Differential ion transport mechanisms in arabidopsis and crops

•Root K+ uptake is largely mediated by AKT1-like K+ channels and HAK5-like K+/H+ symporters in the species studied so far. However, AKT1 channels dominate K+ uptake in Arabidopsis whereas HAK symporters dominate K+ transport in rice and, in tomato, there is an intermediate situation.•A subgroup of H...

Full description

Saved in:
Bibliographic Details
Published inTrends in plant science
Main Authors Nieves-Cordones, Manuel, Rubio, Francisco
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 04.06.2025
Subjects
Online AccessGet full text
ISSN1360-1385
1878-4372
1878-4372
DOI10.1016/j.tplants.2025.05.007

Cover

Loading…
Abstract •Root K+ uptake is largely mediated by AKT1-like K+ channels and HAK5-like K+/H+ symporters in the species studied so far. However, AKT1 channels dominate K+ uptake in Arabidopsis whereas HAK symporters dominate K+ transport in rice and, in tomato, there is an intermediate situation.•A subgroup of HAK transporters (clade IV), found in tomato, rice and maize, while missing in Arabidopsis, contribute to salt tolerance by mediating Na+ transport.•HAK transporters play a pivotal role in fertility and plant yield in tomato and rice. In particular, HAK5-like transporters are required for proper pollen germination and tube elongation.•Regulation of the ion transport systems by Ca2+-signaling networks has evolved differently in Arabidopsis and tomato. For instance, the SKOR K+ channel is inhibited by CIPK23-CBL1/9 complexes in tomato but not in Arabidopsis. The ability of plants to cope with environmental fluctuations relies on efficient sensing, signaling and response mechanisms. In this regard, the functionality and regulation of ion transport systems are critical for plant resilience under challenging conditions. Most studies on this subject have been carried out in arabidopsis which has led to the rapid development of general molecular models for ion transport. However, research conducted in recent years unveiled substantial differences between arabidopsis and crops such as tomato or rice. These differences relate to the energization of root K+ uptake, and the role of HAK transporters in salt tolerance, fertility, and Ca2+-signaling regulatory networks. We conclude that research beyond arabidopsis is required to uncover the species-specific mechanisms governing climate change resilience. The ability of plants to cope with environmental fluctuations relies on efficient sensing, signaling and response mechanisms. In this regard, the functionality and regulation of ion transport systems are critical for plant resilience under challenging conditions. Most studies on this subject have been carried out in arabidopsis which has led to the rapid development of general molecular models for ion transport. However, research conducted in recent years unveiled substantial differences between arabidopsis and crops such as tomato or rice. These differences relate to the energization of root K+ uptake, and the role of HAK transporters in salt tolerance, fertility, and Ca2+-signaling regulatory networks. We conclude that research beyond arabidopsis is required to uncover the species-specific mechanisms governing climate change resilience.
AbstractList The ability of plants to cope with environmental fluctuations relies on efficient sensing, signaling, and response mechanisms. In this regard, the functionality and regulation of ion transport systems are critical for plant resilience under challenging conditions. Most studies on this subject have been carried out in Arabidopsis (Arabidopsis thaliana), which has led to the rapid development of general molecular models for ion transport. However, research conducted in recent years unveiled substantial differences between arabidopsis and crops such as tomato or rice. These differences relate to the energization of root K+ uptake, and the role of high-affinity K+ transporter (HAK) proteins in salt tolerance, fertility, and Ca2+-signaling regulatory networks. We conclude that research beyond arabidopsis is required to uncover the species-specific mechanisms governing climate change resilience.The ability of plants to cope with environmental fluctuations relies on efficient sensing, signaling, and response mechanisms. In this regard, the functionality and regulation of ion transport systems are critical for plant resilience under challenging conditions. Most studies on this subject have been carried out in Arabidopsis (Arabidopsis thaliana), which has led to the rapid development of general molecular models for ion transport. However, research conducted in recent years unveiled substantial differences between arabidopsis and crops such as tomato or rice. These differences relate to the energization of root K+ uptake, and the role of high-affinity K+ transporter (HAK) proteins in salt tolerance, fertility, and Ca2+-signaling regulatory networks. We conclude that research beyond arabidopsis is required to uncover the species-specific mechanisms governing climate change resilience.
