A parametric optimal control problem applied to daily irrigation

We conduct sensitivity analysis of an optimal control problem applied to agricultural irrigation. The aim is to minimize the square of the amount of irrigation water while ensuring the health grow of the crop. A crucial parameter of our model is the percentage of water loss due to deep percolation,...

Full description

Saved in:
Bibliographic Details
Published inMathematical modelling of natural phenomena Vol. 20; p. 2
Main Authors Lemos-Paião, Ana P., Lopes, Sofia O., de Pinho, M. D. R.
Format Journal Article
LanguageEnglish
Published 2025
Online AccessGet full text
ISSN0973-5348
1760-6101
DOI10.1051/mmnp/2024020

Cover

Loading…
Abstract We conduct sensitivity analysis of an optimal control problem applied to agricultural irrigation. The aim is to minimize the square of the amount of irrigation water while ensuring the health grow of the crop. A crucial parameter of our model is the percentage of water loss due to deep percolation, β , a parameter hard to estimate and subject to perturbations. Thus, our problem is a parametric state constrained optimal control problem with a L 2 cost. Our goal is to study how perturbations of β affect the optimal solutions of our problem using sensitivity analysis of our problem using sensitivity analysis. To solve numerically our optimal control problem we use the direct method, transcribing the problem into a non-linear programming problem. We show how sensitivity analysis applied to the non-linear programming problem provides information on the variation of optimal solutions of the original problem in terms of β . Valid approximations of optimal solution and cost, provided by sensitivity analysis, are computed for values of β within of a certain neighbourhood. Remarkably, we show that for all β in such neighbourhood, the irrigation period is kept constant. Only the flow rate of irrigation water changes.
AbstractList We conduct sensitivity analysis of an optimal control problem applied to agricultural irrigation. The aim is to minimize the square of the amount of irrigation water while ensuring the health grow of the crop. A crucial parameter of our model is the percentage of water loss due to deep percolation, β , a parameter hard to estimate and subject to perturbations. Thus, our problem is a parametric state constrained optimal control problem with a L 2 cost. Our goal is to study how perturbations of β affect the optimal solutions of our problem using sensitivity analysis of our problem using sensitivity analysis. To solve numerically our optimal control problem we use the direct method, transcribing the problem into a non-linear programming problem. We show how sensitivity analysis applied to the non-linear programming problem provides information on the variation of optimal solutions of the original problem in terms of β . Valid approximations of optimal solution and cost, provided by sensitivity analysis, are computed for values of β within of a certain neighbourhood. Remarkably, we show that for all β in such neighbourhood, the irrigation period is kept constant. Only the flow rate of irrigation water changes.
Author Lopes, Sofia O.
de Pinho, M. D. R.
Lemos-Paião, Ana P.
Author_xml – sequence: 1
  givenname: Ana P.
  orcidid: 0000-0003-4592-3426
  surname: Lemos-Paião
  fullname: Lemos-Paião, Ana P.
– sequence: 2
  givenname: Sofia O.
  orcidid: 0000-0002-2335-5459
  surname: Lopes
  fullname: Lopes, Sofia O.
– sequence: 3
  givenname: M. D. R.
  orcidid: 0000-0001-9276-2317
  surname: de Pinho
  fullname: de Pinho, M. D. R.
BookMark eNot0MtKAzEYBeAgFay1Ox8gD-DY_89tOjtL0SoU3Oh6yFUiM5OQyaZvb4s9m7M7HL57spjS5Al5RHhGkLgZxylvGDABDG7IElsFjULABVlC1_JGcrG9I-t5_oVzOAoOsCQvO5p10aOvJVqaco2jHqhNUy1poLkkM_iR6pyH6B2tiTodhxONpcQfXWOaHsht0MPs19deke-316_9e3P8PHzsd8fGMg61McCsC4E76bFDZ3FrjNLeY5DovLVcGOFcEEq21vFWecGk1B141QbTqY6vyNP_ri1pnosPfS7nr-XUI_QXgP4C0F8B-B-iaVGR
