Multi-modal data Alzheimer’s disease detection based on 3D convolution

Multi-modal medical imaging information has been widely used in computer-assisted investigations and diagnoses. A typical example is that the combination of information from multi-modal medical images allows for a more accurate and comprehensive classification and diagnosis of the same Alzheimer’s d...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 75; p. 103565
Main Authors Kong, Zhaokai, Zhang, Mengyi, Zhu, Wenjun, Yi, Yang, Wang, Tian, Zhang, Baochang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multi-modal medical imaging information has been widely used in computer-assisted investigations and diagnoses. A typical example is that the combination of information from multi-modal medical images allows for a more accurate and comprehensive classification and diagnosis of the same Alzheimer’s disease (AD) subject. This paper proposes an image fusion method to fuse Magnetic Resonance Images (MRI) with Positron Emission Tomography (PET) images from AD patients. In addition, we use 3D convolutional neural networks to evaluate the effectiveness of our image fusion approach in both dichotomous and multi-classification tasks. The 3D convolution of the fused images is used to extract the information from the features, resulting in a richer multi-modal feature information. Finally, the extracted multi-modal traits are classified and predicted using a fully connected neural network. The experimental results on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) public dataset show that the proposed model achieves better results in terms of accuracy, sensitivity and specificity.
AbstractList Multi-modal medical imaging information has been widely used in computer-assisted investigations and diagnoses. A typical example is that the combination of information from multi-modal medical images allows for a more accurate and comprehensive classification and diagnosis of the same Alzheimer’s disease (AD) subject. This paper proposes an image fusion method to fuse Magnetic Resonance Images (MRI) with Positron Emission Tomography (PET) images from AD patients. In addition, we use 3D convolutional neural networks to evaluate the effectiveness of our image fusion approach in both dichotomous and multi-classification tasks. The 3D convolution of the fused images is used to extract the information from the features, resulting in a richer multi-modal feature information. Finally, the extracted multi-modal traits are classified and predicted using a fully connected neural network. The experimental results on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) public dataset show that the proposed model achieves better results in terms of accuracy, sensitivity and specificity.
ArticleNumber 103565
Author Kong, Zhaokai
Zhu, Wenjun
Zhang, Mengyi
Yi, Yang
Zhang, Baochang
Wang, Tian
Author_xml – sequence: 1
  givenname: Zhaokai
  surname: Kong
  fullname: Kong, Zhaokai
  organization: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 210000, Jiangsu, China
– sequence: 2
  givenname: Mengyi
  surname: Zhang
  fullname: Zhang, Mengyi
  email: myzhang@njtech.edu.cn
  organization: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 210000, Jiangsu, China
– sequence: 3
  givenname: Wenjun
  surname: Zhu
  fullname: Zhu, Wenjun
  organization: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 210000, Jiangsu, China
– sequence: 4
  givenname: Yang
  surname: Yi
