Achieving balanced mechanical properties in additively manufactured maraging steel matrix composites through phase engineering
In this work, we demonstrate a phase engineering strategy, based on a composite design of monomorphic diamond (MD) reinforced FV520B maraging steel, for controlling matrix phase constituents with high strength and ductility. Benefiting from the enhanced grain growth rate induced by the MD addition,...
Saved in:
Published in | Virtual and physical prototyping Vol. 20; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis Group
31.12.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we demonstrate a phase engineering strategy, based on a composite design of monomorphic diamond (MD) reinforced FV520B maraging steel, for controlling matrix phase constituents with high strength and ductility. Benefiting from the enhanced grain growth rate induced by the MD addition, the solidification structure transition from planar to cellular and further to dendritic was achieved. The dissolved MD solute modifies the martensite-to-austenite transformation kinetics, promoting the stabilisation of a predominantly austenitic phase structure. Meanwhile, the elemental segregation around the cellular structure contributes to the massive formation of the M23C6 carbides. Consequently, the microstructural changes due to the MD particle addition result in an exceptional synergy of strength and ductility. This work provides a promising way to fabricate dispersion-strengthened maraging steels with high overall performance. |
---|---|
AbstractList | In this work, we demonstrate a phase engineering strategy, based on a composite design of monomorphic diamond (MD) reinforced FV520B maraging steel, for controlling matrix phase constituents with high strength and ductility. Benefiting from the enhanced grain growth rate induced by the MD addition, the solidification structure transition from planar to cellular and further to dendritic was achieved. The dissolved MD solute modifies the martensite-to-austenite transformation kinetics, promoting the stabilisation of a predominantly austenitic phase structure. Meanwhile, the elemental segregation around the cellular structure contributes to the massive formation of the M23C6 carbides. Consequently, the microstructural changes due to the MD particle addition result in an exceptional synergy of strength and ductility. This work provides a promising way to fabricate dispersion-strengthened maraging steels with high overall performance. |
Author | Chen, Wei Jiang, Wenchun Xu, Lianyong Lin, Danyang |
Author_xml | – sequence: 1 givenname: Wei surname: Chen fullname: Chen, Wei – sequence: 2 givenname: Lianyong surname: Xu fullname: Xu, Lianyong – sequence: 3 givenname: Wenchun surname: Jiang fullname: Jiang, Wenchun – sequence: 4 givenname: Danyang surname: Lin fullname: Lin, Danyang |
BookMark | eNo9kUtPxCAUhYnRxOdPMOEPzAgFSrs0xlcyiRtdkwvcTjGd0kDH6MbfLvW1uueecD4g55QcjnFEQi45W3PWsCuupaq0atcVq9S6UrJSjB2Qk8VfVbrWh_9atcfkNOdXxqRggp-Qz2vXB3wL45ZaGGB06OkOXQ9jcDDQKcUJ0xww0zBS8D7M4Q2HD7qDcd-Bm_dpCUCC7YLIM-JQ1jmFd-riboo5zCU79ynutz2deshIcSyHEVNJnJOjDoaMF7_zjLzc3T7fPKw2T_ePN9eblasEZyvBJdi2UXUj-eJosFLUqLQVLfdtrX3jLFe85dIyhTWTnXcelXdWat0JcUYef7g-wquZUihP_jARgvk2YtoaKN90AxqmdIWN1Y65TipEWy7mRYNuC1-3haV-WC7FnBN2_zzOzFKI-SvELIWY30LEFxnxgqI |