Cites_doi 10.1007/978-3-319-78963-7_64
10.1016/j.conengprac.2020.104407
10.1007/s10107-004-0559-y
10.1021/ie900139x
10.1007/978-3-662-04331-8_1
10.1016/S0378-3774(98)00069-9
10.1016/j.agwat.2010.01.020
10.1109/CONTROLO.2018.8514518
10.1016/S1570-7946(08)80120-4
10.2514/2.4231
10.1007/978-1-4615-6103-3_6
10.1016/j.ifacol.2019.11.007
10.1007/978-3-662-04331-8_3
10.1021/bp050028k
10.1007/978-3-319-61276-8_20
10.1007/BF01580677
10.1137/1037043
10.1007/978-3-319-17689-5_5
10.23919/ECC51009.2020.9143701
10.1504/IJHST.2019.098161
10.1016/j.amc.2011.05.093
10.1515/9783110249996
10.1007/978-3-662-04331-8_9
10.1007/BF01585500
10.1007/978-3-662-04331-8
10.1080/02331930412331323854
10.1016/S0005-1098(02)00250-9
10.1007/978-3-0348-8802-8_21
10.1093/reep/reaa004
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1051/mmnp/2024020
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1760-6101
ExternalDocumentID 10_1051_mmnp_2024020
GroupedDBID -E.
.FH
0E1
169
4.4
5GY
5VS
7~V
8FE
8FG
8FH
AADXX
AAFWJ
AAOGA
AAOTM
AAYXX
ABDBF
ABGDZ
ABJNI
ABKKG
ABNSH
ABUBZ
ABZDU
ACACO
ACGFS
ACIMK
ACIWK
ACPRK
ACQPF
ACRPL
ACUHS
ADBBV
ADNMO
AEMTW
AENEX
AFAYI
AFHSK
AFRAH
AFUTZ
AGQPQ
AJPFC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARABE
AZPVJ
BPHCQ
C0O
CITATION
CS3
DC4
EBS
EJD
ESX
F5P
FRP
GFF
GI~
HG-
HST
HZ~
I-F
I.6
IL9
I~P
J36
J38
J9A
K6V
L6V
LK8
LO0
M-V
O9-
OK1
P2P
P62
PQQKQ
PROAC
RCA
RED
RR0
S6-
TUS
WQ3
WXU
~8M
ID FETCH-LOGICAL-c230t-b02cdff3d5e191dc18bb6aee1f51decc34b4ddf4657cd376e4255a90e67fb9693
ISSN 0973-5348
IngestDate Tue Jul 01 01:22:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c230t-b02cdff3d5e191dc18bb6aee1f51decc34b4ddf4657cd376e4255a90e67fb9693
ORCID 0000-0003-4592-3426
0000-0002-2335-5459
0000-0001-9276-2317
OpenAccessLink https://www.mmnp-journal.org/10.1051/mmnp/2024020/pdf
ParticipantIDs crossref_primary_10_1051_mmnp_2024020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle Mathematical modelling of natural phenomena
PublicationYear 2025
References Zeng (R5) 2020; 100
Zhang (R6) 1999; 38
Wei (R15) 2011; 218
Lopes (R4) 2019; 9
Betts (R36) 1998; 21
Kontoravdi (R29) 2005; 21
Wächter (R41) 2006; 106
R40
R21
Fiacco (R24) 1976; 10
R20
R23
R22
R25
Büskens (R18) 2000; 120
Kiparissides (R27) 2009; 48
R28
Hartl (R33) 1995; 37
Lopes (R9) 2016; 10
Tøndel (R30) 2003; 39
Robinson (R26) 1974; 7
R8
Brown (R2) 2010; 97
Hadigheh (R13) 2007; 2
R10
R32
R31
R12
R34
Lemos-Paião (R7) 2022; 67
R11
Kalboussi (R3) 2019; 52
R35
Hadigheh (R14) 2005; 54
R16
R38
Pérez-Blanco (R1) 2020; 14
R37
R17
R39
R19
References_xml – volume: 10
  start-page: 2016
  year: 2016
  ident: R9
  publication-title: Math. Probl. Eng.
– ident: R38
– ident: R21
  doi: 10.1007/978-3-319-78963-7_64
– volume: 100
  start-page: 104407
  year: 2020
  ident: R5
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2020.104407
– volume: 106
  start-page: 25
  year: 2006
  ident: R41
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0559-y
– volume: 48
  start-page: 7168
  year: 2009
  ident: R27
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie900139x
– ident: R23
  doi: 10.1007/978-3-662-04331-8_1
– ident: R25
– volume: 38
  start-page: 195
  year: 1999
  ident: R6
  publication-title: Agric. Water Manag.
  doi: 10.1016/S0378-3774(98)00069-9
– volume: 97
  start-page: 892
  year: 2010
  ident: R2
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2010.01.020
– ident: R8
  doi: 10.1109/CONTROLO.2018.8514518
– volume: 2
  start-page: 94
  year: 2007
  ident: R13
  publication-title: Algorith. Oper. Res.
– ident: R28
  doi: 10.1016/S1570-7946(08)80120-4
– volume: 21
  start-page: 193
  year: 1998