  fullname: Yi, Yang
  organization: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 210000, Jiangsu, China
– sequence: 5
  givenname: Tian
  surname: Wang
  fullname: Wang, Tian
  organization: Institute of Artificial Intelligence, Beihang University, Beijing 100000, Beijing, China
– sequence: 6
  givenname: Baochang
  surname: Zhang
  fullname: Zhang, Baochang
  organization: Institute of Artificial Intelligence, Beihang University, Beijing 100000, Beijing, China
BookMark eNp9kEtOwzAQQC1UJErhAqx8gRR_YieV2FTlU6QiNrC2HHssXKVxZaeVYMU1uB4nwVFhw6Kr-emNZt45GnWhA4SuKJlSQuX1etqkrZkywlhucCHFCRrTqpRFTUk9-svJrDxD5ymtCSnripZjtHzatb0vNsHqFlvdazxvP97AbyB-f34lbH0CnQBb6MH0PnS4yaXFOeG32IRuH9rd0L9Ap063CS5_4wS93t-9LJbF6vnhcTFfFYZx0hfWNqQGJ5hwptQzxyUH3UhpGuaEdZZaS00jKbDKUmcgjyuuDZeiEdI5wieIHfaaGFKK4NQ2-o2O74oSNbhQazW4UIMLdXCRofofZHyvh7P7qH17HL05oJCf2nuIKhkPnQHrYzaibPDH8B-KqH7l
CitedBy_id crossref_primary_10_3390_make6010024
crossref_primary_10_3389_fbioe_2023_1326706
crossref_primary_10_3390_math11040957
crossref_primary_10_1016_j_compbiomed_2024_109438
crossref_primary_10_1002_jmri_29734
crossref_primary_10_1016_j_bspc_2022_104032
crossref_primary_10_1016_j_bspc_2024_106212
crossref_primary_10_1016_j_compeleceng_2024_109796
crossref_primary_10_1038_s41598_024_56001_9
crossref_primary_10_3390_bioengineering12010073
crossref_primary_10_1007_s00521_024_10399_5
crossref_primary_10_1016_j_eswa_2024_124780
crossref_primary_10_1016_j_heliyon_2024_e34402
crossref_primary_10_3233_IDT_230479
crossref_primary_10_1515_revneuro_2022_0122
crossref_primary_10_1177_08953996241300023
crossref_primary_10_1016_j_aej_2023_09_050
crossref_primary_10_4018_IJSWIS_313715
crossref_primary_10_3390_electronics11233893
crossref_primary_10_1016_j_compbiomed_2024_108635
crossref_primary_10_1007_s11831_024_10179_3
crossref_primary_10_1007_s11042_024_19425_z
crossref_primary_10_1002_ima_22967
crossref_primary_10_1038_s41598_024_81563_z
crossref_primary_10_1109_TCDS_2023_3254209
crossref_primary_10_1016_j_engappai_2023_107032
crossref_primary_10_1016_j_compbiomed_2023_107050
crossref_primary_10_1002_hsr2_70025
crossref_primary_10_1016_j_bspc_2024_107085
crossref_primary_10_1142_S0218001423560256
crossref_primary_10_1016_j_dsp_2023_104229
crossref_primary_10_1007_s11042_022_13935_4
crossref_primary_10_3390_s22114250
crossref_primary_10_1109_ACCESS_2024_3483833
crossref_primary_10_1007_s10334_024_01178_3
crossref_primary_10_1016_j_cmpb_2025_108703
crossref_primary_10_1007_s12553_024_00823_0
crossref_primary_10_1109_JBHI_2024_3383885
crossref_primary_10_35234_fumbd_1313523
crossref_primary_10_1016_j_eswa_2024_124241
crossref_primary_10_1016_j_cagd_2024_102364
crossref_primary_10_1007_s43538_023_00198_2
crossref_primary_10_1038_s41598_023_33055_9
crossref_primary_10_1007_s10462_023_10644_8
crossref_primary_10_1016_j_inffus_2025_103010
crossref_primary_10_1016_j_bspc_2023_105652
crossref_primary_10_1007_s12539_024_00625_y
crossref_primary_10_1016_j_jksuci_2023_101618
crossref_primary_10_3390_jimaging10060141
crossref_primary_10_1109_TNSRE_2025_3549730
Cites_doi 10.1002/jmri.21049
10.1016/j.neuroimage.2011.12.071
10.1016/j.pscychresns.2019.01.014
10.1016/j.neuroimage.2010.07.033
10.1109/TBME.2014.2372011
10.3389/fninf.2018.00035
10.1016/j.cviu.2017.04.002
10.1007/s11042-016-3482-3
10.1016/j.patcog.2016.10.009
10.1002/cpe.6237
10.1016/j.cger.2017.02.005
10.1016/j.neuroimage.2015.01.048
10.1016/j.bspc.2020.101903
10.1016/j.media.2016.11.002
10.1007/s12021-014-9238-1
10.1186/s12859-017-1903-6
