.addma.2021.102207
10.1016/j.ijplas.2024.104142
10.1016/j.mattod.2025.06.031
10.1016/j.msea.2022.142926
10.1016/j.actamat.2021.116862
10.1016/j.addma.2020.101381
10.1126/science.abj3770
10.1016/j.actamat.2017.02.062
10.1016/j.actamat.2018.09.006
10.1016/S1002-0071(12)60029-X
10.1016/j.addma.2018.04.031
10.1016/j.jmapro.2025.01.030
10.1016/j.compositesb.2022.109820
10.1016/j.apsusc.2018.06.220
10.1016/j.actamat.2021.117605
10.1016/j.compositesb.2023.111006
10.1016/j.actamat.2017.08.011
10.1016/j.addma.2022.102648
10.1016/j.actamat.2019.02.020
10.1016/j.jmst.2024.06.045
10.1016/j.addma.2024.104259
10.1016/j.addma.2024.104401
10.1016/j.jmst.2023.11.032
10.1016/j.addma.2024.104427
10.1016/j.jmapro.2024.04.042
10.1016/j.jmst.2021.11.027
10.1016/j.msea.2024.146148
10.1038/s41467-019-12047-2
10.1016/j.addma.2024.104223
10.1088/2631-7990/ad88bc
10.1016/j.scriptamat.2013.11.031
10.1016/j.compositesb.2024.111570
10.1016/j.actamat.2023.119572
10.1016/j.msea.2014.12.018
10.1016/j.actamat.2017.06.046
10.1126/science.aaf2093
10.1016/j.msea.2022.143065
10.1016/j.jmatprotec.2020.116959
10.1016/j.addma.2024.104303
10.1016/j.ijmecsci.2024.109491
10.1002/advs.202206607
10.1016/j.actamat.2012.09.068
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1080/17452759.2025.2542500
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1745-2767
ExternalDocumentID oai_doaj_org_article_0572e8b7c0cf45eebb9810cfa7919179
10_1080_17452759_2025_2542500
GroupedDBID .7F
.QJ
0BK
0YH
123
29Q
30N
4.4
AAJMT
AAYXX
ABCCY
ABFIM
ABPAQ
ABPEM
ABTAI
ABXYU
ACGEJ
ACGFO
ACGFS
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEYOC
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CITATION
CS3
DKSSO
EBS
E~A
E~B
GROUPED_DOAJ
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
KYCEM
LJTGL
M4Z
O9-
P2P
S-T
SNACF
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
TWF
TWQ
UT5
UU3
~S~
ID FETCH-LOGICAL-c2310-314ab9856841c2317ab436e57b391d967d8cb151914b05e604fdcde5dcb477f33
IEDL.DBID DOA
ISSN 1745-2759
IngestDate Wed Aug 27 01:18:59 EDT 2025
Thu Aug 21 00:23:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2310-314ab9856841c2317ab436e57b391d967d8cb151914b05e604fdcde5dcb477f33
OpenAccessLink https://doaj.org/article/0572e8b7c0cf45eebb9810cfa7919179
ParticipantIDs doaj_primary_oai_doaj_org_article_0572e8b7c0cf45eebb9810cfa7919179
crossref_primary_10_1080_17452759_2025_2542500
PublicationCentury 2000
PublicationDate 2025-12-31
PublicationDateYYYYMMDD 2025-12-31
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-31
  day: 31
PublicationDecade 2020
PublicationTitle Virtual and physical prototyping
PublicationYear 2025
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References e_1_3_4_3_1
e_1_3_4_61_1
e_1_3_4_63_1
e_1_3_4_9_1
e_1_3_4_42_1
e_1_3_4_7_1
e_1_3_4_40_1
e_1_3_4_5_1
e_1_3_4_23_1
e_1_3_4_46_1
e_1_3_4_21_1
e_1_3_4_44_1
e_1_3_4_27_1
e_1_3_4_65_1
e_1_3_4_25_1
e_1_3_4_48_1
e_1_3_4_29_1
e_1_3_4_53_1
e_1_3_4_30_1
e_1_3_4_51_1
e_1_3_4_13_1
e_1_3_4_34_1
e_1_3_4_59_1
e_1_3_4_55_1
e_1_3_4_11_1
e_1_3_4_32_1
e_1_3_4_17_1
e_1_3_4_38_1