•Root K+ uptake is largely mediated by AKT1-like K+ channels and HAK5-like K+/H+ symporters in the species studied so far. However, AKT1 channels dominate K+ uptake in Arabidopsis whereas HAK symporters dominate K+ transport in rice and, in tomato, there is an intermediate situation.•A subgroup of HAK transporters (clade IV), found in tomato, rice and maize, while missing in Arabidopsis, contribute to salt tolerance by mediating Na+ transport.•HAK transporters play a pivotal role in fertility and plant yield in tomato and rice. In particular, HAK5-like transporters are required for proper pollen germination and tube elongation.•Regulation of the ion transport systems by Ca2+-signaling networks has evolved differently in Arabidopsis and tomato. For instance, the SKOR K+ channel is inhibited by CIPK23-CBL1/9 complexes in tomato but not in Arabidopsis. The ability of plants to cope with environmental fluctuations relies on efficient sensing, signaling and response mechanisms. In this regard, the functionality and regulation of ion transport systems are critical for plant resilience under challenging conditions. Most studies on this subject have been carried out in arabidopsis which has led to the rapid development of general molecular models for ion transport. However, research conducted in recent years unveiled substantial differences between arabidopsis and crops such as tomato or rice. These differences relate to the energization of root K+ uptake, and the role of HAK transporters in salt tolerance, fertility, and Ca2+-signaling regulatory networks. We conclude that research beyond arabidopsis is required to uncover the species-specific mechanisms governing climate change resilience. The ability of plants to cope with environmental fluctuations relies on efficient sensing, signaling and response mechanisms. In this regard, the functionality and regulation of ion transport systems are critical for plant resilience under challenging conditions. Most studies on this subject have been carried out in arabidopsis which has led to the rapid development of general molecular models for ion transport. However, research conducted in recent years unveiled substantial differences between arabidopsis and crops such as tomato or rice. These differences relate to the energization of root K+ uptake, and the role of HAK transporters in salt tolerance, fertility, and Ca2+-signaling regulatory networks. We conclude that research beyond arabidopsis is required to uncover the species-specific mechanisms governing climate change resilience.
The ability of plants to cope with environmental fluctuations relies on efficient sensing, signaling, and response mechanisms. In this regard, the functionality and regulation of ion transport systems are critical for plant resilience under challenging conditions. Most studies on this subject have been carried out in Arabidopsis (Arabidopsis thaliana), which has led to the rapid development of general molecular models for ion transport. However, research conducted in recent years unveiled substantial differences between arabidopsis and crops such as tomato or rice. These differences relate to the energization of root K uptake, and the role of high-affinity K transporter (HAK) proteins in salt tolerance, fertility, and Ca -signaling regulatory networks. We conclude that research beyond arabidopsis is required to uncover the species-specific mechanisms governing climate change resilience.
Author Rubio, Francisco
Nieves-Cordones, Manuel
Author_xml – sequence: 1
  givenname: Manuel
  orcidid: 0000-0002-4015-0981