10.3389/fnagi.2015.00048
10.1109/JBHI.2015.2429556
10.1016/j.neuroimage.2011.09.069
10.1142/S012906572050032X
10.1038/srep26286
10.1006/nimg.2002.1132
10.1007/s00371-021-02328-7
10.1016/j.compmedimag.2019.101663
10.1109/JBHI.2020.2973324
10.1016/j.neucom.2019.04.066
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2022.103565
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2022_103565
S1746809422000878
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c230t-ddb08ef525fc4a9f363eab66cb2f5dfd1dd1cb61e27d1fce63e73ac365b56ff03
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Tue Jul 01 01:34:13 EDT 2025
Thu Apr 24 23:13:24 EDT 2025
Fri Feb 23 02:39:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Feature fusion
MR images
Convolutional neural networks
Positron emission tomography
Alzheimer’s disease detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c230t-ddb08ef525fc4a9f363eab66cb2f5dfd1dd1cb61e27d1fce63e73ac365b56ff03
ParticipantIDs crossref_primary_10_1016_j_bspc_2022_103565
crossref_citationtrail_10_1016_j_bspc_2022_103565
elsevier_sciencedirect_doi_10_1016_j_bspc_2022_103565
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shen (b0110) 2015
Silveira, Marques (b0085) 2010
Lu, Popuri, Ding, Balachandar, Beg, Weiner (b0165) 2018; 8
Zhu, Yuan, Huang, Hao, Zhang (b0170) 2019; 355
Li, Tran, Thung, Ji, Shen (b0160) 2015; 19
Gray (b0065) 2012; 60
Richhariya, Tanveer, Rashid (b0030) 2020; 59
Esther E Bron, Marion Smits, Wiesje M van der Flier, Hugo Vrenken, Frederik Barkhof, et al.. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. NeuroImage, Elsevier, 2015, 111, pp.562-79.
Liu, Liu, Cai, Che, Pujol, Kikinis (b0150) 2015; 62
Zhu, Yin, Chai (b0080) 2018; 432
Milletari, Ahmadi, Kroll, Plate, Rozanski, Maiostre (b0140) 2017; 164
Gray (b0070) 2011; 2011
Korolev (b0055) 2017
Zhang M, Kong Z, Zhu W, et al. Pulmonary nodule detection based on 3D feature pyramid network with incorporated squeeze-and-excitation-attention mechanism. Concurrency and Computation: Practice and Experience, 2021: e6237.
Gao, Pan, Li (b0025) 2017; 18
Abadi, Barham, Chen, Chen, Davis, Dean (b0145) 2016
Bi, Hu, Wu, Wang (b0180) 2020; 24
iek, zgun, et al. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. Springer, Cham (2016).
Liu M, Zhang J, Y ap PT, Shen D. View-aligned hypergraph learning for Alzheimer’s disease diagnosis with incomplete multi-modality data. Med Image Anal. (2017) 36:123-34.
Zhan, Zhou, Wang (b0005) 2015; 7
Jenkinson, Bannister, Brady, Smith (b0135) 2002; 17
Feng, Halm-Lutterodt, Tang (b0050) 2020; 30
Christina (b0010) 2018
Sabuncu, Konukoglu (b0105) 2015; 13
Bartos, Gregus, Ibrahim (b0125) 2019; 287
Li Y, Wang Z, Yin L, et al. X-Net: a dual encoding-decoding method in medical image segmentation. 2021. doi: 10.1007/s00371-021-02328-7.
Dolz, Desrosiers, Ayed (b0100) 2017
Zhang, Shen (b0045) 2012; 59
Tong, Gray, Gao, Chen, Rueckert (b0155) 2017; 63
Litjens G, Sanchez, et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep;2016;6:26286.
Shao, Peng, Zu, Wang, Zhang (b0175) 2020; 80
Jack, Bernstein, Fox, Thompson, Alexander, Harvey (b0115) 2008; 27
Fonov, Evans, Botteron, Almli, McKinstry, Collins (b0130) 2011; 54
Sanford (b0015) 2017; 33
Gao, Pan, Xie (b0040) 2016; 75
Hedayati, Khedmati, Taghipour-Gorjikolaie (b0035) 2021; 66
Liu, M., D. Cheng, and W. Yan. Classification of Alzheimer’s Disease by Combination of Convolutional and Recurrent Neural Networks Using FDG-PET Images. Front. Neuroinform. 12(2018):35.