  ident: R36
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/2.4231
– ident: R11
  doi: 10.1007/978-1-4615-6103-3_6
– ident: R16
– volume: 52
  start-page: 43
  year: 2019
  ident: R3
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.11.007
– ident: R10
  doi: 10.1007/978-3-662-04331-8_3
– volume: 21
  start-page: 1128
  year: 2005
  ident: R29
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp050028k
– ident: R20
  doi: 10.1007/978-3-319-61276-8_20
– ident: R37
– volume: 10
  start-page: 287
  year: 1976
  ident: R24
  publication-title: Math. Programm.
  doi: 10.1007/BF01580677
– ident: R39
– volume: 37
  start-page: 181
  year: 1995
  ident: R33
  publication-title: SIAM Rev.
  doi: 10.1137/1037043
– volume: 67
  start-page: 27
  year: 2022
  ident: R7
  publication-title: Int. J. Appl. Comput. Math. 8
– ident: R40
  doi: 10.1007/978-3-319-17689-5_5
– ident: R22
  doi: 10.23919/ECC51009.2020.9143701
– volume: 9
  start-page: 173
  year: 2019
  ident: R4
  publication-title: Int. J. Hydrol. Sci. Technol.
  doi: 10.1504/IJHST.2019.098161
– volume: 218
  start-page: 1180
  year: 2011
  ident: R15
  publication-title: Appl. Math. Computat.
  doi: 10.1016/j.amc.2011.05.093
– ident: R19
  doi: 10.1515/9783110249996
– ident: R31
  doi: 10.1007/978-3-662-04331-8_9
– volume: 120
  start-page: 85
  year: 2000
  ident: R18
  publication-title: Sensitivity Analysis and reAl-time Control
– volume: 7
  start-page: 1
  year: 1974
  ident: R26
  publication-title: Math. Program.
  doi: 10.1007/BF01585500
– ident: R12
  doi: 10.1007/978-3-662-04331-8
– volume: 54
  start-page: 59
  year: 2005
  ident: R14
  publication-title: Optimization
  doi: 10.1080/02331930412331323854
– volume: 39
  start-page: 489
  year: 2003
  ident: R30
  publication-title: Automatica
  doi: 10.1016/S0005-1098(02)00250-9
– ident: R32
– ident: R35
  doi: 10.1007/978-3-0348-8802-8_21
– volume: 14
  start-page: 216
  year: 2020
  ident: R1
  publication-title: Rev. Environ. Econ. Policy
  doi: 10.1093/reep/reaa004
– ident: R17
– ident: R34
SSID ssj0000314300
Score 2.328358
Snippet We conduct sensitivity analysis of an optimal control problem applied to agricultural irrigation. The aim is to minimize the square of the amount of irrigation...
SourceID crossref
SourceType Index Database
StartPage 2
Title A parametric optimal control problem applied to daily irrigation
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBay7rLLsG4d9ix02IANht04tuzktqB7dMPaBn0AvQWSRaMBZjtI3csO--0jJcZ1ixy6XQzDtohEpCmS1vdRiHe4YlhMC2KiQoQQ1-s4nJgCkxWtVWkAtHFtOg-PsoPz9MeFuhgMTnu7lq5bExW_N-JK_kereA31SijZf9BsJxQv4DnqF4-oYTzeS8fTgJi7K2qKVQQNvvyVY_vwm8-5VUygOc7EINNqKmYsVivHq8EKWbdz6vhbCU9C_XF-8YZox_1JgK1LqImvoXPkP6FqrsKZXriv7YkHzNQ6mEXdE83Su6FT_J86OO5uWAhmi_rSDTmMgs9RcBL1CxAepryuIeZJqBJPlRmB96B5RvkoVyjYxY6GfR-50XOjc8Dprqp6SRgVYl7jQbcosu8sXd2GQvcpXcVzGj_n0Q_EwxHmDuStv33_0xXeiK8_8dCk9c9nQAQK2CMBeyygF6r0Yo6zJ-IxJwty6jW_LQZQPxXb7I6v5AfmDP_4THyayhtTkGwKkk1BsilINgXZNtKZgrwxhR1x_vXL2f5ByM0xwgKzxjY0w1FhyzKxCjDltkU8NibTAHGpYovvZZKa1NoyzVReWFxFAJ2z0pMhZHlpJtkkeS626qaGF0IaqzFQgxLGGL-neY6CLOGTx7a0agTmpXi_nof50nOgzDdN-Kt7PvdaPCI78oWsN2KrXV3DWwztWrPrVPUXGY5QDA
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parametric+optimal+control+problem+applied+to+daily+irrigation&rft.jtitle=Mathematical+modelling+of+natural+phenomena&rft.au=Lemos-Pai%C3%A3o%2C+Ana+P.&rft.au=Lopes%2C+Sofia+O.&rft.au=de+Pinho%2C+M.+D.+R.&rft.date=2025&rft.issn=0973-5348&rft.eissn=1760-6101&rft.volume=20&rft.spage=2&rft_id=info:doi/10.1051%2Fmmnp%2F2024020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_mmnp_2024020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-5348&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-5348&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-5348&client=summon