  surname: Nieves-Cordones
  fullname: Nieves-Cordones, Manuel
  email: mncordones@cebas.csic.es
– sequence: 2
  givenname: Francisco
  orcidid: 0000-0001-7640-9548
  surname: Rubio
  fullname: Rubio, Francisco
  email: frubio@cebas.csic.es
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40473491$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtLxDAUhYOMOOPoT1C6dNOaR5smG0XGJwy40XVIk1vM0KY16Qj-ezPM6FY4cO_iOwfOOUUzP3hA6ILggmDCrzfFNHbaT7GgmFYFTsL1EVoQUYu8ZDWdpZ9xnBMmqjk6jXGDE0EEP0HzEpc1KyVZoJt717YQwE9Od5kbfDYF7eM4hCnrwXxo72IfM-czHXTj7DBGFzPtbWZC-s_Qcau7COeHu0Tvjw9vq-d8_fr0srpb54YyPOU1kVRSY63kuJUSYyqhtXWjW8lKYQSzJaWcQMPKqqoF47StJDEcmBCCasuW6GqfO4bhcwtxUr2LBrq0AAzbqBglnHFS8Sqhlwd02_Rg1Rhcr8O3-u2cgGoPpAYxBmj_EILVblu1UYdt1W5bhZNwnXy3ex-kol8OgorGgTdgXQAzKTu4fxJ-ADkbg3g
Cites_doi 10.1017/qpb.2024.8
10.3389/fpls.2021.517742
10.1038/cr.2011.50
10.15252/embj.2019103256
10.1016/j.ceca.2014.10.013
10.3389/fpls.2020.00865
10.1073/pnas.1818013116
10.1016/S1671-2927(08)60068-1
10.1016/j.cell.2006.06.011
10.1038/s41477-019-0565-y
10.3389/fpls.2016.00127
10.1111/ppl.14585
10.3389/fpls.2014.00430
10.1016/j.cub.2018.08.004
10.1111/pce.13769
10.1073/pnas.1420944112
10.1111/j.1469-8137.2010.03526.x
10.1073/pnas.1507810112
10.1016/j.plaphy.2024.108768
10.1093/plphys/kiab462
10.1016/j.plantsci.2018.05.034
10.1111/tpj.13632
10.1111/pce.14189
10.1105/tpc.114.123455
10.1038/sj.emboj.7601732
10.1007/s44154-022-00070-1
10.1016/j.jbc.2023.105352
10.3389/fpls.2017.01941
10.1016/j.tplants.2020.01.009
10.1111/j.1365-3040.2009.02033.x
10.3389/fpls.2023.1118383
10.3390/plants12213723
10.1111/j.1365-3040.2007.01637.x
10.1111/j.1365-313X.2009.04029.x
10.1105/tpc.18.00523
10.1111/pce.12585
10.1038/s41467-024-52963-6
10.1016/S0304-4157(99)00013-1
10.1073/pnas.0707912104
10.1016/j.plaphy.2024.108373
10.1111/j.1399-3054.2010.01354.x
10.1002/jpln.200420485
10.1093/pcp/pcac061
10.1093/jxb/eraa212
10.1111/tpj.16971
10.1111/nph.18910
10.1038/cr.2007.39
10.1093/pcp/pcs056
10.1085/jgp.113.6.909
10.1016/j.plaphy.2024.109039
10.1104/pp.111.189167
10.1146/annurev.arplant.59.032607.092911
ContentType Journal Article
Copyright 2025
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.tplants.2025.05.007
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Botany
EISSN 1878-4372
ExternalDocumentID 40473491
10_1016_j_tplants_2025_05_007
S1360138525001359
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAMRU
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFPUW
AFRAH
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSH
SSU
SSZ
T5K
TWZ
XPP
Y6R
ZCA
~G-
~KM
AAYXX
CITATION
EFKBS
NPM
7X8
ID FETCH-LOGICAL-c230t-719292cdd960f990029efd7baf9348c83d42261eb345578362f591c6e38882ad3
IEDL.DBID .~1
ISSN 1360-1385
1878-4372
IngestDate Wed Jul 02 02:47:56 EDT 2025
Mon Jul 21 05:59:10 EDT 2025
Thu Jul 03 08:23:10 EDT 2025
Sat Jun 14 16:53:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords transport
tomato
Sodium
rice
Potassium
arabidopsis
sodium
potassium
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c230t-719292cdd960f990029efd7baf9348c83d42261eb345578362f591c6e38882ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7640-9548
0000-0002-4015-0981
PMID 40473491
PQID 3216361565
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3216361565
pubmed_primary_40473491
crossref_primary_10_1016_j_tplants_2025_05_007
elsevier_sciencedirect_doi_10_1016_j_tplants_2025_05_007
PublicationCentury 2000
PublicationDate 2025-Jun-04
PublicationDateYYYYMMDD 2025-06-04
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-Jun-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Trends in plant science
PublicationTitleAlternate Trends Plant Sci
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Munns (10.1016/j.tplants.2025.05.007_bb0095) 2008; 59
Benito (10.1016/j.tplants.2025.05.007_bb0075) 2012; 53
Hawkesford (10.1016/j.tplants.2025.05.007_bb0255) 2012
Alemán (10.1016/j.tplants.2025.05.007_bb0240) 2014; 5
Han (10.1016/j.tplants.2025.05.007_bb0160) 2021; 12
Wang (10.1016/j.tplants.2025.05.007_bb0090) 2020; 39
Böhm (10.1016/j.tplants.2025.05.007_bb0185) 2018; 28
Boscari (10.1016/j.tplants.2025.05.007_bb0170) 2009; 32
Che (10.1016/j.tplants.2025.05.007_bb0085) 2024; 120
Pandey (10.1016/j.tplants.2025.05.007_bb0205) 2007; 17
Held (10.1016/j.tplants.2025.05.007_bb0230) 2011; 21
Haruta (10.1016/j.tplants.2025.05.007_bb0060) 2012; 158
Rubio (10.1016/j.tplants.2025.05.007_bb0015) 2010; 139
Palmgren (10.1016/j.tplants.2025.05.007_bb0275) 2023; 299
Rodríguez-Navarro (10.1016/j.tplants.2025.05.007_bb0280) 2000; 1469
Nieves-Cordones (10.1016/j.tplants.2025.05.007_bb0020) 2020; 43
Scherzer (10.1016/j.tplants.2025.05.007_bb0175) 2015; 112
Baligar (10.1016/j.tplants.2025.05.007_bb0065) 2015
Foster (10.1016/j.tplants.2025.05.007_bb0250) 2020; 11
Li (10.1016/j.tplants.2025.05.007_bb0030) 2014; 26
Nieves-Cordones (10.1016/j.tplants.2025.05.007_bb0070) 2016; 7
Chen (10.1016/j.tplants.2025.05.007_bb0120) 2015; 38
Hua (10.1016/j.tplants.2025.05.007_bb0105) 2008; 7
Dreyer (10.1016/j.tplants.2025.05.007_bb0050) 2024; 5
Amo (10.1016/j.tplants.2025.05.007_bb0025) 2021; 44
Sung (10.1016/j.tplants.2025.05.007_bb0150) 2007; 104
Nieves-Cordones (10.1016/j.tplants.2025.05.007_bb0035) 2017; 92
Ragel (10.1016/j.tplants.2025.05.007_bb0190) 2015; 169
Zitnik (10.1016/j.tplants.2025.05.007_bb0235) 2019; 116
Lara (10.1016/j.tplants.2025.05.007_bb0155) 2020; 71
Maierhofer (10.1016/j.tplants.2025.05.007_bb0040) 2024; 15
Huang (10.1016/j.tplants.2025.05.007_bb0220) 2021; 187
Nieves-Cordones (10.1016/j.tplants.2025.05.007_bb0200) 2023; 238
Tang (10.1016/j.tplants.2025.05.007_bb0210) 2015; 112
Roșca (10.1016/j.tplants.2025.05.007_bb0115) 2023; 14
Davenport (10.1016/j.tplants.2025.05.007_bb0110) 2007; 30
Chen (10.1016/j.tplants.2025.05.007_bb0125) 2018; 274
Zhou (10.1016/j.tplants.2025.05.007_bb0225) 2023; 12
Horie (10.1016/j.tplants.2025.05.007_bb0265) 2007; 26
Tang (10.1016/j.tplants.2025.05.007_bb0140) 2020; 25
Xu (10.1016/j.tplants.2025.05.007_bb0180) 2006; 125
Martínez-Martínez (10.1016/j.tplants.2025.05.007_bb0215) 2024; 215
Zhang (10.1016/j.tplants.2025.05.007_bb0100) 2011; 189
Thorne (10.1016/j.tplants.2025.05.007_bb0260) 2022; 2
Jiménez-Estévez (10.1016/j.tplants.2025.05.007_bb0245) 2024; 212
Zhang (10.1016/j.tplants.2025.05.007_bb0080) 2019; 5
Gill (10.1016/j.tplants.2025.05.007_bb0055) 2017; 8
Amo (10.1016/j.tplants.2025.05.007_bb0135) 2024; 176
Amo (10.1016/j.tplants.2025.05.007_bb0010) 2023
Amo (10.1016/j.tplants.2025.05.007_bb0195) 2024; 207
Cuéllar (10.1016/j.tplants.2025.05.007_bb0165) 2010; 61
Cakmak (10.1016/j.tplants.2025.05.007_bb0005) 2005; 168
Edel (10.1016/j.tplants.2025.05.007_bb0145) 2015; 57
Jegla (10.1016/j.tplants.2025.05.007_bb0270) 2018; 30
Spalding (10.1016/j.tplants.2025.05.007_bb0045) 1999; 113
Li (10.1016/j.tplants.2025.05.007_bb0130) 2022; 63
References_xml – start-page: 135
  year: 2012
  ident: 10.1016/j.tplants.2025.05.007_bb0255
  article-title: Functions of macronutrients
– volume: 5
  start-page: 1
  year: 2024
  ident: 10.1016/j.tplants.2025.05.007_bb0050
  article-title: Homeostats: the hidden rulers of ion homeostasis in plants
  publication-title: Quant. Plant Biol.
  doi: 10.1017/qpb.2024.8
– volume: 12
  year: 2021
  ident: 10.1016/j.tplants.2025.05.007_bb0160
  article-title: ZMK1 is involved in K + uptake and regulated by protein kinase ZmCIPK23 in Zea mays
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.517742
– volume: 169
  start-page: 2863
  year: 2015
  ident: 10.1016/j.tplants.2025.05.007_bb0190
  article-title: The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity K+ uptake in arabidopsis roots
  publication-title: Plant Physiol.
– volume: 21
  start-page: 1116
  year: 2011
  ident: 10.1016/j.tplants.2025.05.007_bb0230
  article-title: Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex
  publication-title: Cell Res.
  doi: 10.1038/cr.2011.50
– volume: 39
  start-page: 1
  year: 2020
  ident: 10.1016/j.tplants.2025.05.007_bb0090
  article-title: Loss of salt tolerance during tomato domestication conferred by variation in a Na + /K + transporter
  publication-title: EMBO J.
  doi: 10.15252/embj.2019103256
– volume: 57
  start-page: 231
  year: 2015
  ident: 10.1016/j.tplants.2025.05.007_bb0145
  article-title: Increasing complexity and versatility: how the calcium signaling toolkit was shaped during plant land colonization
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2014.10.013
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.tplants.2025.05.007_bb0250
  article-title: A comprehensive biophysical model of ion and water transport in plant roots. III. Quantifying the energy costs of ion transport in salt-stressed roots of arabidopsis
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00865
– volume: 116
  start-page: 4426
  year: 2019
  ident: 10.1016/j.tplants.2025.05.007_bb0235
  article-title: Evolution of resilience in protein interactomes across the tree of life
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1818013116
– volume: 7
  start-page: 291
  year: 2008
  ident: 10.1016/j.tplants.2025.05.007_bb0105
  article-title: Effects of NaCl and Ca2+ on membrane potential of epidermal cells of maize roots
  publication-title: Agric. Sci. China
  doi: 10.1016/S1671-2927(08)60068-1
– volume: 125
  start-page: 1347
  year: 2006
  ident: 10.1016/j.tplants.2025.05.007_bb0180
  article-title: A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in arabidopsis
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.011
– volume: 5
  start-page: 1297
  year: 2019
  ident: 10.1016/j.tplants.2025.05.007_bb0080
  article-title: A HAK family Na+ transporter confers natural variation of salt tolerance in maize
  publication-title: Nat. Plants
  doi: 10.1038/s41477-019-0565-y
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.tplants.2025.05.007_bb0070
  article-title: Uneven HAK/KUP/KT protein diversity among angiosperms: species distribution and perspectives
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00127
– volume: 176
  year: 2024
  ident: 10.1016/j.tplants.2025.05.007_bb0135
  article-title: Mutation of the K + transporter SlHAK5 of tomato alters pistil morphology , ionome , metabolome and transcriptome in flowers
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.14585
– volume: 5
  start-page: 1
  year: 2014
  ident: 10.1016/j.tplants.2025.05.007_bb0240
  article-title: The F130S point mutation in the arabidopsis high-affinity K+ transporter AtHAK5 increases K+ over Na+ and Cs+ selectivity and confers Na+ and Cs+ tolerance to yeast under heterologous expression
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00430
– volume: 28
  start-page: 3075
  year: 2018
  ident: 10.1016/j.tplants.2025.05.007_bb0185
  article-title: Understanding the molecular basis of salt sequestration in epidermal bladder cells of Chenopodium quinoa
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.08.004
– volume: 43
  start-page: 1707
  year: 2020
  ident: 10.1016/j.tplants.2025.05.007_bb0020
  article-title: Root high-affinity K+ and Cs+ uptake and plant fertility in tomato plants are dependent on the activity of the high-affinity K+ transporter SlHAK5
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13769
– volume: 112
  start-page: 3134
  year: 2015
  ident: 10.1016/j.tplants.2025.05.007_bb0210
  article-title: Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1420944112
– volume: 189
  start-page: 856
  year: 2011
  ident: 10.1016/j.tplants.2025.05.007_bb0100
  article-title: A K+ channel from salt-tolerant melon inhibited by Na+
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03526.x
– volume: 112
  start-page: 7309
  year: 2015
  ident: 10.1016/j.tplants.2025.05.007_bb0175
  article-title: Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1507810112
– volume: 212
  year: 2024
  ident: 10.1016/j.tplants.2025.05.007_bb0245
  article-title: Increased tolerance to low K+, and to cationic stress of Arabidopsis plants by expressing the F130S mutant version of the K+ transporter AtHAK5
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2024.108768
– volume: 187
  start-page: 2296
  year: 2021
  ident: 10.1016/j.tplants.2025.05.007_bb0220
  article-title: The rectification control and physiological relevance of potassium channel OsAKT2
  publication-title: Plant Physiol.
  doi: 10.1093/plphys/kiab462
– volume: 274
  start-page: 261
  year: 2018
  ident: 10.1016/j.tplants.2025.05.007_bb0125
  article-title: OsHAK1 controls the vegetative growth and panicle fertility of rice by its effect on potassium-mediated sugar metabolism
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2018.05.034
– volume: 92
  start-page: 43
  year: 2017
  ident: 10.1016/j.tplants.2025.05.007_bb0035
  article-title: Production of low-Cs(+) rice plants by inactivation of the K(+) transporter OsHAK1 with the CRISPR-Cas system
  publication-title: Plant J.
  doi: 10.1111/tpj.13632
– volume: 44
  start-page: 3589
  year: 2021
  ident: 10.1016/j.tplants.2025.05.007_bb0025
  article-title: The protein kinase SlCIPK23 boosts K+ and Na+ uptake in tomato plants
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.14189
– volume: 26
  start-page: 3387
  year: 2014
  ident: 10.1016/j.tplants.2025.05.007_bb0030
  article-title: The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex
  publication-title: Plant Cell
  doi: 10.1105/tpc.114.123455
– volume: 26
  start-page: 3003
  year: 2007
  ident: 10.1016/j.tplants.2025.05.007_bb0265
  article-title: Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601732
– volume: 2
  start-page: 45
  year: 2022
  ident: 10.1016/j.tplants.2025.05.007_bb0260
  article-title: Reducing potassium deficiency by using sodium fertilisation
  publication-title: Stress Biol.
  doi: 10.1007/s44154-022-00070-1
– volume: 299
  year: 2023
  ident: 10.1016/j.tplants.2025.05.007_bb0275
  article-title: P-type ATPases: many more enigmas left to solve
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2023.105352
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.tplants.2025.05.007_bb0055
  article-title: Cell-based phenotyping reveals QTL for membrane potential maintenance associated with hypoxia and salinity stress tolerance in barley
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01941
– volume: 25
  start-page: 604
  year: 2020
  ident: 10.1016/j.tplants.2025.05.007_bb0140
  article-title: The CBL–CIPK calcium signaling network: unified paradigm from 20 years of discoveries
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2020.01.009
– volume: 32
  start-page: 1761
  year: 2009
  ident: 10.1016/j.tplants.2025.05.007_bb0170
  article-title: Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2009.02033.x
– volume: 14
  start-page: 1
  year: 2023
  ident: 10.1016/j.tplants.2025.05.007_bb0115
  article-title: Tomato responses to salinity stress: from morphological traits to genetic changes
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2023.1118383
– volume: 12
  start-page: 3723
  year: 2023
  ident: 10.1016/j.tplants.2025.05.007_bb0225
  article-title: OsCIPK9 interacts with OsSOS3 and affects salt-related transport to improve salt tolerance
  publication-title: Plants
  doi: 10.3390/plants12213723
– volume: 30
  start-page: 497
  year: 2007
  ident: 10.1016/j.tplants.2025.05.007_bb0110
  article-title: The Na+ transporter AtHKT1;1 controls retrieval of Na + from the xylem in Arabidopsis
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2007.01637.x
– volume: 61
  start-page: 58
  year: 2010
  ident: 10.1016/j.tplants.2025.05.007_bb0165
  article-title: A grapevine Shaker inward K+ channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in grape berries under drought stress conditions
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2009.04029.x
– volume: 30
  start-page: 2898
  year: 2018
  ident: 10.1016/j.tplants.2025.05.007_bb0270
  article-title: Evolution and structural characteristics of plant voltage-gated K + channels
  publication-title: Plant Cell
  doi: 10.1105/tpc.18.00523
– volume: 38
  start-page: 2747
  year: 2015
  ident: 10.1016/j.tplants.2025.05.007_bb0120
  article-title: Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12585
– volume: 15
  start-page: 8558
  year: 2024
  ident: 10.1016/j.tplants.2025.05.007_bb0040
  article-title: Arabidopsis HAK5 under low K+ availability operates as PMF powered high-affinity K+ transporter
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-52963-6
– volume: 1469
  start-page: 1
  year: 2000
  ident: 10.1016/j.tplants.2025.05.007_bb0280
  article-title: Potassium transport in fungi and plants
  publication-title: Biochim. Biophys. Acta Rev. Biomembr.