Zhu (10.1016/j.bspc.2022.103565_b0080) 2018; 432
Dolz (10.1016/j.bspc.2022.103565_b0100) 2017
Zhan (10.1016/j.bspc.2022.103565_b0005) 2015; 7
Lu (10.1016/j.bspc.2022.103565_b0165) 2018; 8
Gray (10.1016/j.bspc.2022.103565_b0070) 2011; 2011
Hedayati (10.1016/j.bspc.2022.103565_b0035) 2021; 66
Tong (10.1016/j.bspc.2022.103565_b0155) 2017; 63
10.1016/j.bspc.2022.103565_b0090
10.1016/j.bspc.2022.103565_b0075
10.1016/j.bspc.2022.103565_b0095
Fonov (10.1016/j.bspc.2022.103565_b0130) 2011; 54
Silveira (10.1016/j.bspc.2022.103565_b0085) 2010
Gray (10.1016/j.bspc.2022.103565_b0065) 2012; 60
Christina (10.1016/j.bspc.2022.103565_b0010) 2018
Li (10.1016/j.bspc.2022.103565_b0160) 2015; 19
Gao (10.1016/j.bspc.2022.103565_b0025) 2017; 18
Korolev (10.1016/j.bspc.2022.103565_b0055) 2017
Abadi (10.1016/j.bspc.2022.103565_b0145) 2016
10.1016/j.bspc.2022.103565_b0120
Liu (10.1016/j.bspc.2022.103565_b0150) 2015; 62
Sabuncu (10.1016/j.bspc.2022.103565_b0105) 2015; 13
Richhariya (10.1016/j.bspc.2022.103565_b0030) 2020; 59
Zhang (10.1016/j.bspc.2022.103565_b0045) 2012; 59
10.1016/j.bspc.2022.103565_b0060
10.1016/j.bspc.2022.103565_b0020
10.1016/j.bspc.2022.103565_b0185
Zhu (10.1016/j.bspc.2022.103565_b0170) 2019; 355
Sanford (10.1016/j.bspc.2022.103565_b0015) 2017; 33
Gao (10.1016/j.bspc.2022.103565_b0040) 2016; 75
Bi (10.1016/j.bspc.2022.103565_b0180) 2020; 24
Bartos (10.1016/j.bspc.2022.103565_b0125) 2019; 287
Milletari (10.1016/j.bspc.2022.103565_b0140) 2017; 164
Shao (10.1016/j.bspc.2022.103565_b0175) 2020; 80
Jack (10.1016/j.bspc.2022.103565_b0115) 2008; 27
Shen (10.1016/j.bspc.2022.103565_b0110) 2015
Jenkinson (10.1016/j.bspc.2022.103565_b0135) 2002; 17
Feng (10.1016/j.bspc.2022.103565_b0050) 2020; 30
References_xml – volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: b0135
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
– volume: 30
  start-page: 2050032
  year: 2020
  ident: b0050
  article-title: Automated MRI-Based Deep Learning Model for Detection of Alzheimer’s Disease Process
  publication-title: Int. J. Neural Syst.
– year: 2018
  ident: b0010
  article-title: World Alzheimer report 2018
– reference: Li Y, Wang Z, Yin L, et al. X-Net: a dual encoding-decoding method in medical image segmentation. 2021. doi: 10.1007/s00371-021-02328-7.
– volume: 19
  start-page: 1610
  year: 2015
  end-page: 1616
  ident: b0160
  article-title: Li J.A robust deep model for improved classification of AD/MCI patients
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 75
  start-page: 9333
  year: 2016
  end-page: 9369
  ident: b0040
  article-title: Graph modeling and mining methods for brain images
  publication-title: Multimed. Tools Appl.
– volume: 24
  start-page: 2973
  year: 2020
  end-page: 2983
  ident: b0180
  article-title: Multimodal data analysis of Alzheimer’s disease based on clustering evolutionary random forest
  publication-title: IEEE J. Biomed. Health Inform.
– reference: iek, zgun, et al. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. Springer, Cham (2016).
