Differential ion transport mechanisms in arabidopsis and crops
•Root K+ uptake is largely mediated by AKT1-like K+ channels and HAK5-like K+/H+ symporters in the species studied so far. However, AKT1 channels dominate K+ uptake in Arabidopsis whereas HAK symporters dominate K+ transport in rice and, in tomato, there is an intermediate situation.•A subgroup of H...
Saved in:
Published in | Trends in plant science |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
04.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1360-1385 1878-4372 1878-4372 |
DOI | 10.1016/j.tplants.2025.05.007 |
Cover
Loading…
Abstract | •Root K+ uptake is largely mediated by AKT1-like K+ channels and HAK5-like K+/H+ symporters in the species studied so far. However, AKT1 channels dominate K+ uptake in Arabidopsis whereas HAK symporters dominate K+ transport in rice and, in tomato, there is an intermediate situation.•A subgroup of HAK transporters (clade IV), found in tomato, rice and maize, while missing in Arabidopsis, contribute to salt tolerance by mediating Na+ transport.•HAK transporters play a pivotal role in fertility and plant yield in tomato and rice. In particular, HAK5-like transporters are required for proper pollen germination and tube elongation.•Regulation of the ion transport systems by Ca2+-signaling networks has evolved differently in Arabidopsis and tomato. For instance, the SKOR K+ channel is inhibited by CIPK23-CBL1/9 complexes in tomato but not in Arabidopsis.
The ability of plants to cope with environmental fluctuations relies on efficient sensing, signaling and response mechanisms. In this regard, the functionality and regulation of ion transport systems are critical for plant resilience under challenging conditions. Most studies on this subject have been carried out in arabidopsis which has led to the rapid development of general molecular models for ion transport. However, research conducted in recent years unveiled substantial differences between arabidopsis and crops such as tomato or rice. These differences relate to the energization of root K+ uptake, and the role of HAK transporters in salt tolerance, fertility, and Ca2+-signaling regulatory networks. We conclude that research beyond arabidopsis is required to uncover the species-specific mechanisms governing climate change resilience.
The ability of plants to cope with environmental fluctuations relies on efficient sensing, signaling and response mechanisms. In this regard, the functionality and regulation of ion transport systems are critical for plant resilience under challenging conditions. Most studies on this subject have been carried out in arabidopsis which has led to the rapid development of general molecular models for ion transport. However, research conducted in recent years unveiled substantial differences between arabidopsis and crops such as tomato or rice. These differences relate to the energization of root K+ uptake, and the role of HAK transporters in salt tolerance, fertility, and Ca2+-signaling regulatory networks. We conclude that research beyond arabidopsis is required to uncover the species-specific mechanisms governing climate change resilience. |
---|---|
AbstractList | The ability of plants to cope with environmental fluctuations relies on efficient sensing, signaling, and response mechanisms. In this regard, the functionality and regulation of ion transport systems are critical for plant resilience under challenging conditions. Most studies on this subject have been carried out in Arabidopsis (Arabidopsis thaliana), which has led to the rapid development of general molecular models for ion transport. However, research conducted in recent years unveiled substantial differences between arabidopsis and crops such as tomato or rice. These differences relate to the energization of root K+ uptake, and the role of high-affinity K+ transporter (HAK) proteins in salt tolerance, fertility, and Ca2+-signaling regulatory networks. We