e_1_3_4_15_1
e_1_3_4_36_1
e_1_3_4_57_1
e_1_3_4_19_1
e_1_3_4_4_1
e_1_3_4_2_1
e_1_3_4_62_1
e_1_3_4_64_1
e_1_3_4_8_1
e_1_3_4_20_1
e_1_3_4_41_1
e_1_3_4_6_1
e_1_3_4_60_1
e_1_3_4_24_1
e_1_3_4_45_1
e_1_3_4_22_1
e_1_3_4_43_1
e_1_3_4_28_1
e_1_3_4_49_1
e_1_3_4_26_1
e_1_3_4_47_1
e_1_3_4_31_1
e_1_3_4_52_1
e_1_3_4_50_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_58_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_54_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_14_1
e_1_3_4_37_1
e_1_3_4_56_1
e_1_3_4_18_1
References_xml – ident: e_1_3_4_39_1
  doi: 10.1016/j.actamat.2020.09.023
– ident: e_1_3_4_2_1
  doi: 10.1126/science.abg1487
– ident: e_1_3_4_26_1
  doi: 10.1016/j.compositesb.2022.109745
– ident: e_1_3_4_45_1
  doi: 10.1016/j.compositesb.2024.111237
– ident: e_1_3_4_57_1
  doi: 10.1016/j.actamat.2018.07.060
– ident: e_1_3_4_22_1
  doi: 10.1016/j.carbon.2017.03.055
– ident: e_1_3_4_31_1
  doi: 10.1016/j.actamat.2020.07.063
– ident: e_1_3_4_56_1
  doi: 10.1126/science.add7857
– ident: e_1_3_4_36_1
  doi: 10.1016/j.msea.2019.01.072
– ident: e_1_3_4_37_1
  doi: 10.1016/j.addma.2020.101195
– ident: e_1_3_4_24_1
  doi: 10.1016/j.addma.2021.101927
– ident: e_1_3_4_3_1
  doi: 10.1002/adfm.202570042
– ident: e_1_3_4_53_1
  doi: 10.1016/j.addma.2022.102918
– ident: e_1_3_4_15_1
  doi: 10.1016/j.actamat.2018.03.017
– ident: e_1_3_4_40_1
  doi: 10.1080/21663831.2019.1631224
– ident: e_1_3_4_46_1
  doi: 10.1016/j.addma.2021.101971
– ident: e_1_3_4_11_1
  doi: 10.1016/j.jmapro.2020.09.052
– ident: e_1_3_4_29_1
  doi: 10.1016/j.corsci.2024.112276
– ident: e_1_3_4_19_1
  doi: 10.1038/nature23894
– ident: e_1_3_4_7_1
  doi: 10.1038/s41467-024-45732-y
– ident: e_1_3_4_20_1
  doi: 10.1016/j.addma.2019.100801
– ident: e_1_3_4_38_1
  doi: 10.1016/j.jmrt.2021.12.015
– ident: e_1_3_4_49_1
  doi: 10.1016/j.addma.2021.102207
– ident: e_1_3_4_30_1
  doi: 10.1016/j.ijplas.2024.104142
– ident: e_1_3_4_14_1
  doi: 10.1016/j.mattod.2025.06.031
– ident: e_1_3_4_48_1
  doi: 10.1016/j.msea.2022.142926
– ident: e_1_3_4_32_1
  doi: 10.1016/j.actamat.2021.116862
– ident: e_1_3_4_12_1
  doi: 10.1016/j.addma.2020.101381
– ident: e_1_3_4_25_1
  doi: 10.1126/science.abj3770
– ident: e_1_3_4_18_1
  doi: 10.1016/j.actamat.2017.02.062
– ident: e_1_3_4_44_1
  doi: 10.1016/j.actamat.2018.09.006
– ident: e_1_3_4_23_1
  doi: 10.1016/S1002-0071(12)60029-X
– ident: e_1_3_4_52_1
  doi: 10.1016/j.addma.2018.04.031
– ident: e_1_3_4_55_1
  doi: 10.1016/j.jmapro.2025.01.030
– ident: e_1_3_4_51_1
  doi: 10.1016/j.compositesb.2022.109820
– ident: e_1_3_4_50_1
  doi: 10.1016/j.apsusc.2018.06.220
– ident: e_1_3_4_35_1
  doi: 10.1016/j.actamat.2021.117605
– ident: e_1_3_4_54_1
  doi: 10.1016/j.compositesb.2023.111006
– ident: e_1_3_4_27_1
  doi: 10.1016/j.actamat.2017.08.011
– ident: e_1_3_4_34_1
  doi: 10.1016/j.addma.2022.102648
– ident: e_1_3_4_28_1
  doi: 10.1016/j.actamat.2019.02.020
– ident: e_1_3_4_64_1
  doi: 10.1016/j.jmst.2024.06.045
– ident: e_1_3_4_4_1
  doi: 10.1016/j.addma.2024.104259
– ident: e_1_3_4_33_1