Cites_doi | 10.1016/j.actamat.2020.09.023 10.1126/science.abg1487 10.1016/j.compositesb.2022.109745 10.1016/j.compositesb.2024.111237 10.1016/j.actamat.2018.07.060 10.1016/j.carbon.2017.03.055 10.1016/j.actamat.2020.07.063 10.1126/science.add7857 10.1016/j.msea.2019.01.072 10.1016/j.addma.2020.101195 10.1016/j.addma.2021.101927 10.1002/adfm.202570042 10.1016/j.addma.2022.102918 10.1016/j.actamat.2018.03.017 10.1080/21663831.2019.1631224 10.1016/j.addma.2021.101971 10.1016/j.jmapro.2020.09.052 10.1016/j.corsci.2024.112276 10.1038/nature23894 10.1038/s41467-024-45732-y 10.1016/j.addma.2019.100801 10.1016/j.jmrt.2021.12.015 10.1016/j.addma.2021.102207 10.1016/j.ijplas.2024.104142 10.1016/j.mattod.2025.06.031 10.1016/j.msea.2022.142926 10.1016/j.actamat.2021.116862 10.1016/j.addma.2020.101381 10.1126/science.abj3770 10.1016/j.actamat.2017.02.062 10.1016/j.actamat.2018.09.006 10.1016/S1002-0071(12)60029-X 10.1016/j.addma.2018.04.031 10.1016/j.jmapro.2025.01.030 10.1016/j.compositesb.2022.109820 10.1016/j.apsusc.2018.06.220 10.1016/j.actamat.2021.117605 10.1016/j.compositesb.2023.111006 10.1016/j.actamat.2017.08.011 10.1016/j.addma.2022.102648 10.1016/j.actamat.2019.02.020 10.1016/j.jmst.2024.06.045 10.1016/j.addma.2024.104259 10.1016/j.addma.2024.104401 10.1016/j.jmst.2023.11.032 10.1016/j.addma.2024.104427 10.1016/j.jmapro.2024.04.042 10.1016/j.jmst.2021.11.027 10.1016/j.msea.2024.146148 10.1038/s41467-019-12047-2 10.1016/j.addma.2024.104223 10.1088/2631-7990/ad88bc 10.1016/j.scriptamat.2013.11.031 10.1016/j.compositesb.2024.111570 10.1016/j.actamat.2023.119572 10.1016/j.msea.2014.12.018 10.1016/j.actamat.2017.06.046 10.1126/science.aaf2093 10.1016/j.msea.2022.143065 10.1016/j.jmatprotec.2020.116959 10.1016/j.addma.2024.104303 10.1016/j.ijmecsci.2024.109491 10.1002/advs.202206607 10.1016/j.actamat.2012.09.068 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1080/17452759.2025.2542500 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (WRLC) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1745-2767 |
ExternalDocumentID | oai_doaj_org_article_0572e8b7c0cf45eebb9810cfa7919179 10_1080_17452759_2025_2542500 |
GroupedDBID | .7F .QJ 0BK 0YH 123 29Q 30N 4.4 AAJMT AAYXX ABCCY ABFIM ABPAQ ABPEM ABTAI ABXYU ACGEJ ACGFO ACGFS ACTIO ADCVX ADGTB ADXPE AEISY AEYOC AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CITATION CS3 DKSSO EBS E~A E~B GROUPED_DOAJ GTTXZ H13 HF~ HZ~ H~P IPNFZ KYCEM LJTGL M4Z O9- P2P S-T SNACF TDBHL TEN TFL TFT TFW TTHFI TUROJ TWF TWQ UT5 UU3 ~S~ |
ID | FETCH-LOGICAL-c2310-314ab9856841c2317ab436e57b391d967d8cb151914b05e604fdcde5dcb477f33 |
IEDL.DBID | DOA |
ISSN | 1745-2759 |
IngestDate | Wed Aug 27 01:18:59 EDT 2025 Thu Aug 21 00:23:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2310-314ab9856841c2317ab436e57b391d967d8cb151914b05e604fdcde5dcb477f33 |
OpenAccessLink | https://doaj.org/article/0572e8b7c0cf45eebb9810cfa7919179 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0572e8b7c0cf45eebb9810cfa7919179 crossref_primary_10_1080_17452759_2025_2542500 |
PublicationCentury | 2000 |
PublicationDate | 2025-12-31 |
PublicationDateYYYYMMDD | 2025-12-31 |
PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Virtual and physical prototyping |
PublicationYear | 2025 |
Publisher | Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis Group |
References | e_1_3_4_3_1 e_1_3_4_61_1 e_1_3_4_63_1 e_1_3_4_9_1 e_1_3_4_42_1 e_1_3_4_7_1 e_1_3_4_40_1 e_1_3_4_5_1 e_1_3_4_23_1 e_1_3_4_46_1 e_1_3_4_21_1 e_1_3_4_44_1 e_1_3_4_27_1 e_1_3_4_65_1 e_1_3_4_25_1 e_1_3_4_48_1 e_1_3_4_29_1 e_1_3_4_53_1 e_1_3_4_30_1 e_1_3_4_51_1 e_1_3_4_13_1 e_1_3_4_34_1 e_1_3_4_59_1 e_1_3_4_55_1 e_1_3_4_11_1 e_1_3_4_32_1 e_1_3_4_17_1 e_1_3_4_38_1 e_1_3_4_15_1 e_1_3_4_36_1 e_1_3_4_57_1 e_1_3_4_19_1 e_1_3_4_4_1 e_1_3_4_2_1 e_1_3_4_62_1 e_1_3_4_64_1 e_1_3_4_8_1 e_1_3_4_20_1 e_1_3_4_41_1 e_1_3_4_6_1 e_1_3_4_60_1 e_1_3_4_24_1 e_1_3_4_45_1 e_1_3_4_22_1 e_1_3_4_43_1 e_1_3_4_28_1 e_1_3_4_49_1 e_1_3_4_26_1 e_1_3_4_47_1 e_1_3_4_31_1 e_1_3_4_52_1 e_1_3_4_50_1 e_1_3_4_12_1 e_1_3_4_35_1 e_1_3_4_58_1 e_1_3_4_10_1 e_1_3_4_33_1 e_1_3_4_54_1 e_1_3_4_16_1 e_1_3_4_39_1 e_1_3_4_14_1 e_1_3_4_37_1 e_1_3_4_56_1 e_1_3_4_18_1 |
References_xml | – ident: e_1_3_4_39_1 doi: 10.1016/j.actamat.2020.09.023 – ident: e_1_3_4_2_1 doi: 10.1126/science.abg1487 – ident: e_1_3_4_26_1 doi: 10.1016/j.compositesb.2022.109745 – ident: e_1_3_4_45_1 doi: 10.1016/j.compositesb.2024.111237 – ident: e_1_3_4_57_1 doi: 10.1016/j.actamat.2018.07.060 – ident: e_1_3_4_22_1 doi: 10.1016/j.carbon.2017.03.055 – ident: e_1_3_4_31_1 doi: 10.1016/j.actamat.2020.07.063 – ident: e_1_3_4_56_1 doi: 10.1126/science.add7857 – ident: e_1_3_4_36_1 doi: 10.1016/j.msea.2019.01.072 – ident: e_1_3_4_37_1 doi: 10.1016/j.addma.2020.101195 – ident: e_1_3_4_24_1 doi: 10.1016/j.addma.2021.101927 – ident: e_1_3_4_3_1 doi: 10.1002/adfm.202570042 – ident: e_1_3_4_53_1 doi: 10.1016/j.addma.2022.102918 – ident: e_1_3_4_15_1 doi: 10.1016/j.actamat.2018.03.017 – ident: e_1_3_4_40_1 doi: 10.1080/21663831.2019.1631224 – ident: e_1_3_4_46_1 doi: 10.1016/j.addma.2021.101971 – ident: e_1_3_4_11_1 doi: 10.1016/j.jmapro.2020.09.052 – ident: e_1_3_4_29_1 doi: 10.1016/j.corsci.2024.112276 – ident: e_1_3_4_19_1 doi: 10.1038/nature23894 – ident: e_1_3_4_7_1 doi: 10.1038/s41467-024-45732-y – ident: e_1_3_4_20_1 doi: 10.1016/j.addma.2019.100801 – ident: e_1_3_4_38_1 doi: 10.1016/j.jmrt.2021.12.015 – ident: e_1_3_4_49_1 doi: 10.1016/j.addma.2021.102207 – ident: e_1_3_4_30_1 doi: 10.1016/j.ijplas.2024.104142 – ident: e_1_3_4_14_1 doi: 10.1016/j.mattod.2025.06.031 – ident: e_1_3_4_48_1 doi: 10.1016/j.msea.2022.142926 – ident: e_1_3_4_32_1 doi: 10.1016/j.actamat.2021.116862 – ident: e_1_3_4_12_1 doi: 10.1016/j.addma.2020.101381 – ident: e_1_3_4_25_1 doi: 10.1126/science.abj3770 – ident: e_1_3_4_18_1 doi: 10.1016/j.actamat.2017.02.062 – ident: e_1_3_4_44_1 doi: 10.1016/j.actamat.2018.09.006 – ident: e_1_3_4_23_1 doi: 10.1016/S1002-0071(12)60029-X – ident: e_1_3_4_52_1 doi: 10.1016/j.addma.2018.04.031 – ident: e_1_3_4_55_1 doi: 10.1016/j.jmapro.2025.01.030 – ident: e_1_3_4_51_1 doi: 10.1016/j.compositesb.2022.109820 – ident: e_1_3_4_50_1 doi: 10.1016/j.apsusc.2018.06.220 – ident: e_1_3_4_35_1 doi: 10.1016/j.actamat.2021.117605 – ident: e_1_3_4_54_1 doi: 10.1016/j.compositesb.2023.111006 – ident: e_1_3_4_27_1 doi: 10.1016/j.actamat.2017.08.011 – ident: e_1_3_4_34_1 doi: 10.1016/j.addma.2022.102648 – ident: e_1_3_4_28_1 doi: 10.1016/j.actamat.2019.02.020 – ident: e_1_3_4_64_1 doi: 10.1016/j.jmst.2024.06.045 – ident: e_1_3_4_4_1 doi: 10.1016/j.addma.2024.104259 – ident: e_1_3_4_33_1 doi: 10.1016/j.addma.2024.104401 – ident: e_1_3_4_63_1 doi: 10.1016/j.jmst.2023.11.032 – ident: e_1_3_4_41_1 doi: 10.1016/j.addma.2024.104427 – ident: e_1_3_4_6_1 doi: 10.1016/j.jmapro.2024.04.042 – ident: e_1_3_4_62_1 doi: 10.1016/j.jmst.2021.11.027 – ident: e_1_3_4_21_1 doi: 10.1016/j.msea.2024.146148 – ident: e_1_3_4_17_1 doi: 10.1038/s41467-019-12047-2 – ident: e_1_3_4_60_1 doi: 10.1016/j.addma.2024.104223 – ident: e_1_3_4_13_1 doi: 10.1088/2631-7990/ad88bc – ident: e_1_3_4_47_1 doi: 10.1016/j.scriptamat.2013.11.031 – ident: e_1_3_4_59_1 doi: 10.1016/j.compositesb.2024.111570 – ident: e_1_3_4_9_1 doi: 10.1016/j.actamat.2023.119572 – ident: e_1_3_4_42_1 doi: 10.1016/j.msea.2014.12.018 – ident: e_1_3_4_61_1 doi: 10.1016/j.actamat.2017.06.046 – ident: e_1_3_4_10_1 doi: 10.1126/science.aaf2093 – ident: e_1_3_4_8_1 doi: 10.1016/j.msea.2022.143065 – ident: e_1_3_4_16_1 doi: 10.1016/j.jmatprotec.2020.116959 – ident: e_1_3_4_58_1 doi: 10.1016/j.addma.2024.104303 – ident: e_1_3_4_5_1 doi: 10.1016/j.ijmecsci.2024.109491 – ident: e_1_3_4_43_1 doi: 10.1002/advs.202206607 – ident: e_1_3_4_65_1 doi: 10.1016/j.actamat.2012.09.068 |
SSID | ssj0043031 |
Score | 2.3565788 |
Snippet | In this work, we demonstrate a phase engineering strategy, based on a composite design of monomorphic diamond (MD) reinforced FV520B maraging steel, for... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
SubjectTerms | Laser powder bed fusion mechanical properties metal matrix composites microstructure phase engineering |
Title | Achieving balanced mechanical properties in additively manufactured maraging steel matrix composites through phase engineering |
URI | https://doaj.org/article/0572e8b7c0cf45eebb9810cfa7919179 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60Jy--xWfZg9e02WQ3mxyrKEWwJwu9hX1MaKGNJbSgF3-7M3n4OHnxlgzZsHyZzGOZ-YaxW1CFToyGAKwMMUHxIjBpBIGwFgppY1dk1Cj8PEnGU_k0U7Mfo76oJqyhB26AG2I8EUFqtQtdIRWAtVkq8NrojFKNunUPfV6XTDU2WKJhFk0rJHVcqazr3UnDIclIhLlhpAaYH2EQEP7ySj_I-2sv83jI9tvwkI-abR2xHSiP2UE3eoG3f-IJ-xi5-QLoMIBbKk504PkKqIuXQOdrOmKviCuVL0pONUNk1ZbvfGXKLfUybCtaYKp6RhHHLw1LvN1UizdOReZUyYVr2yE-fD1HX8fhm7rwlE0fH17ux0E7SiFwFMChpZUGgVNJKgVJtLEyTkBpG2fCZ4n2qbPo_DMhbaggCWXhnQflnZVaF3F8xnrlawnnjEdRZhTKtE-UNJFKXYwpT0EU5EqHwl2wQQdlvm4YM3LREpF22OeEfd5if8HuCPCvh4nwuhagGuStGuR_qcHlf7zkiu3Rxhoex2vW21RbuMGYY2P7bDcOJ_1ayT4BIF3TqQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+balanced+mechanical+properties+in+additively+manufactured+maraging+steel+matrix+composites+through+phase+engineering&rft.jtitle=Virtual+and+physical+prototyping&rft.au=Chen%2C+Wei&rft.au=Xu%2C+Lianyong&rft.au=Jiang%2C+Wenchun&rft.au=Lin%2C+Danyang&rft.date=2025-12-31&rft.issn=1745-2759&rft.eissn=1745-2767&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1080%2F17452759.2025.2542500&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_17452759_2025_2542500 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2759&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2759&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2759&client=summon |