conclude that research beyond arabidopsis is required to uncover the species-specific mechanisms governing climate change resilience.The ability of plants to cope with environmental fluctuations relies on efficient sensing, signaling, and response mechanisms. In this regard, the functionality and regulation of ion transport systems are critical for plant resilience under challenging conditions. Most studies on this subject have been carried out in Arabidopsis (Arabidopsis thaliana), which has led to the rapid development of general molecular models for ion transport. However, research conducted in recent years unveiled substantial differences between arabidopsis and crops such as tomato or rice. These differences relate to the energization of root K+ uptake, and the role of high-affinity K+ transporter (HAK) proteins in salt tolerance, fertility, and Ca2+-signaling regulatory networks. We conclude that research beyond arabidopsis is required to uncover the species-specific mechanisms governing climate change resilience. •Root K+ uptake is largely mediated by AKT1-like K+ channels and HAK5-like K+/H+ symporters in the species studied so far. However, AKT1 channels dominate K+ uptake in Arabidopsis whereas HAK symporters dominate K+ transport in rice and, in tomato, there is an intermediate situation.•A subgroup of HAK transporters (clade IV), found in tomato, rice and maize, while missing in Arabidopsis, contribute to salt tolerance by mediating Na+ transport.•HAK transporters play a pivotal role in fertility and plant yield in tomato and rice. In particular, HAK5-like transporters are required for proper pollen germination and tube elongation.•Regulation of the ion transport systems by Ca2+-signaling networks has evolved differently in Arabidopsis and tomato. For instance, the SKOR K+ channel is inhibited by CIPK23-CBL1/9 complexes in tomato but not in Arabidopsis. The ability of plants to cope with environmental fluctuations relies on efficient sensing, signaling and response mechanisms. In this regard, the functionality and regulation of ion transport systems are critical for plant resilience under challenging conditions. Most studies on this subject have been carried out in arabidopsis which has led to the rapid development of general molecular models for ion transport. However, research conducted in recent years unveiled substantial differences between arabidopsis and crops such as tomato or rice. These differences relate to the energization of root K+ uptake, and the role of HAK transporters in salt tolerance, fertility, and Ca2+-signaling regulatory networks. We conclude that research beyond arabidopsis is required to uncover the species-specific mechanisms governing climate change resilience. The ability of plants to cope with environmental fluctuations relies on efficient sensing, signaling and response mechanisms. In this regard, the functionality and regulation of ion transport systems are critical for plant resilience under challenging conditions. Most studies on this subject have been carried out in arabidopsis which has led to the rapid development of general molecular models for ion transport. However, research conducted in recent years unveiled substantial differences between arabidopsis and crops such as tomato or rice. These differences relate to the energization of root K+ uptake, and the role of HAK transporters in salt tolerance, fertility, and Ca2+-signaling regulatory networks. We conclude that research beyond arabidopsis is required to uncover the species-specific mechanisms governing climate change resilience. The ability of plants to cope with environmental fluctuations relies on efficient sensing, signaling, and response mechanisms. In this regard, the functionality and regulation of ion transport systems are critical for plant resilience under challenging conditions. Most studies on this subject have been carried out in Arabidopsis (Arabidopsis thaliana), which has led to the rapid development of general molecular models for ion transport. However, research conducted in recent years unveiled substantial differences between arabidopsis and crops such as tomato or rice. These differences relate to the energization of root K uptake, and the role of high-affinity K transporter (HAK) proteins in salt tolerance, fertility, and Ca -signaling regulatory networks. We conclude that research beyond arabidopsis is required to uncover the species-specific mechanisms governing climate change resilience. |