– volume: 355
  start-page: 143
  year: 2019
  end-page: 154
  ident: b0170
  article-title: Multi-modal AD classification via self-pacedlatent correlation analysis
  publication-title: Neurocomputing
– volume: 2011
  start-page: 1082
  year: 2011
  end-page: 1085
  ident: b0070
  article-title: Regional analysis of FDG-PET for use in the classification of Alzheimer’S Disease
  publication-title: IEEE International Symposium on Biomedical Imaging: From Nano to Macro
– reference: Litjens G, Sanchez, et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep;2016;6:26286.
– reference: Liu M, Zhang J, Y ap PT, Shen D. View-aligned hypergraph learning for Alzheimer’s disease diagnosis with incomplete multi-modality data. Med Image Anal. (2017) 36:123-34.
– volume: 164
  start-page: 92
  year: 2017
  end-page: 102
  ident: b0140
  article-title: Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound
  publication-title: Comput. Vis. Image Und.
– volume: 59
  start-page: 895
  year: 2012
  end-page: 907
  ident: b0045
  article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease
  publication-title: Neuroimage
– volume: 13
  start-page: 31
  year: 2015
  end-page: 46
  ident: b0105
  article-title: Clinical Prediction from Structural Brain MRI Scans: A Large-Scale Empirical Study
  publication-title: Neuroinformatics
– volume: 7
  start-page: 48
  year: 2015
  ident: b0005
  article-title: Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease
  publication-title: Front Aging Neurosci.
– year: 2017
  ident: b0100
  article-title: 3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study
  publication-title: Neuroimage
– reference: Liu, M., D. Cheng, and W. Yan. Classification of Alzheimer’s Disease by Combination of Convolutional and Recurrent Neural Networks Using FDG-PET Images. Front. Neuroinform. 12(2018):35.
– start-page: 265
  year: 2016
  end-page: 283
  ident: b0145
  article-title: TensorFlow: A system for large-scale machine learning
  publication-title: 12th USENIX Symposium on Operating Systems Design and Implementation
– volume: 33
  start-page: 325
  year: 2017
  end-page: 337
  ident: b0015
  article-title: Mild Cognitive Impairment
  publication-title: Clin. Geriatr. Med.
– start-page: 2556
  year: 2010
  end-page: 2559
  ident: b0085
  article-title: Boosting Alzheimer Disease Diagnosis Using PET Images
  publication-title: 2010 20th International Conference on Pattern Recognition
– volume: 8
  start-page: 1
  year: 2018
  end-page: 13
  ident: b0165
  article-title: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images
  publication-title: Sci. Rep.
– volume: 54
  start-page: 313
  year: 2011
  end-page: 327
  ident: b0130
  article-title: Unbiased average age-appropriate atlases for pediatric studies
  publication-title: Neuroimage
– volume: 62
  start-page: 1132
  year: 2015
  end-page: 1140
  ident: b0150
  article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 59
  year: 2020
  ident: b0030
  article-title: Diagnosis of Alzheimer’s disease using universum support vector machine based recursive feature elimination (USVM-RFE)
  publication-title: Biomed. Signal Process. Control
– volume: 66
  year: 2021
  ident: b0035
  article-title: Deep feature extraction method based on ensemble of convolutional auto encoders: Application to Alzheimer’s disease diagnosis
  publication-title: Biomed. Signal Process. Control
– volume: 287
  start-page: 70
  year: 2019
  end-page: 74
  ident: b0125
  article-title: Brain volumes and their ratios in Alzheimer’s disease on magnetic resonance imaging segmented using Freesurfer 6.0
  publication-title: Psychiatry Res. Neuroimaging
– start-page: 2251
  year: 2015
  end-page: 2254
  ident: b0110
  article-title: Semi-supervised manifold learning with affinity regularization for Alzheimer’s disease identification using positron emission tomography imaging
  publication-title: International Conference of the IEEE Engineering in Medicine & Biology Society IEEE
– volume: 80
  year: 2020
  ident: b0175
  article-title: Hypergraph based multi-task feature selection for multimodal classification of Alzheimer’s disease
  publication-title: Comput. Med. Imaging Graph.