  doi: 10.1016/j.addma.2024.104401
– ident: e_1_3_4_63_1
  doi: 10.1016/j.jmst.2023.11.032
– ident: e_1_3_4_41_1
  doi: 10.1016/j.addma.2024.104427
– ident: e_1_3_4_6_1
  doi: 10.1016/j.jmapro.2024.04.042
– ident: e_1_3_4_62_1
  doi: 10.1016/j.jmst.2021.11.027
– ident: e_1_3_4_21_1
  doi: 10.1016/j.msea.2024.146148
– ident: e_1_3_4_17_1
  doi: 10.1038/s41467-019-12047-2
– ident: e_1_3_4_60_1
  doi: 10.1016/j.addma.2024.104223
– ident: e_1_3_4_13_1
  doi: 10.1088/2631-7990/ad88bc
– ident: e_1_3_4_47_1
  doi: 10.1016/j.scriptamat.2013.11.031
– ident: e_1_3_4_59_1
  doi: 10.1016/j.compositesb.2024.111570
– ident: e_1_3_4_9_1
  doi: 10.1016/j.actamat.2023.119572
– ident: e_1_3_4_42_1
  doi: 10.1016/j.msea.2014.12.018
– ident: e_1_3_4_61_1
  doi: 10.1016/j.actamat.2017.06.046
– ident: e_1_3_4_10_1
  doi: 10.1126/science.aaf2093
– ident: e_1_3_4_8_1
  doi: 10.1016/j.msea.2022.143065
– ident: e_1_3_4_16_1
  doi: 10.1016/j.jmatprotec.2020.116959
– ident: e_1_3_4_58_1
  doi: 10.1016/j.addma.2024.104303
– ident: e_1_3_4_5_1
  doi: 10.1016/j.ijmecsci.2024.109491
– ident: e_1_3_4_43_1
  doi: 10.1002/advs.202206607
– ident: e_1_3_4_65_1
  doi: 10.1016/j.actamat.2012.09.068
SSID ssj0043031
Score 2.3565788
Snippet In this work, we demonstrate a phase engineering strategy, based on a composite design of monomorphic diamond (MD) reinforced FV520B maraging steel, for...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms Laser powder bed fusion
mechanical properties
metal matrix composites
microstructure
phase engineering
Title Achieving balanced mechanical properties in additively manufactured maraging steel matrix composites through phase engineering
URI https://doaj.org/article/0572e8b7c0cf45eebb9810cfa7919179
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60Jy--xWfZg9e02WQ3mxyrKEWwJwu9hX1MaKGNJbSgF3-7M3n4OHnxlgzZsHyZzGOZ-YaxW1CFToyGAKwMMUHxIjBpBIGwFgppY1dk1Cj8PEnGU_k0U7Mfo76oJqyhB26AG2I8EUFqtQtdIRWAtVkq8NrojFKNunUPfV6XTDU2WKJhFk0rJHVcqazr3UnDIclIhLlhpAaYH2EQEP7ySj_I-2sv83jI9tvwkI-abR2xHSiP2UE3eoG3f-IJ-xi5-QLoMIBbKk504PkKqIuXQOdrOmKviCuVL0pONUNk1ZbvfGXKLfUybCtaYKp6RhHHLw1LvN1UizdOReZUyYVr2yE-fD1HX8fhm7rwlE0fH17ux0E7SiFwFMChpZUGgVNJKgVJtLEyTkBpG2fCZ4n2qbPo_DMhbaggCWXhnQflnZVaF3F8xnrlawnnjEdRZhTKtE-UNJFKXYwpT0EU5EqHwl2wQQdlvm4YM3LREpF22OeEfd5if8HuCPCvh4nwuhagGuStGuR_qcHlf7zkiu3Rxhoex2vW21RbuMGYY2P7bDcOJ_1ayT4BIF3TqQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+balanced+mechanical+properties+in+additively+manufactured+maraging+steel+matrix+composites+through+phase+engineering&rft.jtitle=Virtual+and+physical+prototyping&rft.au=Chen%2C+Wei&rft.au=Xu%2C+Lianyong&rft.au=Jiang%2C+Wenchun&rft.au=Lin%2C+Danyang&rft.date=2025-12-31&rft.issn=1745-2759&rft.eissn=1745-2767&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1080%2F17452759.2025.2542500&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_17452759_2025_2542500
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2759&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2759&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2759&client=summon