Author | Rubio, Francisco Nieves-Cordones, Manuel |
Author_xml | – sequence: 1 givenname: Manuel orcidid: 0000-0002-4015-0981 surname: Nieves-Cordones fullname: Nieves-Cordones, Manuel email: mncordones@cebas.csic.es – sequence: 2 givenname: Francisco orcidid: 0000-0001-7640-9548 surname: Rubio fullname: Rubio, Francisco email: frubio@cebas.csic.es |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40473491$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtLxDAUhYOMOOPoT1C6dNOaR5smG0XGJwy40XVIk1vM0KY16Qj-ezPM6FY4cO_iOwfOOUUzP3hA6ILggmDCrzfFNHbaT7GgmFYFTsL1EVoQUYu8ZDWdpZ9xnBMmqjk6jXGDE0EEP0HzEpc1KyVZoJt717YQwE9Od5kbfDYF7eM4hCnrwXxo72IfM-czHXTj7DBGFzPtbWZC-s_Qcau7COeHu0Tvjw9vq-d8_fr0srpb54YyPOU1kVRSY63kuJUSYyqhtXWjW8lKYQSzJaWcQMPKqqoF47StJDEcmBCCasuW6GqfO4bhcwtxUr2LBrq0AAzbqBglnHFS8Sqhlwd02_Rg1Rhcr8O3-u2cgGoPpAYxBmj_EILVblu1UYdt1W5bhZNwnXy3ex-kol8OgorGgTdgXQAzKTu4fxJ-ADkbg3g |
Cites_doi | 10.1017/qpb.2024.8 10.3389/fpls.2021.517742 10.1038/cr.2011.50 10.15252/embj.2019103256 10.1016/j.ceca.2014.10.013 10.3389/fpls.2020.00865 10.1073/pnas.1818013116 10.1016/S1671-2927(08)60068-1 10.1016/j.cell.2006.06.011 10.1038/s41477-019-0565-y 10.3389/fpls.2016.00127 10.1111/ppl.14585 10.3389/fpls.2014.00430 10.1016/j.cub.2018.08.004 10.1111/pce.13769 10.1073/pnas.1420944112 10.1111/j.1469-8137.2010.03526.x 10.1073/pnas.1507810112 10.1016/j.plaphy.2024.108768 10.1093/plphys/kiab462 10.1016/j.plantsci.2018.05.034 10.1111/tpj.13632 10.1111/pce.14189 10.1105/tpc.114.123455 10.1038/sj.emboj.7601732 10.1007/s44154-022-00070-1 10.1016/j.jbc.2023.105352 10.3389/fpls.2017.01941 10.1016/j.tplants.2020.01.009 10.1111/j.1365-3040.2009.02033.x 10.3389/fpls.2023.1118383 10.3390/plants12213723 10.1111/j.1365-3040.2007.01637.x 10.1111/j.1365-313X.2009.04029.x 10.1105/tpc.18.00523 10.1111/pce.12585 10.1038/s41467-024-52963-6 10.1016/S0304-4157(99)00013-1 10.1073/pnas.0707912104 10.1016/j.plaphy.2024.108373 10.1111/j.1399-3054.2010.01354.x 10.1002/jpln.200420485 10.1093/pcp/pcac061 10.1093/jxb/eraa212 10.1111/tpj.16971 10.1111/nph.18910 10.1038/cr.2007.39 10.1093/pcp/pcs056 10.1085/jgp.113.6.909 10.1016/j.plaphy.2024.109039 10.1104/pp.111.189167 10.1146/annurev.arplant.59.032607.092911 |
ContentType | Journal Article |
Copyright | 2025 Copyright © 2025 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2025 – notice: Copyright © 2025 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.tplants.2025.05.007 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Botany |
EISSN | 1878-4372 |
ExternalDocumentID | 40473491 10_1016_j_tplants_2025_05_007 S1360138525001359 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -DZ .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAMRU AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYWO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEQOU AEUPX AFPUW AFRAH AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGRNS AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSA SSH SSU SSZ T5K TWZ XPP Y6R ZCA ~G- ~KM AAYXX CITATION EFKBS NPM 7X8 |
ID | FETCH-LOGICAL-c230t-719292cdd960f990029efd7baf9348c83d42261eb345578362f591c6e38882ad3 |
IEDL.DBID | .~1 |
ISSN | 1360-1385 1878-4372 |
IngestDate | Wed Jul 02 02:47:56 EDT 2025 Mon Jul 21 05:59:10 EDT 2025 Thu Jul 03 08:23:10 EDT 2025 Sat Jun 14 16:53:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | transport tomato Sodium rice Potassium arabidopsis sodium potassium |
Language | English |