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: b0115
  article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
– volume: 63
  start-page: 171
  year: 2017
  end-page: 181
  ident: b0155
  article-title: Multi-modal classification of Alzheimer’s disease using nonlinear graph fusion
  publication-title: Pattern Recogn.
– volume: 18
  start-page: 505
  year: 2017
  ident: b0025
  article-title: Brain medical image diagnosis based on corners with importance-values
  publication-title: BMC Bioinform.
– reference: Esther E Bron, Marion Smits, Wiesje M van der Flier, Hugo Vrenken, Frederik Barkhof, et al.. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. NeuroImage, Elsevier, 2015, 111, pp.562-79.
– volume: 60
  start-page: 221
  year: 2012
  end-page: 229
  ident: b0065
  article-title: Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer’s disease
  publication-title: Neuroimage
– volume: 432
  start-page: 516
  year: 2018
  end-page: 529
  ident: b0080
  article-title: A novel multi-modality image fusion method based on image decomposition and sparse representation
  publication-title: Information ences
– year: 2017
  ident: b0055
  article-title: Residual and plain convolutional neural networks for 3D brain MRI classification
  publication-title: IEEE International Symposium on Biomedical Imaging 2017 IEEE
– reference: Zhang M, Kong Z, Zhu W, et al. Pulmonary nodule detection based on 3D feature pyramid network with incorporated squeeze-and-excitation-attention mechanism. Concurrency and Computation: Practice and Experience, 2021: e6237.
– volume: 66
  issue: 3
  year: 2021
  ident: 10.1016/j.bspc.2022.103565_b0035
  article-title: Deep feature extraction method based on ensemble of convolutional auto encoders: Application to Alzheimer’s disease diagnosis
  publication-title: Biomed. Signal Process. Control
– volume: 27
  start-page: 685
  year: 2008
  ident: 10.1016/j.bspc.2022.103565_b0115
  article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21049
– volume: 60
  start-page: 221
  issue: 1
  year: 2012
  ident: 10.1016/j.bspc.2022.103565_b0065
  article-title: Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.071
– volume: 287
  start-page: 70
  year: 2019
  ident: 10.1016/j.bspc.2022.103565_b0125
  article-title: Brain volumes and their ratios in Alzheimer’s disease on magnetic resonance imaging segmented using Freesurfer 6.0
  publication-title: Psychiatry Res. Neuroimaging
  doi: 10.1016/j.pscychresns.2019.01.014
– volume: 54
  start-page: 313
  year: 2011
  ident: 10.1016/j.bspc.2022.103565_b0130
  article-title: Unbiased average age-appropriate atlases for pediatric studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.07.033
– volume: 62
  start-page: 1132
  year: 2015
  ident: 10.1016/j.bspc.2022.103565_b0150
  article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2372011
– ident: 10.1016/j.bspc.2022.103565_b0090
  doi: 10.3389/fninf.2018.00035
– volume: 164
  start-page: 92
  year: 2017
  ident: 10.1016/j.bspc.2022.103565_b0140
  article-title: Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound
  publication-title: Comput. Vis. Image Und.
  doi: 10.1016/j.cviu.2017.04.002
– volume: 75
  start-page: 9333
  year: 2016
  ident: 10.1016/j.bspc.2022.103565_b0040
  article-title: Graph modeling and mining methods for brain images
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-016-3482-3
– volume: 63
  start-page: 171
  year: 2017
  ident: 10.1016/j.bspc.2022.103565_b0155
  article-title: Multi-modal classification of Alzheimer’s disease using nonlinear graph fusion
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2016.10.009
– volume: 432
  start-page: 516
  year: 2018
  ident: 10.1016/j.bspc.2022.103565_b0080
  article-title: A novel multi-modality image fusion method based on image decomposition and sparse representation
  publication-title: Information ences
– volume: 2011
  start-page: 1082
  year: 2011
  ident: 10.1016/j.bspc.2022.103565_b0070
  article-title: Regional analysis of FDG-PET for use in the classification of Alzheimer’S Disease
  publication-title: IEEE International Symposium on Biomedical Imaging: From Nano to Macro
– ident: 10.1016/j.bspc.2022.103565_b0185
  doi: 10.1002/cpe.6237
– volume: 33
  start-page: 325
  issue: 3
  year: 2017
  ident: 10.1016/j.bspc.2022.103565_b0015
  article-title: Mild Cognitive Impairment
  publication-title: Clin. Geriatr. Med.