  doi: 10.1016/S0304-4157(99)00013-1
– start-page: 1
  year: 2015
  ident: 10.1016/j.tplants.2025.05.007_bb0065
  article-title: Nutrient use efficiency in plants: an overview
– volume: 104
  start-page: 15959
  year: 2007
  ident: 10.1016/j.tplants.2025.05.007_bb0150
  article-title: A protein phosphorylation/dephosphorylation network regulates a plant potassium channel
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0707912104
– volume: 207
  year: 2024
  ident: 10.1016/j.tplants.2025.05.007_bb0195
  article-title: Relevance of the SlCIPK23 kinase in Na+ uptake and root morphology in K+-starved tomato plants
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2024.108373
– volume: 139
  start-page: 220
  year: 2010
  ident: 10.1016/j.tplants.2025.05.007_bb0015
  article-title: Studies on Arabidopsis athak5, atakt1 double mutants disclose the range of concentrations at which AtHAK5, AtAKT1 and unknown systems mediate K+ uptake
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2010.01354.x
– volume: 168
  start-page: 521
  year: 2005
  ident: 10.1016/j.tplants.2025.05.007_bb0005
  article-title: The role of potassium in alleviating detrimental effects of abiotic stresses in plants
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200420485
– volume: 63
  start-page: 967
  year: 2022
  ident: 10.1016/j.tplants.2025.05.007_bb0130
  article-title: Function of rice high-affinity potassium transporters in pollen development and fertility
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcac061
– volume: 71
  start-page: 5053
  year: 2020
  ident: 10.1016/j.tplants.2025.05.007_bb0155
  article-title: Arabidopsis K+ transporter HAK5-mediated high-affinity root K+ uptake is regulated by protein kinases CIPK1 and CIPK9
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eraa212
– volume: 120
  start-page: 76
  year: 2024
  ident: 10.1016/j.tplants.2025.05.007_bb0085
  article-title: OsHAK4 functions in retrieving sodium from the phloem at the reproductive stage of rice
  publication-title: Plant J.
  doi: 10.1111/tpj.16971
– start-page: 120
  year: 2023
  ident: 10.1016/j.tplants.2025.05.007_bb0010
  article-title: Potassium transport systems at the plasma membrane of plant cells. Tools for Improving Potassium Use Efficiency of Crops
– volume: 238
  start-page: 2495
  year: 2023
  ident: 10.1016/j.tplants.2025.05.007_bb0200
  article-title: Inhibition of SlSKOR by SlCIPK23-SlCBL1 / 9 uncovers CIPK-CBL- target network rewiring in land plants
  publication-title: New Phytol.
  doi: 10.1111/nph.18910
– volume: 17
  start-page: 411
  year: 2007
  ident: 10.1016/j.tplants.2025.05.007_bb0205
  article-title: CIPK9: a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis
  publication-title: Cell Res.
  doi: 10.1038/cr.2007.39
– volume: 53
  start-page: 1117
  year: 2012
  ident: 10.1016/j.tplants.2025.05.007_bb0075
  article-title: HAK transporters from Physcomitrella patens and Yarrowia lipolytica mediate sodium uptake
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcs056
– volume: 113
  start-page: 909
  year: 1999
  ident: 10.1016/j.tplants.2025.05.007_bb0045
  article-title: Potassium uptake supporting plant growth in the absence of AKT1 channel activity
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.113.6.909
– volume: 215
  year: 2024
  ident: 10.1016/j.tplants.2025.05.007_bb0215
  article-title: SlCIPK9 regulates pollen tube elongation in tomato plants via a K+-independent mechanism
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2024.109039
– volume: 158
  start-page: 1158
  year: 2012
  ident: 10.1016/j.tplants.2025.05.007_bb0060
  article-title: The effect of a genetically reduced plasma membrane proton motive force on vegetative growth of arabidopsiss
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.189167
– volume: 59
  start-page: 651
  year: 2008
  ident: 10.1016/j.tplants.2025.05.007_bb0095
  article-title: Mechanisms of salinity tolerance
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092911
SSID ssj0007186
Score 2.4762514
SecondaryResourceType review_article
Snippet •Root K+ uptake is largely mediated by AKT1-like K+ channels and HAK5-like K+/H+ symporters in the species studied so far. However, AKT1 channels dominate K+...
The ability of plants to cope with environmental fluctuations relies on efficient sensing, signaling, and response mechanisms. In this regard, the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms arabidopsis
Potassium
rice
Sodium
tomato
transport
Title Differential ion transport mechanisms in arabidopsis and crops
URI https://dx.doi.org/10.1016/j.tplants.2025.05.007
https://www.ncbi.nlm.nih.gov/pubmed/40473491
https://www.proquest.com/docview/3216361565
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB6W1YMexLfriwheu30k7bYXwdeyKnrRhb2FNEmhy9outh68-Nud9OEqKIJQKH2RMJPOfEPmmwE49aiSwnNCS7sitFgcSCuMmbYYG1ApI9R6lZtz_xCMxux24k86cNlyYUxaZWP7a5teWevmjt1I056nqf3o0sBss5l9OTz7hsSHI5j6-f33RZoH2t6g5l45pt6ev2Dx2NN-OZ-ZbBMMEz2_KuBpusr-7J9-w5-VHxquw1oDIMl5PccN6OhsE5YvcgR5b5uw-qW-4BacXTXtT_A3nhHUACnbWubkWRvOb1o8FyTNiHgRcaryeZEWRGSKmMZexTaMh9dPlyOraZhgSYwkSmuAcC3ypFIYliToZhwv0okaxCKJKAtlSJXhzboYPzPfN_QNL_EjVwaaYhzsCUV3oJvlmd4DgqguYfhYK_TxSSJjWlXOdxS-L6gjetBvxcTndV0M3iaMTXkjV27kyh08nEEPwlaY_JuCOdruvz49aYXPcfGbHQ2R6fy14NRDOImYLPB7sFtr5XM2zMHlxiJ3__8DH8CKuaoyw9ghdMuXV32EGKSMj6tFdgxL5zd3o4cPnDnZ_g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60FdSD-LY-V_CaNslu0uQiaFXqqxcVels2uxtI0bQ06cF_72weVUERhEAgD7LMTGa-YWe-AThzqZLCtQNLOyKwWORLK4iYthjrUilD1HpRm_M48Psv7G7oDRegV_fCmLLKyveXPr3w1tWVTiXNziRJOk8O9c02m9mXw7MXLkLTsFOhsTcvbu_7g7lDRvfrl-1XtqHc8z4beTqjdj55NQUnmCm6XsHhaQbL_hyifoOgRSi6WYe1CkOSi3KZG7Cg001YuhwjznvfhNUvFINbcH5VTUDBP_mVoBJIXtOZkzdt2n6T7C0jSUrEVESJGk-yJCMiVcTM9sq24eXm-rnXt6qZCZbEZCK3uojYQlcqhZlJjJHGdkMdq24k4pCyQAZUmdZZB1No5nmmg8ONvdCRvqaYCrtC0R1opONU7wFBYBczvK0Vhvk4lhEtyPNthc8LaosWtGsx8UlJjcHrmrERr-TKjVy5jYfdbUFQC5N_0zFH9_3Xq6e18Dnav9nUEKkezzJOXUSUCMt8rwW7pVbmq2E2mgMLnf3_f_gElvvPjw_84XZwfwAr5k5RKMYOoZFPZ_oIIUkeHVcm9wEjm9yv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+ion+transport+mechanisms+in+arabidopsis+and+crops&rft.jtitle=Trends+in+plant+science&rft.au=Nieves-Cordones%2C+Manuel&rft.au=Rubio%2C+Francisco&rft.date=2025-06-04&rft.issn=1878-4372&rft.eissn=1878-4372&rft_id=info:doi/10.1016%2Fj.tplants.2025.05.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-1385&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-1385&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-1385&client=summon