License | Copyright © 2025 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c230t-719292cdd960f990029efd7baf9348c83d42261eb345578362f591c6e38882ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7640-9548 0000-0002-4015-0981 |
PMID | 40473491 |
PQID | 3216361565 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3216361565 pubmed_primary_40473491 crossref_primary_10_1016_j_tplants_2025_05_007 elsevier_sciencedirect_doi_10_1016_j_tplants_2025_05_007 |
PublicationCentury | 2000 |
PublicationDate | 2025-Jun-04 |
PublicationDateYYYYMMDD | 2025-06-04 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-Jun-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Trends in plant science |
PublicationTitleAlternate | Trends Plant Sci |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Munns (10.1016/j.tplants.2025.05.007_bb0095) 2008; 59 Benito (10.1016/j.tplants.2025.05.007_bb0075) 2012; 53 Hawkesford (10.1016/j.tplants.2025.05.007_bb0255) 2012 Alemán (10.1016/j.tplants.2025.05.007_bb0240) 2014; 5 Han (10.1016/j.tplants.2025.05.007_bb0160) 2021; 12 Wang (10.1016/j.tplants.2025.05.007_bb0090) 2020; 39 Böhm (10.1016/j.tplants.2025.05.007_bb0185) 2018; 28 Boscari (10.1016/j.tplants.2025.05.007_bb0170) 2009; 32 Che (10.1016/j.tplants.2025.05.007_bb0085) 2024; 120 Pandey (10.1016/j.tplants.2025.05.007_bb0205) 2007; 17 Held (10.1016/j.tplants.2025.05.007_bb0230) 2011; 21 Haruta (10.1016/j.tplants.2025.05.007_bb0060) 2012; 158 Rubio (10.1016/j.tplants.2025.05.007_bb0015) 2010; 139 Palmgren (10.1016/j.tplants.2025.05.007_bb0275) 2023; 299 Rodríguez-Navarro (10.1016/j.tplants.2025.05.007_bb0280) 2000; 1469 Nieves-Cordones (10.1016/j.tplants.2025.05.007_bb0020) 2020; 43 Scherzer (10.1016/j.tplants.2025.05.007_bb0175) 2015; 112 Baligar (10.1016/j.tplants.2025.05.007_bb0065) 2015 Foster (10.1016/j.tplants.2025.05.007_bb0250) 2020; 11 Li (10.1016/j.tplants.2025.05.007_bb0030) 2014; 26 Nieves-Cordones (10.1016/j.tplants.2025.05.007_bb0070) 2016; 7 Chen (10.1016/j.tplants.2025.05.007_bb0120) 2015; 38 Hua (10.1016/j.tplants.2025.05.007_bb0105) 2008; 7 Dreyer (10.1016/j.tplants.2025.05.007_bb0050) 2024; 5 Amo (10.1016/j.tplants.2025.05.007_bb0025) 2021; 44 Sung (10.1016/j.tplants.2025.05.007_bb0150) 2007; 104 Nieves-Cordones (10.1016/j.tplants.2025.05.007_bb0035) 2017; 92 Ragel (10.1016/j.tplants.2025.05.007_bb0190) 2015; 169 Zitnik (10.1016/j.tplants.2025.05.007_bb0235) 2019; 116 Lara (10.1016/j.tplants.2025.05.007_bb0155) 2020; 71 Maierhofer (10.1016/j.tplants.2025.05.007_bb0040) 2024; 15 Huang (10.1016/j.tplants.2025.05.007_bb0220) 2021; 187 Nieves-Cordones (10.1016/j.tplants.2025.05.007_bb0200) 2023; 238 Tang (10.1016/j.tplants.2025.05.007_bb0210) 2015; 112 Roșca (10.1016/j.tplants.2025.05.007_bb0115) 2023; 14 Davenport (10.1016/j.tplants.2025.05.007_bb0110) 2007; 30 Chen (10.1016/j.tplants.2025.05.007_bb0125) 2018; 274 Zhou (10.1016/j.tplants.2025.05.007_bb0225) 2023; 12 Horie (10.1016/j.tplants.2025.05.007_bb0265) 2007; 26 Tang (10.1016/j.tplants.2025.05.007_bb0140) 2020; 25 Xu (10.1016/j.tplants.2025.05.007_bb0180) 2006; 125 Martínez-Martínez (10.1016/j.tplants.2025.05.007_bb0215) 2024; 215 Zhang (10.1016/j.tplants.2025.05.007_bb0100) 2011; 189 Thorne (10.1016/j.tplants.2025.05.007_bb0260) 2022; 2 Jiménez-Estévez (10.1016/j.tplants.2025.05.007_bb0245) 2024; 212 Zhang (10.1016/j.tplants.2025.05.007_bb0080) 2019; 5 Gill (10.1016/j.tplants.2025.05.007_bb0055) 2017; 8 Amo (10.1016/j.tplants.2025.05.007_bb0135) 2024; 176 Amo (10.1016/j.tplants.2025.05.007_bb0010) 2023 Amo (10.1016/j.tplants.2025.05.007_bb0195) 2024; 207 Cuéllar (10.1016/j.tplants.2025.05.007_bb0165) 2010; 61 Cakmak (10.1016/j.tplants.2025.05.007_bb0005) 2005; 168 Edel (10.1016/j.tplants.2025.05.007_bb0145) 2015; 57 Jegla (10.1016/j.tplants.2025.05.007_bb0270) 2018; 30 Spalding (10.1016/j.tplants.2025.05.007_bb0045) 1999; 113 Li (10.1016/j.tplants.2025.05.007_bb0130) 2022; 63 |