  doi: 10.1016/j.cger.2017.02.005
– ident: 10.1016/j.bspc.2022.103565_b0060
  doi: 10.1016/j.neuroimage.2015.01.048
– volume: 59
  year: 2020
  ident: 10.1016/j.bspc.2022.103565_b0030
  article-title: Diagnosis of Alzheimer’s disease using universum support vector machine based recursive feature elimination (USVM-RFE)
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.101903
– start-page: 2556
  year: 2010
  ident: 10.1016/j.bspc.2022.103565_b0085
  article-title: Boosting Alzheimer Disease Diagnosis Using PET Images
– ident: 10.1016/j.bspc.2022.103565_b0120
  doi: 10.1016/j.media.2016.11.002
– volume: 13
  start-page: 31
  issue: 1
  year: 2015
  ident: 10.1016/j.bspc.2022.103565_b0105
  article-title: Clinical Prediction from Structural Brain MRI Scans: A Large-Scale Empirical Study
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-014-9238-1
– volume: 18
  start-page: 505
  issue: 1
  year: 2017
  ident: 10.1016/j.bspc.2022.103565_b0025
  article-title: Brain medical image diagnosis based on corners with importance-values
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-017-1903-6
– year: 2018
  ident: 10.1016/j.bspc.2022.103565_b0010
– year: 2017
  ident: 10.1016/j.bspc.2022.103565_b0100
  article-title: 3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study
  publication-title: Neuroimage
– volume: 7
  start-page: 48
  year: 2015
  ident: 10.1016/j.bspc.2022.103565_b0005
  article-title: Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease
  publication-title: Front Aging Neurosci.
  doi: 10.3389/fnagi.2015.00048
– year: 2017
  ident: 10.1016/j.bspc.2022.103565_b0055
  article-title: Residual and plain convolutional neural networks for 3D brain MRI classification
– volume: 19
  start-page: 1610
  year: 2015
  ident: 10.1016/j.bspc.2022.103565_b0160
  article-title: Li J.A robust deep model for improved classification of AD/MCI patients
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2015.2429556
– volume: 59
  start-page: 895
  issue: 2
  year: 2012
  ident: 10.1016/j.bspc.2022.103565_b0045
  article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.069
– start-page: 2251
  year: 2015
  ident: 10.1016/j.bspc.2022.103565_b0110
  article-title: Semi-supervised manifold learning with affinity regularization for Alzheimer’s disease identification using positron emission tomography imaging
  publication-title: International Conference of the IEEE Engineering in Medicine & Biology Society IEEE
– volume: 30
  start-page: 2050032
  issue: 6
  year: 2020
  ident: 10.1016/j.bspc.2022.103565_b0050
  article-title: Automated MRI-Based Deep Learning Model for Detection of Alzheimer’s Disease Process
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S012906572050032X
– ident: 10.1016/j.bspc.2022.103565_b0020
  doi: 10.1038/srep26286
– volume: 17
  start-page: 825
  year: 2002
  ident: 10.1016/j.bspc.2022.103565_b0135
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– ident: 10.1016/j.bspc.2022.103565_b0075
  doi: 10.1007/s00371-021-02328-7
– ident: 10.1016/j.bspc.2022.103565_b0095
– volume: 80
  year: 2020
  ident: 10.1016/j.bspc.2022.103565_b0175
  article-title: Hypergraph based multi-task feature selection for multimodal classification of Alzheimer’s disease
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.101663
– start-page: 265
  year: 2016
  ident: 10.1016/j.bspc.2022.103565_b0145
  article-title: TensorFlow: A system for large-scale machine learning
– volume: 24
  start-page: 2973
  year: 2020
  ident: 10.1016/j.bspc.2022.103565_b0180
  article-title: Multimodal data analysis of Alzheimer’s disease based on clustering evolutionary random forest
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2973324
– volume: 355
  start-page: 143
  year: 2019
  ident: 10.1016/j.bspc.2022.103565_b0170
  article-title: Multi-modal AD classification via self-pacedlatent correlation analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.04.066
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.bspc.2022.103565_b0165
  article-title: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images
  publication-title: Sci. Rep.