References_xml | – start-page: 135 year: 2012 ident: 10.1016/j.tplants.2025.05.007_bb0255 article-title: Functions of macronutrients – volume: 5 start-page: 1 year: 2024 ident: 10.1016/j.tplants.2025.05.007_bb0050 article-title: Homeostats: the hidden rulers of ion homeostasis in plants publication-title: Quant. Plant Biol. doi: 10.1017/qpb.2024.8 – volume: 12 year: 2021 ident: 10.1016/j.tplants.2025.05.007_bb0160 article-title: ZMK1 is involved in K + uptake and regulated by protein kinase ZmCIPK23 in Zea mays publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.517742 – volume: 169 start-page: 2863 year: 2015 ident: 10.1016/j.tplants.2025.05.007_bb0190 article-title: The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity K+ uptake in arabidopsis roots publication-title: Plant Physiol. – volume: 21 start-page: 1116 year: 2011 ident: 10.1016/j.tplants.2025.05.007_bb0230 article-title: Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex publication-title: Cell Res. doi: 10.1038/cr.2011.50 – volume: 39 start-page: 1 year: 2020 ident: 10.1016/j.tplants.2025.05.007_bb0090 article-title: Loss of salt tolerance during tomato domestication conferred by variation in a Na + /K + transporter publication-title: EMBO J. doi: 10.15252/embj.2019103256 – volume: 57 start-page: 231 year: 2015 ident: 10.1016/j.tplants.2025.05.007_bb0145 article-title: Increasing complexity and versatility: how the calcium signaling toolkit was shaped during plant land colonization publication-title: Cell Calcium doi: 10.1016/j.ceca.2014.10.013 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.tplants.2025.05.007_bb0250 article-title: A comprehensive biophysical model of ion and water transport in plant roots. III. Quantifying the energy costs of ion transport in salt-stressed roots of arabidopsis publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00865 – volume: 116 start-page: 4426 year: 2019 ident: 10.1016/j.tplants.2025.05.007_bb0235 article-title: Evolution of resilience in protein interactomes across the tree of life publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1818013116 – volume: 7 start-page: 291 year: 2008 ident: 10.1016/j.tplants.2025.05.007_bb0105 article-title: Effects of NaCl and Ca2+ on membrane potential of epidermal cells of maize roots publication-title: Agric. Sci. China doi: 10.1016/S1671-2927(08)60068-1 – volume: 125 start-page: 1347 year: 2006 ident: 10.1016/j.tplants.2025.05.007_bb0180 article-title: A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in arabidopsis publication-title: Cell doi: 10.1016/j.cell.2006.06.011 – volume: 5 start-page: 1297 year: 2019 ident: 10.1016/j.tplants.2025.05.007_bb0080 article-title: A HAK family Na+ transporter confers natural variation of salt tolerance in maize publication-title: Nat. Plants doi: 10.1038/s41477-019-0565-y – volume: 7 start-page: 1 year: 2016 ident: 10.1016/j.tplants.2025.05.007_bb0070 article-title: Uneven HAK/KUP/KT protein diversity among angiosperms: species distribution and perspectives publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00127 – volume: 176 year: 2024 ident: 10.1016/j.tplants.2025.05.007_bb0135 article-title: Mutation of the K + transporter SlHAK5 of tomato alters pistil morphology , ionome , metabolome and transcriptome in flowers publication-title: Physiol. Plant. doi: 10.1111/ppl.14585 – volume: 5 start-page: 1 year: 2014 ident: 10.1016/j.tplants.2025.05.007_bb0240 article-title: The F130S point mutation in the arabidopsis high-affinity K+ transporter AtHAK5 increases K+ over Na+ and Cs+ selectivity and confers Na+ and Cs+ tolerance to yeast under heterologous expression publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00430 – volume: 28 start-page: 3075 year: 2018 ident: 10.1016/j.tplants.2025.05.007_bb0185 article-title: Understanding the molecular basis of salt sequestration in epidermal bladder cells of Chenopodium quinoa publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.08.004 – volume: 43 start-page: 1707 year: 2020 ident: 10.1016/j.tplants.2025.05.007_bb0020 article-title: Root high-affinity K+ and Cs+ uptake and plant fertility in tomato plants are dependent on the activity of the high-affinity K+ transporter SlHAK5 publication-title: Plant Cell Environ. doi: 10.1111/pce.13769 – volume: 112 start-page: 3134 year: 2015 ident: 10.1016/j.tplants.2025.05.007_bb0210 article-title: Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1420944112 – volume: 189 start-page: 856 year: 2011 ident: 10.1016/j.tplants.2025.05.007_bb0100 article-title: A K+ channel from salt-tolerant melon inhibited by Na+ publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03526.x – volume: 112 start-page: 7309 year: 2015 ident: 10.1016/j.tplants.2025.05.007_bb0175 article-title: Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1507810112 – volume: 212 year: 2024 ident: 10.1016/j.tplants.2025.05.007_bb0245 article-title: Increased tolerance to low K+, and to cationic stress of Arabidopsis plants by expressing the F130S mutant version of the K+ transporter AtHAK5 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2024.108768 – volume: 187 start-page: 2296 year: 2021 ident: 10.1016/j.tplants.2025.05.007_bb0220 article-title: The rectification control and physiological relevance of potassium channel OsAKT2 publication-title: Plant Physiol. doi: 10.1093/plphys/kiab462 – volume: 274 start-page: 261 year: 2018 ident: 10.1016/j.tplants.2025.05.007_bb0125 article-title: OsHAK1 controls the vegetative growth and panicle fertility of rice by its effect on potassium-mediated sugar metabolism publication-title: Plant Sci. doi: 10.1016/j.plantsci.2018.05.034 – volume: 92 start-page: 43 year: 2017 ident: 10.1016/j.tplants.2025.05.007_bb0035 article-title: Production of low-Cs(+) rice plants by inactivation of the K(+) transporter OsHAK1 with the CRISPR-Cas system publication-title: Plant J. doi: 10.1111/tpj.13632 – volume: 44 start-page: 3589 year: 2021 ident: 10.1016/j.tplants.2025.05.007_bb0025 article-title: The protein kinase SlCIPK23 boosts K+ and Na+ uptake in tomato plants publication-title: Plant Cell Environ. doi: 10.1111/pce.14189 – volume: 26 start-page: 3387 year: 2014 ident: 10.1016/j.tplants.2025.05.007_bb0030 article-title: The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex publication-title: Plant Cell doi: 10.1105/tpc.114.123455 – volume: 26 start-page: 3003 year: 2007 ident: 10.1016/j.tplants.2025.05.007_bb0265 article-title: Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth publication-title: EMBO J. doi: 10.1038/sj.emboj.7601732 – volume: 2 start-page: 45 year: 2022 ident: 10.1016/j.tplants.2025.05.007_bb0260 article-title: Reducing potassium deficiency by using sodium fertilisation publication-title: Stress Biol. doi: 10.1007/s44154-022-00070-1 – volume: 299 year: 2023 ident: 10.1016/j.tplants.2025.05.007_bb0275 article-title: P-type ATPases: many more enigmas left to solve publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2023.105352 – volume: 8 start-page: 1 year: 2017 ident: 10.1016/j.tplants.2025.05.007_bb0055 article-title: Cell-based phenotyping reveals QTL for membrane potential maintenance associated with hypoxia and salinity stress tolerance in barley publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01941 – volume: 25 start-page: 604 year: 2020 ident: 10.1016/j.tplants.2025.05.007_bb0140 article-title: The CBL–CIPK calcium signaling network: unified paradigm from 20 years of discoveries publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2020.01.009 – volume: 32 start-page: 1761 year: 2009 ident: 10.1016/j.tplants.2025.05.007_bb0170 article-title: Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2009.02033.x – volume: 14 start-page: 1 year: 2023 ident: 10.1016/j.tplants.2025.05.007_bb0115 article-title: Tomato responses to salinity stress: from morphological traits to genetic changes publication-title: Front. Plant Sci. doi: 10.3389/fpls.2023.1118383 – volume: 12 start-page: 3723 year: 2023 ident: 10.1016/j.tplants.2025.05.007_bb0225 article-title: OsCIPK9 interacts with OsSOS3 and affects salt-related transport to improve salt tolerance publication-title: Plants doi: 10.3390/plants12213723 – volume: 30 start-page: 497 year: 2007 ident: 10.1016/j.tplants.2025.05.007_bb0110 article-title: The Na+ transporter AtHKT1;1 controls retrieval of Na + from the xylem in Arabidopsis publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2007.01637.x – volume: 61 start-page: 58 year: 2010 ident: 10.1016/j.tplants.2025.05.007_bb0165 article-title: A grapevine Shaker inward K+ channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in grape berries under drought stress conditions publication-title: Plant J. doi: 10.1111/j.1365-313X.2009.04029.x – volume: 30 start-page: 2898 year: 2018 ident: 10.1016/j.tplants.2025.05.007_bb0270 article-title: Evolution and structural characteristics of plant voltage-gated K + channels publication-title: Plant Cell doi: 10.1105/tpc.18.00523 – volume: 38 start-page: 2747 year: 2015 ident: 10.1016/j.tplants.2025.05.007_bb0120 article-title: Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges publication-title: Plant Cell Environ. doi: 10.1111/pce.12585 – volume: 15 start-page: 8558 year: 2024 ident: 10.1016/j.tplants.2025.05.007_bb0040 article-title: Arabidopsis HAK5 under low K+ availability operates as PMF powered high-affinity K+ transporter publication-title: Nat. Commun. doi: 10.1038/s41467-024-52963-6 – volume: 1469 start-page: 1 year: 2000 ident: 10.1016/j.tplants.2025.05.007_bb0280 article-title: Potassium transport in fungi and plants publication-title: Biochim. Biophys. Acta Rev. Biomembr. doi: 10.1016/S0304-4157(99)00013-1 – start-page: 1 year: 2015 ident: 10.1016/j.tplants.2025.05.007_bb0065 article-title: Nutrient use efficiency in plants: an overview – volume: 104 start-page: 15959 year: 2007 ident: 10.1016/j.tplants.2025.05.007_bb0150 article-title: A protein phosphorylation/dephosphorylation network regulates a plant potassium channel publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0707912104 – volume: 207 year: 2024 ident: 10.1016/j.tplants.2025.05.007_bb0195 article-title: Relevance of the SlCIPK23 kinase in Na+ uptake and root morphology in K+-starved tomato plants publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2024.108373 – volume: 139 start-page: 220 year: 2010 ident: 10.1016/j.tplants.2025.05.007_bb0015 article-title: Studies on Arabidopsis athak5, atakt1 double mutants disclose the range of concentrations at which AtHAK5, AtAKT1 and unknown systems mediate K+ uptake publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2010.01354.x – volume: 168 start-page: 521 year: 2005 ident: 10.1016/j.tplants.2025.05.007_bb0005 article-title: The role of potassium in alleviating detrimental effects of abiotic stresses in plants publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200420485 – volume: 63 start-page: 967 year: 2022 ident: 10.1016/j.tplants.2025.05.007_bb0130 article-title: Function of rice high-affinity potassium transporters in pollen development and fertility publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcac061 – volume: 71 start-page: 5053 year: 2020 ident: 10.1016/j.tplants.2025.05.007_bb0155 article-title: Arabidopsis K+ transporter HAK5-mediated high-affinity root K+ uptake is regulated by protein kinases CIPK1 and CIPK9 publication-title: J. Exp. Bot. doi: 10.1093/jxb/eraa212 – volume: 120 start-page: 76 year: 2024 ident: 10.1016/j.tplants.2025.05.007_bb0085 article-title: OsHAK4 functions in retrieving sodium from the phloem at the reproductive stage of rice publication-title: Plant J. doi: 10.1111/tpj.16971 – start-page: 120 year: 2023 ident: 10.1016/j.tplants.2025.05.007_bb0010 article-title: Potassium transport systems at the plasma membrane of plant cells. Tools for Improving Potassium Use Efficiency of Crops – volume: 238 start-page: 2495 year: 2023 ident: 10.1016/j.tplants.2025.05.007_bb0200 article-title: Inhibition of SlSKOR by SlCIPK23-SlCBL1 / 9 uncovers CIPK-CBL- target network rewiring in land plants publication-title: New Phytol. doi: 10.1111/nph.18910 – volume: 17 start-page: 411 year: 2007 ident: 10.1016/j.tplants.2025.05.007_bb0205 article-title: CIPK9: a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis publication-title: Cell Res. doi: 10.1038/cr.2007.39 – volume: 53 start-page: 1117 year: 2012 ident: 10.1016/j.tplants.2025.05.007_bb0075 article-title: HAK transporters from Physcomitrella patens and Yarrowia lipolytica mediate sodium uptake publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcs056 – volume: 113 start-page: 909 year: 1999 ident: 10.1016/j.tplants.2025.05.007_bb0045 article-title: Potassium uptake supporting plant growth in the absence of AKT1 channel activity publication-title: J. Gen. Physiol. doi: 10.1085/jgp.113.6.909 – volume: 215 year: 2024 ident: 10.1016/j.tplants.2025.05.007_bb0215 article-title: SlCIPK9 regulates pollen tube elongation in tomato plants via a K+-independent mechanism publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2024.109039 – volume: 158 start-page: 1158 year: 2012 ident: 10.1016/j.tplants.2025.05.007_bb0060 article-title: The effect of a genetically reduced plasma membrane proton motive force on vegetative growth of arabidopsiss publication-title: Plant Physiol. doi: 10.1104/pp.111.189167 – volume: 59 start-page: 651 year: 2008 ident: 10.1016/j.tplants.2025.05.007_bb0095 article-title: Mechanisms of salinity tolerance publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092911 |
SSID | ssj0007186 |
Score | 2.4762514 |
SecondaryResourceType | review_article |
Snippet | •Root K+ uptake is largely mediated by AKT1-like K+ channels and HAK5-like K+/H+ symporters in the species studied so far. However, AKT1 channels dominate K+... The ability of plants to cope with environmental fluctuations relies on efficient sensing, signaling, and response mechanisms. In this regard, the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | arabidopsis Potassium rice Sodium tomato transport |
Title | Differential ion transport mechanisms in arabidopsis and crops |
URI | https://dx.doi.org/10.1016/j.tplants.2025.05.007 https://www.ncbi.nlm.nih.gov/pubmed/40473491 https://www.proquest.com/docview/3216361565 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB6W1YMexLfriwheu30k7bYXwdeyKnrRhb2FNEmhy9outh68-Nud9OEqKIJQKH2RMJPOfEPmmwE49aiSwnNCS7sitFgcSCuMmbYYG1ApI9R6lZtz_xCMxux24k86cNlyYUxaZWP7a5teWevmjt1I056nqf3o0sBss5l9OTz7hsSHI5j6-f33RZoH2t6g5l45pt6ev2Dx2NN-OZ-ZbBMMEz2_KuBpusr-7J9-w5-VHxquw1oDIMl5PccN6OhsE5YvcgR5b5uw-qW-4BacXTXtT_A3nhHUACnbWubkWRvOb1o8FyTNiHgRcaryeZEWRGSKmMZexTaMh9dPlyOraZhgSYwkSmuAcC3ypFIYliToZhwv0okaxCKJKAtlSJXhzboYPzPfN_QNL_EjVwaaYhzsCUV3oJvlmd4DgqguYfhYK_TxSSJjWlXOdxS-L6gjetBvxcTndV0M3iaMTXkjV27kyh08nEEPwlaY_JuCOdruvz49aYXPcfGbHQ2R6fy14NRDOImYLPB7sFtr5XM2zMHlxiJ3__8DH8CKuaoyw9ghdMuXV32EGKSMj6tFdgxL5zd3o4cPnDnZ_g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60FdSD-LY-V_CaNslu0uQiaFXqqxcVels2uxtI0bQ06cF_72weVUERhEAgD7LMTGa-YWe-AThzqZLCtQNLOyKwWORLK4iYthjrUilD1HpRm_M48Psv7G7oDRegV_fCmLLKyveXPr3w1tWVTiXNziRJOk8O9c02m9mXw7MXLkLTsFOhsTcvbu_7g7lDRvfrl-1XtqHc8z4beTqjdj55NQUnmCm6XsHhaQbL_hyifoOgRSi6WYe1CkOSi3KZG7Cg001YuhwjznvfhNUvFINbcH5VTUDBP_mVoBJIXtOZkzdt2n6T7C0jSUrEVESJGk-yJCMiVcTM9sq24eXm-rnXt6qZCZbEZCK3uojYQlcqhZlJjJHGdkMdq24k4pCyQAZUmdZZB1No5nmmg8ONvdCRvqaYCrtC0R1opONU7wFBYBczvK0Vhvk4lhEtyPNthc8LaosWtGsx8UlJjcHrmrERr-TKjVy5jYfdbUFQC5N_0zFH9_3Xq6e18Dnav9nUEKkezzJOXUSUCMt8rwW7pVbmq2E2mgMLnf3_f_gElvvPjw_84XZwfwAr5k5RKMYOoZFPZ_oIIUkeHVcm9wEjm9yv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+ion+transport+mechanisms+in+arabidopsis+and+crops&rft.jtitle=Trends+in+plant+science&rft.au=Nieves-Cordones%2C+Manuel&rft.au=Rubio%2C+Francisco&rft.date=2025-06-04&rft.issn=1878-4372&rft.eissn=1878-4372&rft_id=info:doi/10.1016%2Fj.tplants.2025.05.007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-1385&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-1385&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-1385&client=summon |