SSID ssj0048714
Score 2.497319
Snippet Multi-modal medical imaging information has been widely used in computer-assisted investigations and diagnoses. A typical example is that the combination of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103565
SubjectTerms Alzheimer’s disease detection
Convolutional neural networks
Deep learning
Feature fusion
MR images
Positron emission tomography
Title Multi-modal data Alzheimer’s disease detection based on 3D convolution
URI https://dx.doi.org/10.1016/j.bspc.2022.103565
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KvehB_MT6UXLwJrFNNrtJjqVaomIvWugtZHdnsdKmpa0XD-Lf8O_5S9xJNqWC9OAt2cxCeBlmZsl7M4RcAg09oKBcGjEcYca0G2WAWpkwUBGXbVk0cX3s82QQ3A_ZsEa6lRYGaZU29pcxvYjWdqVl0WzNRqPWk6mleWROJz6qTaIQBb9BEKKXX3-saB6mHi_6e6Oxi9ZWOFNyvMRihm0MfR-15wwTzF_JaS3h9PbIrq0UnU75MvukBvkB2VnrH3hIkkI-606myhgi19PpjN9fYDSB-ffn18Kxf18cBcuCcZU7mLSUYy7ojYOEc-t4R2TQu33uJq4djeBKc2ZYukqJdgSa-UzLIIs15RQywbkUvmZKK08pTwrugR8qT0swj0OaScqZYFzrNj0m9XyawwlxzIIPoSdULP2AtoUIFDCIs5gDTrUKG8SrMEml7RuO4yvGaUUQe00RxxRxTEscG-RqtWdWds3YaM0qqNNf3z41YX3DvtN_7jsj23hX0hbPSX05f4MLU1osRbPwnSbZ6tw9JP0fZkfOsQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BGYAB8Sm-ycCGojZx7CRjBVQp0C60ElsU22dRVEoFZWHib_D3-CX4EgeBhDqwRfadFL1Yd2fl3TuAU2RxgAy1zxJOI8y48ZMCqVcmjnQiVEuVIq69vsiG0dUdv1uA87oXhmiVLvZXMb2M1m6l6dBsTkej5q2tpUVibychdZskcbIIS6ROxRuw1O5eZ_06INuSvJT4JnufHFzvTEXzki9TUjIMQ2o_55Rj_spPP3JOZx3WXLHotav32YAFnGzC6g8JwS3Iyg5a__FJW0Oie3rt8ds9jh7x-fP948VzP2A8jbOSdDXxKG9pzz6wC4845-7sbcOwczk4z3w3HcFX9tow87WWrQQND7lRUZEaJhgWUgglQ8O10YHWgZIiwDDWgVFot2NWKCa45MKYFtuBxuRpgrvg2YUQ40DqVIURa0kZaeSYFqlAGmwV70FQY5IrJx1OEyzGec0Re8gJx5xwzCsc9-Ds22daCWfMteY11Pmvz5_byD7Hb_-ffiewnA16N_lNt399ACu0U7EYD6Exe37FI1tpzOSxO0lfinzRYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-modal+data+Alzheimer%E2%80%99s+disease+detection+based+on+3D+convolution&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Kong%2C+Zhaokai&rft.au=Zhang%2C+Mengyi&rft.au=Zhu%2C+Wenjun&rft.au=Yi%2C+Yang&rft.date=2022-05-01&rft.issn=1746-8094&rft.volume=75&rft.spage=103565&rft_id=info:doi/10.1016%2Fj.bspc.2022.103565&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2022_103565
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon