Comprehensive review of machine learning in geotechnical reliability analysis: Algorithms, applications and further challenges

Geotechnical reliability analysis provides a novel way to rationally take the underlying geotechnical uncertainties into account and evaluate the stability of geotechnical structures by failure probability (or equivalently, reliability index) from a probabilistic perspective, which has gained great...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 136; p. 110066
Main Authors Zhang, Wengang, Gu, Xin, Hong, Li, Han, Liang, Wang, Lin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Geotechnical reliability analysis provides a novel way to rationally take the underlying geotechnical uncertainties into account and evaluate the stability of geotechnical structures by failure probability (or equivalently, reliability index) from a probabilistic perspective, which has gained great attention in the past few decades. With the rapid development of artificial intelligence techniques, various machine learning (ML) algorithms have been successfully applied in geotechnical reliability analysis and the number of relevant papers has been increasing at an accelerating pace. Although significant advances have been made in the past two decades, a systematic summary of this subject is still lacking. To better conclude current achievements and further shed light on future research, this paper aims to provide a state-of-the-art review of ML in geotechnical reliability analysis applications. Through reviewing the papers published in the period from 2002 to 2022 with the topic of applying ML in the reliability analysis of slopes, tunneling, and excavations, the pros and cons of the developed methods are explicitly tabulated. The great achievements that have been made are systematically summarized from two major aspects. In addition, the four potential challenges and prospective research possibilities underlying geotechnical reliability analysis are also outlined, including multisensor data fusion, time-variant reliability analysis, three-dimensional reliability analysis of practical cases, and ML model selection and optimization. •A state-of-the-art review of ML in geotechnical reliability analysis applications.•Several commonly used ML algorithms and some latest advanced ML methods are summarized.•The potential challenges and prospective research possibilities are outlined.
AbstractList Geotechnical reliability analysis provides a novel way to rationally take the underlying geotechnical uncertainties into account and evaluate the stability of geotechnical structures by failure probability (or equivalently, reliability index) from a probabilistic perspective, which has gained great attention in the past few decades. With the rapid development of artificial intelligence techniques, various machine learning (ML) algorithms have been successfully applied in geotechnical reliability analysis and the number of relevant papers has been increasing at an accelerating pace. Although significant advances have been made in the past two decades, a systematic summary of this subject is still lacking. To better conclude current achievements and further shed light on future research, this paper aims to provide a state-of-the-art review of ML in geotechnical reliability analysis applications. Through reviewing the papers published in the period from 2002 to 2022 with the topic of applying ML in the reliability analysis of slopes, tunneling, and excavations, the pros and cons of the developed methods are explicitly tabulated. The great achievements that have been made are systematically summarized from two major aspects. In addition, the four potential challenges and prospective research possibilities underlying geotechnical reliability analysis are also outlined, including multisensor data fusion, time-variant reliability analysis, three-dimensional reliability analysis of practical cases, and ML model selection and optimization. •A state-of-the-art review of ML in geotechnical reliability analysis applications.•Several commonly used ML algorithms and some latest advanced ML methods are summarized.•The potential challenges and prospective research possibilities are outlined.
ArticleNumber 110066
Author Zhang, Wengang
Han, Liang
Wang, Lin
Hong, Li
Gu, Xin
Author_xml – sequence: 1
  givenname: Wengang
  surname: Zhang
  fullname: Zhang, Wengang
  organization: School of Civil Engineering, Chongqing University, Chongqing 400045, China
– sequence: 2
  givenname: Xin
  surname: Gu
  fullname: Gu, Xin
  organization: School of Civil Engineering, Chongqing University, Chongqing 400045, China
– sequence: 3
  givenname: Li
  surname: Hong
  fullname: Hong, Li
  organization: School of Civil Engineering, Chongqing University, Chongqing 400045, China
– sequence: 4
  givenname: Liang
  surname: Han
  fullname: Han, Liang
  organization: School of Civil Engineering, Chongqing University, Chongqing 400045, China
– sequence: 5
  givenname: Lin
  surname: Wang
  fullname: Wang, Lin
  email: linwang@bnu.edu.cn
  organization: School of National Safety and Emergency Management, Beijing Normal University, Zhuhai 519087, China
BookMark eNp9kMtOWzEQhq0KpALlBbryA_QEXxLHp2KDonKRkNjA2vLxGedM5NiRbUDZ9NnrNKxYsJqR5v9G-r9zchJTBEJ-cjbjjKurzcyW5GaCCTnjnDGlvpEzrpei65XmJ21fKN3N-7n6Ts5L2bAG9UKfkb-rtN1lmCAWfAOa4Q3hnSZPt9ZNGIEGsDliXFOMdA2pgpsiOhtaNKAdMGDdUxtt2Bcsv-lNWKeMddqWX9TudqFFK6ZYWmSk_jXXCTJ1kw0B4hrKD3LqbShw-TEvyMvtn-fVfff4dPewunnsnJCsdkp6B3MGgnk5LL3QCz8sleSjl7LnWo-LJW8H6cB7PrBROTEMY--56DV4NcgLIo5_XU6lZPBml3Fr895wZg4GzcYcDJqDQXM02CD9CXJY_9ep2WL4Gr0-otBKNaXZFIcQHYyYwVUzJvwK_wdLKZJt
CitedBy_id crossref_primary_10_3389_fevo_2023_1257854
crossref_primary_10_1038_s41598_024_74850_2
crossref_primary_10_1016_j_jksus_2023_102846
crossref_primary_10_1007_s12145_024_01600_3
crossref_primary_10_1007_s10489_024_05560_5
crossref_primary_10_1002_gj_4770
crossref_primary_10_1108_WJE_12_2023_0536
crossref_primary_10_1177_09718907241286336
crossref_primary_10_1007_s42107_025_01287_x
crossref_primary_10_1088_1755_1315_1334_1_012039
crossref_primary_10_1515_jmbm_2022_0309
crossref_primary_10_1016_j_enggeo_2024_107605
crossref_primary_10_3390_geosciences14020044
crossref_primary_10_1016_j_conbuildmat_2024_138021
crossref_primary_10_1016_j_tust_2024_105928
crossref_primary_10_1016_j_autcon_2024_105276
crossref_primary_10_1016_j_jrmge_2023_09_034
crossref_primary_10_3390_app142411792
crossref_primary_10_32604_cmes_2024_052830
crossref_primary_10_32604_cmes_2024_056319
crossref_primary_10_1007_s10346_024_02398_3
crossref_primary_10_1016_j_oceaneng_2024_117758
crossref_primary_10_1016_j_jrmge_2024_02_048
crossref_primary_10_1016_j_compgeo_2024_106918
crossref_primary_10_1007_s41939_023_00280_8
crossref_primary_10_3390_su15076160
crossref_primary_10_3390_su152115260
crossref_primary_10_37394_23206_2024_23_35
crossref_primary_10_1016_j_clay_2023_107239
crossref_primary_10_1016_j_ghm_2024_06_001
crossref_primary_10_1108_MLAG_10_2024_0010
crossref_primary_10_1016_j_conbuildmat_2025_140248
crossref_primary_10_1016_j_enggeo_2025_108043
crossref_primary_10_1590_2318_0331_282320230087
crossref_primary_10_3390_buildings14040954
crossref_primary_10_1007_s11069_024_06652_8
crossref_primary_10_1016_j_engappai_2023_106821
crossref_primary_10_1016_j_taml_2025_100578
crossref_primary_10_1007_s10999_023_09679_0
crossref_primary_10_1007_s41748_024_00508_8
crossref_primary_10_1016_j_jece_2025_115463
crossref_primary_10_1016_j_tust_2025_106448
crossref_primary_10_1016_j_soildyn_2024_108805
crossref_primary_10_1016_j_ghm_2024_11_001
crossref_primary_10_1016_j_oceaneng_2024_120119
crossref_primary_10_1021_acs_jcim_4c02062
crossref_primary_10_1080_10298436_2024_2431610
crossref_primary_10_1007_s11629_023_8158_7
crossref_primary_10_1007_s41872_024_00259_5
crossref_primary_10_1002_gj_5049
crossref_primary_10_1061_AJRUA6_RUENG_1172
crossref_primary_10_3390_app13148084
crossref_primary_10_1155_2024_7776212
crossref_primary_10_3390_w15142675
crossref_primary_10_1016_j_tre_2025_103969
crossref_primary_10_1016_j_gsf_2023_101720
crossref_primary_10_1016_j_tafmec_2024_104627
crossref_primary_10_1080_10916466_2024_2378207
crossref_primary_10_1007_s13198_024_02535_0
crossref_primary_10_1016_j_heliyon_2023_e20902
crossref_primary_10_1016_j_engappai_2023_107840
crossref_primary_10_1080_07038992_2025_2470710
crossref_primary_10_3390_math11102318
crossref_primary_10_1007_s13369_023_07962_y
crossref_primary_10_1016_j_asoc_2023_110462
crossref_primary_10_1177_00368504241302972
crossref_primary_10_1007_s41064_025_00333_2
crossref_primary_10_1029_2024JH000318
crossref_primary_10_1016_j_enggeo_2023_107372
crossref_primary_10_3934_era_2024284
crossref_primary_10_1016_j_cscm_2023_e02554
crossref_primary_10_1016_j_jafrearsci_2025_105631
crossref_primary_10_3390_su15129404
Cites_doi 10.1007/s40899-017-0104-9
10.1061/(ASCE)CP.1943-5487.0000620
10.1016/j.compgeo.2021.104498
10.1016/j.gsf.2020.05.003
10.1016/j.ress.2020.106948
10.1007/s10346-008-0130-7
10.1016/j.tust.2018.09.027
10.1016/j.tust.2016.02.007
10.1007/s11440-020-00962-4
10.1016/j.gsf.2020.02.011
10.1016/j.compgeo.2012.09.016
10.1016/j.compgeo.2020.103711
10.1016/j.asoc.2011.03.009
10.1016/j.gsf.2018.03.013
10.1016/j.gsf.2020.03.017
10.1016/j.tust.2013.11.004
10.1016/j.gsf.2020.02.012
10.1016/j.jrmge.2021.09.001
10.1061/(ASCE)GT.1943-5606.0000801
10.1016/j.compgeo.2009.01.003
10.1016/j.gsf.2020.03.007
10.1007/s11709-020-0655-y
10.1016/j.fuel.2018.01.101
10.1016/j.compgeo.2020.103507
10.1139/cgj-2017-0254
10.1080/10298436.2018.1485917
10.1007/s10064-020-01940-6
10.1016/j.advengsoft.2012.07.007
10.1016/j.tust.2012.08.011
10.1007/s00477-019-01718-7
10.1016/j.enggeo.2018.03.008
10.1016/j.gsf.2020.05.004
10.1061/(ASCE)GT.1943-5606.0000782
10.1061/(ASCE)GT.1943-5606.0002486
10.1016/j.gsf.2019.12.003
10.1016/j.probengmech.2007.12.022
10.1007/s12665-019-8458-y
10.1016/j.strusafe.2016.03.001
10.1016/j.strusafe.2019.02.002
10.1016/j.enbuild.2019.109564
10.1016/j.gsf.2020.03.016
10.1016/j.gsf.2020.04.014
10.1007/s10064-020-02090-5
10.1016/j.gsf.2020.02.014
10.1007/s40098-022-00610-6
10.1016/j.sandf.2022.101189
10.1016/j.undsp.2019.07.001
10.1016/j.gsf.2014.10.003
10.1061/(ASCE)GT.1943-5606.0002297
10.1007/s10706-018-00777-x
10.1016/j.apm.2020.07.034
10.1016/j.strusafe.2017.04.006
10.1016/j.apm.2016.01.050
10.1016/j.tust.2019.01.008
10.1061/(ASCE)EM.1943-7889.0001560
10.1016/j.compgeo.2022.104744
10.1016/j.probengmech.2014.12.001
10.1016/j.gsf.2020.03.003
10.1007/s10064-020-01730-0
10.1016/j.enggeo.2021.106342
10.1016/j.autcon.2018.02.032
10.4028/www.scientific.net/AMR.859.315
10.1080/1064119X.2019.1673855
10.1016/j.enggeo.2018.02.019
10.1016/j.enggeo.2019.105430
10.1007/s10462-021-09967-1
10.1007/s11069-012-0396-x
10.1061/(ASCE)CP.1943-5487.0000796
10.1007/s11440-021-01326-2
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2023.110066
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2023_110066
S1568494623000844
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c230t-63fce40e20f3b7f285fb7631df339188d5713b73ceff1b0d6c2bbd9f1298ef6b3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:11:26 EDT 2025
Tue Jul 01 01:50:18 EDT 2025
Fri Feb 23 02:38:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords ANN
CNN
Uncertainty
BF
RLEM
RV
ELM
SLFN
RVM
GPR
Geotechnical engineering
SVM
FS
SVR
BPNN
2D
LS-SVM
XGBoost
Pf
RBF
Reliability analysis
GA
LSF
ML
AI
CSRSM
PSO
RSM
FEM
3D
PCE
BCS
RF
MARS
ARVM
ASVM
Machine learning
RFEM
GCV
MCS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c230t-63fce40e20f3b7f285fb7631df339188d5713b73ceff1b0d6c2bbd9f1298ef6b3
ParticipantIDs crossref_primary_10_1016_j_asoc_2023_110066
crossref_citationtrail_10_1016_j_asoc_2023_110066
elsevier_sciencedirect_doi_10_1016_j_asoc_2023_110066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Phoon, Cao, Ji, Leung, Najjar, Shuku, Tang, Yin, Ikumasa, Ching (b3) 2022; 62
Kang, Xu, Li (b47) 2016; 40
Zhang, Wu, Zhong, Li, Wang (b84) 2021
Wang, Huang, Wang, Li (b22) 2020; 146
Zhang, Goh (b40) 2016; 7
Wang, Zhao, Hu, Phoon (b78) 2019; 145
Jiang, Huang, Griffiths, Deng (b4) 2022; 141
Hu, Zhao, Wang, Choi, Ng (b77) 2019; 33
Cho (b17) 2009; 36
Zhang, Zhang, Huang, Phoon, Tang, Li (b80) 2021
Friedman (b38) 1991; 19
Samui, Lansivaara, Kim (b59) 2011; 11
Zhuang, Ma, Tang, Liang, Wang, Wang (b63) 2019; 83
He, Xu, Sabetamal, Sheng (b44) 2020; 126
Song, Yu, Xu, Pang, Zhang (b45) 2021; 80
Qi, Xu, Wu, Yu (b50) 2008; 16
Wang, Goh, Zhang (b24) 2022; 1
Qasem, Ebtehaj, Bonakdari (b35) 2017; 3
Li, Wang, Zhang, Yang, Wang (b37) 2020; 21
Chen, Guestrin (b42) 2016
Li, Li, Su (b54) 2016; 61
Hamrouni, Dias, Sbartai (b60) 2019; 86
Li, Zhao, Ru (b18) 2013; 65
Liu, Gilbert, Cepeda, Lysdahl, Piciullo, Hefre, Lacasse (b28) 2021; 12
Li, Zhang, Liu, Huang, Cheng, Dias (b6) 2022; 146
Shen, Li, Wang, Xie (b21) 2021; 12
Huang, Zhu, Siew (b41) 2004
Luo, Hu (b74) 2020; 38
Wang (b83) 2020
Zhou, Li, Zhou, Luo (b67) 2019; 33
Zhang, Phoon, Zhang, Huang, Tang (b79) 2021; 294
Wang, Wu, Gu, Liu, Mei, Zhang (b10) 2020; 79
Wang, Zhang, Yin, Luo, Li (b12) 2021; 12
Zhou, Guo, Zhang, Dias, Pan (b61) 2020; 122
Wang, Goh (b14) 2021; 281
Kumar, Samui (b20) 2019; 37
Li, Li, Guo, Li, Chen (b27) 2021; 12
Zhang, Huang, Phoon (b46) 2013; 139
Moreira, Miranda, Pinheiro, Fernandes, Dias, Costa, Sena-Cruz (b62) 2013; 33
Huang, Gu, Song, Cen, Zeng (b81) 2018; 238
Li, Pan, Dias (b15) 2021; 89
Juang, Luo, Atamturktur, Huang (b73) 2013; 139
Zhang, Tang, Li, Wang, Cheng, Zhou, Chen (b82) 2020
Leung, Liu, Lei, Hsu (b75) 2018; 90
Zhang, Li, He (b68) 2019; 78
Huang, Wang (b70) 2007
Zhang, Li, Li, Liu, Chen (b31) 2021; 54
Wang, Zhang, Huo, Peng, Wang, Yamasaki (b1) 2008; 5
Wu, Hong, Wang, Zhang, Pijush, Zhang (b25) 2022
Roy, Chakraborty (b53) 2020; 200
Karkevandi-Talkhooncheh, Rostami, Hemmati-Sarapardeh, Ahmadi, Husein, Dabir (b34) 2018; 220
Zhang, Zhang, Wu, Goh, Lacasse, Liu, Liu (b69) 2020; 11
Zhang, Goh (b39) 2013; 48
Ji, Zhang, Gui, Lue, Kodikara (b48) 2017; 31
Pan, Leung, Hsu (b16) 2021; 12
Zhao, Wang (b26) 2020; 265
Zhan, Zhang, Chen, Chen, Zhang, Liu, Li (b2) 2018; 238
Zhang, Yin, Jin, Chan, Gao (b29) 2021; 12
Zhao, Ru, Chang, Yin, Li (b51) 2014; 41
Zhou, Shadabfar, Xue, Zhang, Huang (b64) 2021; 7
Wang, Goh (b7) 2022; 17
Ray, Kumar, Samui, Roy, Goh, Zhang (b9) 2021; 12
Zhang, Phoon, Zhang, Huang, Tang (b66) 2021; 13
Cui, Ghosn (b58) 2019; 79
Wang, Fang, Shen (b56) 2016; 56
He, Liu, Bi, Wang, Broggi, Beer (b72) 2020
Ling, Zhang, Wei, Kong, Zhu (b5) 2021; 80
Cao, Sun, Liu (b71) 2014; 859
Yi, Wei, Kong, Zhu (b19) 2015; 39
Pan, Dias (b57) 2017; 67
Mo, Sun, Liu, Wei (b43) 2019; 205
Chivata Cardenas (b49) 2019; 13
Bucher, Most (b52) 2008; 23
Wang, Zhao, Phoon (b76) 2018; 55
Ching, Yoshida, Phoon (b33) 2022
Liu, Zhang, Cheng, Liang (b8) 2019; 10
Verma, Pain, Agarwal, Pradhan (b65) 2022; 52
Wang, Wu, Tang, Zhang, Lacasse, Liu, Gao (b11) 2020; 15
Zhang, Wu, Tang, Gu, Wang (b23) 2022
Zheng, Zhu, Li, Cao, Deng, Phoon (b32) 2021; 12
Fukushima, Miyake (b36) 1982
Wang, Xiao, Goh, Deng (b13) 2021; 147
Zhang, Wu, Goh, Bohlke, Zhang (b30) 2021; 12
Bai, Han, Jiang, Liu (b55) 2012; 53
Mo (10.1016/j.asoc.2023.110066_b43) 2019; 205
Li (10.1016/j.asoc.2023.110066_b15) 2021; 89
Li (10.1016/j.asoc.2023.110066_b27) 2021; 12
Zheng (10.1016/j.asoc.2023.110066_b32) 2021; 12
Ling (10.1016/j.asoc.2023.110066_b5) 2021; 80
Hamrouni (10.1016/j.asoc.2023.110066_b60) 2019; 86
Moreira (10.1016/j.asoc.2023.110066_b62) 2013; 33
Yi (10.1016/j.asoc.2023.110066_b19) 2015; 39
Liu (10.1016/j.asoc.2023.110066_b8) 2019; 10
Wang (10.1016/j.asoc.2023.110066_b14) 2021; 281
Zhang (10.1016/j.asoc.2023.110066_b66) 2021; 13
Shen (10.1016/j.asoc.2023.110066_b21) 2021; 12
Ching (10.1016/j.asoc.2023.110066_b33) 2022
Luo (10.1016/j.asoc.2023.110066_b74) 2020; 38
Bai (10.1016/j.asoc.2023.110066_b55) 2012; 53
Wang (10.1016/j.asoc.2023.110066_b7) 2022; 17
Pan (10.1016/j.asoc.2023.110066_b16) 2021; 12
Wang (10.1016/j.asoc.2023.110066_b24) 2022; 1
Li (10.1016/j.asoc.2023.110066_b54) 2016; 61
Liu (10.1016/j.asoc.2023.110066_b28) 2021; 12
Friedman (10.1016/j.asoc.2023.110066_b38) 1991; 19
Roy (10.1016/j.asoc.2023.110066_b53) 2020; 200
Zhang (10.1016/j.asoc.2023.110066_b82) 2020
Huang (10.1016/j.asoc.2023.110066_b70) 2007
Zhang (10.1016/j.asoc.2023.110066_b39) 2013; 48
Zhang (10.1016/j.asoc.2023.110066_b40) 2016; 7
Zhang (10.1016/j.asoc.2023.110066_b29) 2021; 12
Li (10.1016/j.asoc.2023.110066_b6) 2022; 146
Juang (10.1016/j.asoc.2023.110066_b73) 2013; 139
Wang (10.1016/j.asoc.2023.110066_b56) 2016; 56
Zhou (10.1016/j.asoc.2023.110066_b61) 2020; 122
Samui (10.1016/j.asoc.2023.110066_b59) 2011; 11
Ji (10.1016/j.asoc.2023.110066_b48) 2017; 31
Ray (10.1016/j.asoc.2023.110066_b9) 2021; 12
Wang (10.1016/j.asoc.2023.110066_b11) 2020; 15
Bucher (10.1016/j.asoc.2023.110066_b52) 2008; 23
Zhang (10.1016/j.asoc.2023.110066_b79) 2021; 294
He (10.1016/j.asoc.2023.110066_b44) 2020; 126
Huang (10.1016/j.asoc.2023.110066_b81) 2018; 238
Qasem (10.1016/j.asoc.2023.110066_b35) 2017; 3
Leung (10.1016/j.asoc.2023.110066_b75) 2018; 90
Zhao (10.1016/j.asoc.2023.110066_b26) 2020; 265
Wang (10.1016/j.asoc.2023.110066_b78) 2019; 145
Wang (10.1016/j.asoc.2023.110066_b1) 2008; 5
Verma (10.1016/j.asoc.2023.110066_b65) 2022; 52
Zhao (10.1016/j.asoc.2023.110066_b51) 2014; 41
Qi (10.1016/j.asoc.2023.110066_b50) 2008; 16
Zhuang (10.1016/j.asoc.2023.110066_b63) 2019; 83
Jiang (10.1016/j.asoc.2023.110066_b4) 2022; 141
Zhang (10.1016/j.asoc.2023.110066_b31) 2021; 54
Song (10.1016/j.asoc.2023.110066_b45) 2021; 80
Wu (10.1016/j.asoc.2023.110066_b25) 2022
Chivata Cardenas (10.1016/j.asoc.2023.110066_b49) 2019; 13
Karkevandi-Talkhooncheh (10.1016/j.asoc.2023.110066_b34) 2018; 220
Zhou (10.1016/j.asoc.2023.110066_b67) 2019; 33
Zhang (10.1016/j.asoc.2023.110066_b80) 2021
Li (10.1016/j.asoc.2023.110066_b18) 2013; 65
Kang (10.1016/j.asoc.2023.110066_b47) 2016; 40
Zhang (10.1016/j.asoc.2023.110066_b84) 2021
Zhan (10.1016/j.asoc.2023.110066_b2) 2018; 238
Fukushima (10.1016/j.asoc.2023.110066_b36) 1982
He (10.1016/j.asoc.2023.110066_b72) 2020
Zhang (10.1016/j.asoc.2023.110066_b30) 2021; 12
Wang (10.1016/j.asoc.2023.110066_b10) 2020; 79
Zhang (10.1016/j.asoc.2023.110066_b68) 2019; 78
Phoon (10.1016/j.asoc.2023.110066_b3) 2022; 62
Chen (10.1016/j.asoc.2023.110066_b42) 2016
Wang (10.1016/j.asoc.2023.110066_b76) 2018; 55
Li (10.1016/j.asoc.2023.110066_b37) 2020; 21
Wang (10.1016/j.asoc.2023.110066_b83) 2020
Zhang (10.1016/j.asoc.2023.110066_b46) 2013; 139
Zhang (10.1016/j.asoc.2023.110066_b23) 2022
Wang (10.1016/j.asoc.2023.110066_b13) 2021; 147
Huang (10.1016/j.asoc.2023.110066_b41) 2004
Zhang (10.1016/j.asoc.2023.110066_b69) 2020; 11
Pan (10.1016/j.asoc.2023.110066_b57) 2017; 67
Zhou (10.1016/j.asoc.2023.110066_b64) 2021; 7
Kumar (10.1016/j.asoc.2023.110066_b20) 2019; 37
Hu (10.1016/j.asoc.2023.110066_b77) 2019; 33
Wang (10.1016/j.asoc.2023.110066_b22) 2020; 146
Wang (10.1016/j.asoc.2023.110066_b12) 2021; 12
Cho (10.1016/j.asoc.2023.110066_b17) 2009; 36
Cui (10.1016/j.asoc.2023.110066_b58) 2019; 79
Cao (10.1016/j.asoc.2023.110066_b71) 2014; 859
References_xml – volume: 78
  start-page: 15
  year: 2019
  ident: b68
  article-title: Application of optimized grey discrete Verhulst-BP neural network model in settlement prediction of foundation pit
  publication-title: Environ. Earth Sci.
– volume: 3
  start-page: 391
  year: 2017
  end-page: 401
  ident: b35
  article-title: Potential of radial basis function network with particle swarm optimization for prediction of sediment transport at the limit of deposition in a clean pipe
  publication-title: Sustain. Water Resour. Manag.
– volume: 65
  start-page: 707
  year: 2013
  end-page: 722
  ident: b18
  article-title: Slope reliability analysis by updated support vector machine and Monte Carlo simulation
  publication-title: Nat. Hazards
– volume: 21
  start-page: 457
  year: 2020
  end-page: 463
  ident: b37
  article-title: Automatic classification of pavement crack using deep convolutional neural network
  publication-title: Int. J. Pavement Eng.
– volume: 33
  start-page: 143
  year: 2013
  end-page: 158
  ident: b62
  article-title: Back analysis of geomechanical parameters in underground works using an evolution strategy algorithm
  publication-title: Tunn. Undergr. Space Technol.
– year: 2020
  ident: b72
  article-title: Estimation of failure probability in braced excavation using Bayesian networks with integrated model updating
  publication-title: Undergr. Space
– volume: 52
  start-page: 780
  year: 2022
  end-page: 798
  ident: b65
  article-title: Reliability assessment of tunnels using machine learning algorithms
  publication-title: Indian Geotech. J.
– volume: 139
  start-page: 395
  year: 2013
  end-page: 406
  ident: b73
  article-title: Bayesian updating of soil parameters for braced excavations using field observations
  publication-title: J. Geotech. Geoenviron. Eng.
– year: 2022
  ident: b25
  article-title: Prediction of wall deflection induced by braced excavation in spatially variable soils via convolutional neural network
  publication-title: Gondwana Res.
– volume: 126
  year: 2020
  ident: b44
  article-title: Machine learning aided stochastic reliability analysis of spatially variable slopes
  publication-title: Comput. Geotech.
– year: 2022
  ident: b33
  article-title: Comparison of trend models for geotechnical spatial variability: Sparse Bayesian learning vs. Gaussian process regression
  publication-title: Gondwana Res.
– volume: 13
  start-page: 53
  year: 2019
  end-page: 65
  ident: b49
  article-title: On the use of Bayesian networks as a meta-modelling approach to analyse uncertainties in slope stability analysis
  publication-title: Georisk-Assess. Manag. Risk Eng. Syst. Geohazards
– volume: 53
  start-page: 61
  year: 2012
  end-page: 71
  ident: b55
  article-title: Comparative study of metamodeling techniques for reliability analysis using evidence theory
  publication-title: Adv. Eng. Softw.
– volume: 12
  start-page: 351
  year: 2021
  end-page: 364
  ident: b12
  article-title: Landslide identification using machine learning
  publication-title: Geosci. Front.
– volume: 17
  start-page: 1147
  year: 2022
  end-page: 1166
  ident: b7
  article-title: A maximum entropy method using fractional moments and deep learning for geotechnical reliability analysis
  publication-title: Acta Geotech.
– volume: 19
  start-page: 1
  year: 1991
  end-page: 67
  ident: b38
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Statist.
– volume: 141
  year: 2022
  ident: b4
  article-title: Advances in reliability and risk analyses of slopes in spatially variable soils: A state-of-the-art review
  publication-title: Comput. Geotech.
– volume: 62
  year: 2022
  ident: b3
  article-title: Geotechnical uncertainty, modeling, and decision making
  publication-title: Soils Found
– volume: 294
  year: 2021
  ident: b79
  article-title: Novel approach to estimate vertical scale of fluctuation based on CPT data using convolutional neural networks
  publication-title: Eng. Geol.
– volume: 56
  start-page: 45
  year: 2016
  end-page: 53
  ident: b56
  article-title: Reliability analysis of tunnels using a metamodeling technique based on augmented radial basis functions
  publication-title: Tunn. Undergr. Space Technol.
– volume: 36
  start-page: 787
  year: 2009
  end-page: 797
  ident: b17
  article-title: Probabilistic stability analyses of slopes using the ANN-based response surface
  publication-title: Comput. Geotech.
– volume: 1
  start-page: 1
  year: 2022
  end-page: 15
  ident: b24
  article-title: Reliability-based design in spatially variable soils using deep learning: An illustration using shallow foundation
  publication-title: Georisk
– volume: 86
  start-page: 22
  year: 2019
  end-page: 33
  ident: b60
  article-title: Probability analysis of shallow circular tunnels in homogeneous soil using the surface response methodology optimized by a genetic algorithm
  publication-title: Tunn. Undergr. Space Technol.
– volume: 54
  start-page: 5633
  year: 2021
  end-page: 5673
  ident: b31
  article-title: Application of deep learning algorithms in geotechnical engineering: A short critical review
  publication-title: Artif. Intell. Rev.
– volume: 7
  start-page: 1
  year: 2021
  end-page: 14
  ident: b64
  article-title: Probabilistic analysis of tunnel roof deflection under sequential excavation using ANN-based Monte Carlo simulation and simplified reliability approach
  publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst. A
– start-page: 267
  year: 1982
  end-page: 285
  ident: b36
  article-title: Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Visual Pattern Recognition, Competition and Cooperation in Neural Nets
– start-page: 2039
  year: 2007
  end-page: 2046
  ident: b70
  article-title: ANN-based reliability analysis for deep excavation
  publication-title: EUROCON 2007 - The International Conference on Computer as a Tool
– volume: 83
  start-page: 425
  year: 2019
  end-page: 436
  ident: b63
  article-title: Mechanical parameter inversion in tunnel engineering using support vector regression optimized by multi-strategy artificial fish swarm algorithm
  publication-title: Tunn. Undergr. Space Technol.
– volume: 12
  start-page: 405
  year: 2021
  end-page: 414
  ident: b16
  article-title: Stochastic seismic slope stability assessment using polynomial chaos expansions combined with relevance vector machine
  publication-title: Geosci. Front.
– volume: 79
  start-page: 12
  year: 2019
  end-page: 25
  ident: b58
  article-title: Implementation of machine learning techniques into the subset simulation method
  publication-title: Struct. Saf.
– volume: 12
  start-page: 385
  year: 2021
  end-page: 393
  ident: b28
  article-title: Modelling of shallow landslides with machine learning algorithms
  publication-title: Geosci. Front.
– volume: 41
  start-page: 14
  year: 2014
  end-page: 23
  ident: b51
  article-title: Reliability analysis of tunnel using least square support vector machine
  publication-title: Tunn. Undergr. Space Technol.
– volume: 146
  year: 2020
  ident: b22
  article-title: SS-XGBoost: A machine learning framework for predicting newmark sliding displacements of slopes
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 33
  start-page: 1477
  year: 2019
  end-page: 1496
  ident: b77
  article-title: Direct simulation of two-dimensional isotropic or anisotropic random field from sparse measurement using Bayesian compressive sampling
  publication-title: Stoch. Environ. Res. Risk Assess.
– year: 2021
  ident: b80
  article-title: Hybrid machine learning model with random field and limited CPT data to quantify horizontal scale of fluctuation of soil spatial variability
  publication-title: Acta Geotech.
– volume: 23
  start-page: 154
  year: 2008
  end-page: 163
  ident: b52
  article-title: A comparison of approximate response functions in structural reliability analysis
  publication-title: Probab. Eng. Mech.
– volume: 12
  start-page: 415
  year: 2021
  end-page: 423
  ident: b21
  article-title: Prediction of load–displacement performance of grouted anchors in weathered granites using FastICA-MARS as a novel model
  publication-title: Geosci. Front.
– volume: 89
  start-page: 381
  year: 2021
  end-page: 399
  ident: b15
  article-title: Active learning relevant vector machine for reliability analysis
  publication-title: Appl. Math. Model.
– volume: 220
  start-page: 270
  year: 2018
  end-page: 282
  ident: b34
  article-title: Modeling minimum miscibility pressure during pure and impure CO2 flooding using hybrid of radial basis function neural network and evolutionary techniques
  publication-title: Fuel
– volume: 265
  year: 2020
  ident: b26
  article-title: Interpolation and stratification of multilayer soil property profile from sparse measurements using machine learning methods
  publication-title: Eng. Geol.
– volume: 205
  year: 2019
  ident: b43
  article-title: Developing window behavior models for residential buildings using XGBoost algorithm
  publication-title: Energy Build.
– volume: 37
  start-page: 3447
  year: 2019
  end-page: 3457
  ident: b20
  article-title: Reliability analysis of pile foundation using ELM and MARS
  publication-title: Geotech. Geol. Eng.
– volume: 12
  start-page: 425
  year: 2021
  end-page: 439
  ident: b32
  article-title: Probabilistic outlier detection for sparse multivariate geotechnical site investigation data using Bayesian learning
  publication-title: Geosci. Front.
– volume: 11
  start-page: 4036
  year: 2011
  end-page: 4040
  ident: b59
  article-title: Utilization relevance vector machine for slope reliability analysis
  publication-title: Appl. Soft Comput.
– volume: 145
  start-page: 1
  year: 2019
  end-page: 12
  ident: b78
  article-title: Simulation of random fields with trend from sparse measurements without detrending
  publication-title: J. Eng. Mech.
– volume: 80
  start-page: 735
  year: 2021
  end-page: 749
  ident: b45
  article-title: 3D slope reliability analysis based on the intelligent response surface methodology
  publication-title: Bull. Eng. Geol. Environ.
– volume: 12
  start-page: 441
  year: 2021
  end-page: 452
  ident: b29
  article-title: Intelligent modelling of clay compressibility using hybrid meta-heuristic and machine learning algorithms
  publication-title: Geosci. Front.
– year: 2021
  ident: b84
  article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
  publication-title: Geosci. Front.
– volume: 859
  start-page: 315
  year: 2014
  end-page: 321
  ident: b71
  article-title: Application of SVM to reliability analysis of foundation excavations system
  publication-title: Adv. Mater. Res.
– volume: 48
  start-page: 82
  year: 2013
  end-page: 95
  ident: b39
  article-title: Multivariate adaptive regression splines for analysis of geotechnical engineering systems
  publication-title: Comput. Geotech.
– volume: 80
  start-page: 2011
  year: 2021
  end-page: 2024
  ident: b5
  article-title: Slope reliability evaluation based on multi-objective grey wolf optimization-multi-kernel-based extreme learning machine agent model
  publication-title: Bull. Eng. Geol. Environ.
– volume: 90
  start-page: 243
  year: 2018
  end-page: 252
  ident: b75
  article-title: Quantifying cost-effectiveness of subsurface strata exploration in excavation projects through geostatistics and spatial tessellation
  publication-title: Autom. Constr.
– volume: 281
  year: 2021
  ident: b14
  article-title: Novel approach to efficient slope reliability analysis in spatially variable soils
  publication-title: Eng. Geol.
– volume: 61
  start-page: 22
  year: 2016
  end-page: 42
  ident: b54
  article-title: A hybrid approach combining uniform design and support vector machine to probabilistic tunnel stability assessment
  publication-title: Struct. Saf.
– volume: 238
  start-page: 15
  year: 2018
  end-page: 26
  ident: b2
  article-title: The 2015 Shenzhen catastrophic landslide in a construction waste dump : Reconstitution of dump structure and failure mechanisms via geotechnical investigations
  publication-title: Eng. Geol.
– volume: 12
  start-page: 331
  year: 2021
  end-page: 338
  ident: b27
  article-title: Advanced prediction of tunnel boring machine performance based on big data
  publication-title: Geosci. Front.
– volume: 122
  year: 2020
  ident: b61
  article-title: Influence of a weak layer on the tunnel face stability - Reliability and sensitivity analysis
  publication-title: Comput. Geotech.
– volume: 200
  year: 2020
  ident: b53
  article-title: Support vector regression based metamodel by sequential adaptive sampling for reliability analysis of structures
  publication-title: Reliab. Eng. Syst. Saf.
– year: 2020
  ident: b83
  article-title: Reliability-based design of lining structures for underground space against water seepage
  publication-title: Undergr. Space
– volume: 5
  start-page: 379
  year: 2008
  end-page: 386
  ident: b1
  article-title: Mechanism for the rapid motion of the Qianjiangping landslide during reactivation by the first impoundment of the Three Gorges dam reservoir
  publication-title: China. Landslides
– volume: 15
  start-page: 3135
  year: 2020
  end-page: 3150
  ident: b11
  article-title: Efficient reliability analysis of earth dam slope stability using extreme gradient boosting method
  publication-title: Acta Geotech.
– volume: 31
  year: 2017
  ident: b48
  article-title: New observations on the application of LS-SVM in slope system reliability analysis
  publication-title: J. Comput. Civ. Eng.
– volume: 16
  start-page: 258
  year: 2008
  end-page: 262
  ident: b50
  article-title: Reliability analysis of rock mass deformation in tunnel excavation based on genetic algorithm
  publication-title: J. Eng. Geol.
– volume: 55
  start-page: 862
  year: 2018
  end-page: 880
  ident: b76
  article-title: Direct simulation of random field samples from sparsely measured geotechnical data with consideration of uncertainty in interpretation
  publication-title: Can. Geotech. J.
– volume: 79
  start-page: 2763
  year: 2020
  end-page: 2775
  ident: b10
  article-title: Probabilistic stability analysis of earth dam slope under transient seepage using multivariate adaptive regression splines
  publication-title: Bull. Eng. Geol. Environ.
– year: 2020
  ident: b82
  article-title: Probabilistic stability analysis of Bazimen landslide with monitored rainfall data and water level fluctuations in Three Gorges reservoir, China
  publication-title: Front. Struct. Civ. Eng.
– volume: 33
  year: 2019
  ident: b67
  article-title: Intelligent approach based on random forest for safety risk prediction of deep foundation pit in subway stations
  publication-title: J. Comput. Civ. Eng.
– volume: 11
  start-page: 1095
  year: 2020
  end-page: 1106
  ident: b69
  article-title: State-of-the-art review of soft computing applications in underground excavations
  publication-title: Geosci. Front.
– volume: 7
  start-page: 45
  year: 2016
  end-page: 52
  ident: b40
  article-title: Multivariate adaptive regression splines and neural network models for prediction of pile drivability
  publication-title: Geosci. Front.
– start-page: 785
  year: 2016
  end-page: 794
  ident: b42
  article-title: Xgboost: A scalable tree boosting system
  publication-title: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining
– volume: 12
  start-page: 365
  year: 2021
  end-page: 373
  ident: b30
  article-title: Estimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learning
  publication-title: Geosci. Front.
– year: 2022
  ident: b23
  article-title: Efficient time-variant reliability analysis of Bazimen landslide in the Three Gorges Reservoir Area using XGBoost and LightGBM algorithms
  publication-title: Gondwana Res.
– volume: 39
  start-page: 39
  year: 2015
  end-page: 45
  ident: b19
  article-title: Cumulative PSO-Kriging model for slope reliability analysis
  publication-title: Probab. Eng. Mech.
– volume: 139
  start-page: 651
  year: 2013
  end-page: 655
  ident: b46
  article-title: Application of the kriging-based response surface method to the system reliability of soil slopes
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 67
  start-page: 85
  year: 2017
  end-page: 95
  ident: b57
  article-title: An efficient reliability method combining adaptive support vector machine and Monte Carlo simulation
  publication-title: Struct. Saf.
– volume: 13
  start-page: 1358
  year: 2021
  end-page: 1367
  ident: b66
  article-title: Deep learning-based evaluation of factor of safety with confidence interval for tunnel deformation in spatially variable soil
  publication-title: J. Rock Mech. Geotech. Eng.
– start-page: 985
  year: 2004
  end-page: 990
  ident: b41
  article-title: Extreme learning machine: A new learning scheme of feedforward neural networks
  publication-title: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541)
– volume: 146
  year: 2022
  ident: b6
  article-title: Probabilistic analysis of pile-reinforced slopes in spatially variable soils with rotated anisotropy
  publication-title: Comput. Geotech.
– volume: 147
  year: 2021
  ident: b13
  article-title: Metamodel-based reliability analysis in spatially variable soils using convolutional neural networks
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 238
  start-page: 36
  year: 2018
  end-page: 51
  ident: b81
  article-title: Towards a complete understanding of the triggering mechanism of a large reactivated landslide in the Three Gorges reservoir
  publication-title: Eng. Geol.
– volume: 40
  start-page: 6105
  year: 2016
  end-page: 6120
  ident: b47
  article-title: Slope reliability analysis using surrogate models via new support vector machines with swarm intelligence
  publication-title: Appl. Math. Model.
– volume: 38
  start-page: 1235
  year: 2020
  end-page: 1244
  ident: b74
  article-title: Bayesian model and parameter calibration for braced excavations in soft clays
  publication-title: Mar. Georesour. Geotechnol.
– volume: 10
  start-page: 671
  year: 2019
  end-page: 682
  ident: b8
  article-title: Advanced reliability analysis of slopes in spatially variable soils using multivariate adaptive regression splines
  publication-title: Geosci. Front.
– volume: 12
  start-page: 375
  year: 2021
  end-page: 383
  ident: b9
  article-title: Application of soft computing techniques for shallow foundation reliability in geotechnical engineering
  publication-title: Geosci. Front.
– volume: 3
  start-page: 391
  year: 2017
  ident: 10.1016/j.asoc.2023.110066_b35
  article-title: Potential of radial basis function network with particle swarm optimization for prediction of sediment transport at the limit of deposition in a clean pipe
  publication-title: Sustain. Water Resour. Manag.
  doi: 10.1007/s40899-017-0104-9
– start-page: 785
  year: 2016
  ident: 10.1016/j.asoc.2023.110066_b42
  article-title: Xgboost: A scalable tree boosting system
– volume: 31
  year: 2017
  ident: 10.1016/j.asoc.2023.110066_b48
  article-title: New observations on the application of LS-SVM in slope system reliability analysis
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000620
– volume: 13
  start-page: 53
  year: 2019
  ident: 10.1016/j.asoc.2023.110066_b49
  article-title: On the use of Bayesian networks as a meta-modelling approach to analyse uncertainties in slope stability analysis
  publication-title: Georisk-Assess. Manag. Risk Eng. Syst. Geohazards
– volume: 141
  year: 2022
  ident: 10.1016/j.asoc.2023.110066_b4
  article-title: Advances in reliability and risk analyses of slopes in spatially variable soils: A state-of-the-art review
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2021.104498
– volume: 12
  start-page: 375
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110066_b9
  article-title: Application of soft computing techniques for shallow foundation reliability in geotechnical engineering
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.05.003
– volume: 200
  year: 2020
  ident: 10.1016/j.asoc.2023.110066_b53
  article-title: Support vector regression based metamodel by sequential adaptive sampling for reliability analysis of structures
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2020.106948
– volume: 5
  start-page: 379
  issue: 4
  year: 2008
  ident: 10.1016/j.asoc.2023.110066_b1
  article-title: Mechanism for the rapid motion of the Qianjiangping landslide during reactivation by the first impoundment of the Three Gorges dam reservoir
  publication-title: China. Landslides
  doi: 10.1007/s10346-008-0130-7
– volume: 83
  start-page: 425
  year: 2019
  ident: 10.1016/j.asoc.2023.110066_b63
  article-title: Mechanical parameter inversion in tunnel engineering using support vector regression optimized by multi-strategy artificial fish swarm algorithm
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2018.09.027
– year: 2022
  ident: 10.1016/j.asoc.2023.110066_b25
  article-title: Prediction of wall deflection induced by braced excavation in spatially variable soils via convolutional neural network
  publication-title: Gondwana Res.
– volume: 56
  start-page: 45
  year: 2016
  ident: 10.1016/j.asoc.2023.110066_b56
  article-title: Reliability analysis of tunnels using a metamodeling technique based on augmented radial basis functions
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2016.02.007
– volume: 15
  start-page: 3135
  issue: 11
  year: 2020
  ident: 10.1016/j.asoc.2023.110066_b11
  article-title: Efficient reliability analysis of earth dam slope stability using extreme gradient boosting method
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-020-00962-4
– volume: 281
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110066_b14
  article-title: Novel approach to efficient slope reliability analysis in spatially variable soils
  publication-title: Eng. Geol.
– volume: 12
  start-page: 331
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110066_b27
  article-title: Advanced prediction of tunnel boring machine performance based on big data
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.02.011
– volume: 48
  start-page: 82
  year: 2013
  ident: 10.1016/j.asoc.2023.110066_b39
  article-title: Multivariate adaptive regression splines for analysis of geotechnical engineering systems
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2012.09.016
– volume: 126
  year: 2020
  ident: 10.1016/j.asoc.2023.110066_b44
  article-title: Machine learning aided stochastic reliability analysis of spatially variable slopes
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2020.103711
– volume: 11
  start-page: 4036
  issue: 5
  year: 2011
  ident: 10.1016/j.asoc.2023.110066_b59
  article-title: Utilization relevance vector machine for slope reliability analysis
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.03.009
– year: 2022
  ident: 10.1016/j.asoc.2023.110066_b33
  article-title: Comparison of trend models for geotechnical spatial variability: Sparse Bayesian learning vs. Gaussian process regression
  publication-title: Gondwana Res.
– volume: 10
  start-page: 671
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2023.110066_b8
  article-title: Advanced reliability analysis of slopes in spatially variable soils using multivariate adaptive regression splines
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2018.03.013
– volume: 12
  start-page: 425
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110066_b32
  article-title: Probabilistic outlier detection for sparse multivariate geotechnical site investigation data using Bayesian learning
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.03.017
– volume: 41
  start-page: 14
  year: 2014
  ident: 10.1016/j.asoc.2023.110066_b51
  article-title: Reliability analysis of tunnel using least square support vector machine
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2013.11.004
– volume: 19
  start-page: 1
  year: 1991
  ident: 10.1016/j.asoc.2023.110066_b38
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Statist.
– volume: 12
  start-page: 351
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110066_b12
  article-title: Landslide identification using machine learning
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.02.012
– volume: 13
  start-page: 1358
  year: 2021
  ident: 10.1016/j.asoc.2023.110066_b66
  article-title: Deep learning-based evaluation of factor of safety with confidence interval for tunnel deformation in spatially variable soil
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2021.09.001
– volume: 139
  start-page: 651
  year: 2013
  ident: 10.1016/j.asoc.2023.110066_b46
  article-title: Application of the kriging-based response surface method to the system reliability of soil slopes
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0000801
– volume: 36
  start-page: 787
  year: 2009
  ident: 10.1016/j.asoc.2023.110066_b17
  article-title: Probabilistic stability analyses of slopes using the ANN-based response surface
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2009.01.003
– year: 2021
  ident: 10.1016/j.asoc.2023.110066_b84
  article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.03.007
– year: 2020
  ident: 10.1016/j.asoc.2023.110066_b82
  article-title: Probabilistic stability analysis of Bazimen landslide with monitored rainfall data and water level fluctuations in Three Gorges reservoir, China
  publication-title: Front. Struct. Civ. Eng.
  doi: 10.1007/s11709-020-0655-y
– volume: 220
  start-page: 270
  year: 2018
  ident: 10.1016/j.asoc.2023.110066_b34
  article-title: Modeling minimum miscibility pressure during pure and impure CO2 flooding using hybrid of radial basis function neural network and evolutionary techniques
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.01.101
– volume: 122
  year: 2020
  ident: 10.1016/j.asoc.2023.110066_b61
  article-title: Influence of a weak layer on the tunnel face stability - Reliability and sensitivity analysis
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2020.103507
– volume: 55
  start-page: 862
  issue: 6
  year: 2018
  ident: 10.1016/j.asoc.2023.110066_b76
  article-title: Direct simulation of random field samples from sparsely measured geotechnical data with consideration of uncertainty in interpretation
  publication-title: Can. Geotech. J.
  doi: 10.1139/cgj-2017-0254
– volume: 21
  start-page: 457
  year: 2020
  ident: 10.1016/j.asoc.2023.110066_b37
  article-title: Automatic classification of pavement crack using deep convolutional neural network
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298436.2018.1485917
– volume: 16
  start-page: 258
  issue: 2
  year: 2008
  ident: 10.1016/j.asoc.2023.110066_b50
  article-title: Reliability analysis of rock mass deformation in tunnel excavation based on genetic algorithm
  publication-title: J. Eng. Geol.
– volume: 80
  start-page: 735
  year: 2021
  ident: 10.1016/j.asoc.2023.110066_b45
  article-title: 3D slope reliability analysis based on the intelligent response surface methodology
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-020-01940-6
– volume: 7
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.asoc.2023.110066_b64
  article-title: Probabilistic analysis of tunnel roof deflection under sequential excavation using ANN-based Monte Carlo simulation and simplified reliability approach
  publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst. A
– volume: 53
  start-page: 61
  year: 2012
  ident: 10.1016/j.asoc.2023.110066_b55
  article-title: Comparative study of metamodeling techniques for reliability analysis using evidence theory
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2012.07.007
– volume: 33
  start-page: 143
  year: 2013
  ident: 10.1016/j.asoc.2023.110066_b62
  article-title: Back analysis of geomechanical parameters in underground works using an evolution strategy algorithm
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2012.08.011
– volume: 33
  start-page: 1477
  issue: 8–9
  year: 2019
  ident: 10.1016/j.asoc.2023.110066_b77
  article-title: Direct simulation of two-dimensional isotropic or anisotropic random field from sparse measurement using Bayesian compressive sampling
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-019-01718-7
– volume: 238
  start-page: 36
  year: 2018
  ident: 10.1016/j.asoc.2023.110066_b81
  article-title: Towards a complete understanding of the triggering mechanism of a large reactivated landslide in the Three Gorges reservoir
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2018.03.008
– volume: 12
  start-page: 415
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110066_b21
  article-title: Prediction of load–displacement performance of grouted anchors in weathered granites using FastICA-MARS as a novel model
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.05.004
– volume: 139
  start-page: 395
  issue: 3
  year: 2013
  ident: 10.1016/j.asoc.2023.110066_b73
  article-title: Bayesian updating of soil parameters for braced excavations using field observations
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0000782
– volume: 147
  issue: 3
  year: 2021
  ident: 10.1016/j.asoc.2023.110066_b13
  article-title: Metamodel-based reliability analysis in spatially variable soils using convolutional neural networks
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0002486
– volume: 11
  start-page: 1095
  issue: 4
  year: 2020
  ident: 10.1016/j.asoc.2023.110066_b69
  article-title: State-of-the-art review of soft computing applications in underground excavations
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2019.12.003
– volume: 23
  start-page: 154
  issue: 2–3
  year: 2008
  ident: 10.1016/j.asoc.2023.110066_b52
  article-title: A comparison of approximate response functions in structural reliability analysis
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/j.probengmech.2007.12.022
– volume: 78
  start-page: 15
  issue: 15
  year: 2019
  ident: 10.1016/j.asoc.2023.110066_b68
  article-title: Application of optimized grey discrete Verhulst-BP neural network model in settlement prediction of foundation pit
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-019-8458-y
– year: 2020
  ident: 10.1016/j.asoc.2023.110066_b83
  article-title: Reliability-based design of lining structures for underground space against water seepage
  publication-title: Undergr. Space
– volume: 61
  start-page: 22
  year: 2016
  ident: 10.1016/j.asoc.2023.110066_b54
  article-title: A hybrid approach combining uniform design and support vector machine to probabilistic tunnel stability assessment
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2016.03.001
– year: 2021
  ident: 10.1016/j.asoc.2023.110066_b80
  article-title: Hybrid machine learning model with random field and limited CPT data to quantify horizontal scale of fluctuation of soil spatial variability
  publication-title: Acta Geotech.
– start-page: 267
  year: 1982
  ident: 10.1016/j.asoc.2023.110066_b36
– volume: 79
  start-page: 12
  year: 2019
  ident: 10.1016/j.asoc.2023.110066_b58
  article-title: Implementation of machine learning techniques into the subset simulation method
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2019.02.002
– volume: 205
  year: 2019
  ident: 10.1016/j.asoc.2023.110066_b43
  article-title: Developing window behavior models for residential buildings using XGBoost algorithm
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.109564
– volume: 12
  start-page: 405
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110066_b16
  article-title: Stochastic seismic slope stability assessment using polynomial chaos expansions combined with relevance vector machine
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.03.016
– volume: 12
  start-page: 385
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110066_b28
  article-title: Modelling of shallow landslides with machine learning algorithms
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.04.014
– volume: 80
  start-page: 2011
  year: 2021
  ident: 10.1016/j.asoc.2023.110066_b5
  article-title: Slope reliability evaluation based on multi-objective grey wolf optimization-multi-kernel-based extreme learning machine agent model
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-020-02090-5
– volume: 12
  start-page: 441
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110066_b29
  article-title: Intelligent modelling of clay compressibility using hybrid meta-heuristic and machine learning algorithms
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.02.014
– volume: 52
  start-page: 780
  year: 2022
  ident: 10.1016/j.asoc.2023.110066_b65
  article-title: Reliability assessment of tunnels using machine learning algorithms
  publication-title: Indian Geotech. J.
  doi: 10.1007/s40098-022-00610-6
– start-page: 2039
  year: 2007
  ident: 10.1016/j.asoc.2023.110066_b70
  article-title: ANN-based reliability analysis for deep excavation
– volume: 62
  issue: 5
  year: 2022
  ident: 10.1016/j.asoc.2023.110066_b3
  article-title: Geotechnical uncertainty, modeling, and decision making
  publication-title: Soils Found
  doi: 10.1016/j.sandf.2022.101189
– year: 2020
  ident: 10.1016/j.asoc.2023.110066_b72
  article-title: Estimation of failure probability in braced excavation using Bayesian networks with integrated model updating
  publication-title: Undergr. Space
  doi: 10.1016/j.undsp.2019.07.001
– volume: 7
  start-page: 45
  issue: 1
  year: 2016
  ident: 10.1016/j.asoc.2023.110066_b40
  article-title: Multivariate adaptive regression splines and neural network models for prediction of pile drivability
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2014.10.003
– volume: 146
  issue: 9
  year: 2020
  ident: 10.1016/j.asoc.2023.110066_b22
  article-title: SS-XGBoost: A machine learning framework for predicting newmark sliding displacements of slopes
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0002297
– volume: 37
  start-page: 3447
  issue: 4
  year: 2019
  ident: 10.1016/j.asoc.2023.110066_b20
  article-title: Reliability analysis of pile foundation using ELM and MARS
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-018-00777-x
– start-page: 985
  year: 2004
  ident: 10.1016/j.asoc.2023.110066_b41
  article-title: Extreme learning machine: A new learning scheme of feedforward neural networks
– volume: 1
  start-page: 1
  year: 2022
  ident: 10.1016/j.asoc.2023.110066_b24
  article-title: Reliability-based design in spatially variable soils using deep learning: An illustration using shallow foundation
  publication-title: Georisk
– volume: 89
  start-page: 381
  year: 2021
  ident: 10.1016/j.asoc.2023.110066_b15
  article-title: Active learning relevant vector machine for reliability analysis
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2020.07.034
– year: 2022
  ident: 10.1016/j.asoc.2023.110066_b23
  article-title: Efficient time-variant reliability analysis of Bazimen landslide in the Three Gorges Reservoir Area using XGBoost and LightGBM algorithms
  publication-title: Gondwana Res.
– volume: 67
  start-page: 85
  year: 2017
  ident: 10.1016/j.asoc.2023.110066_b57
  article-title: An efficient reliability method combining adaptive support vector machine and Monte Carlo simulation
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2017.04.006
– volume: 40
  start-page: 6105
  year: 2016
  ident: 10.1016/j.asoc.2023.110066_b47
  article-title: Slope reliability analysis using surrogate models via new support vector machines with swarm intelligence
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2016.01.050
– volume: 86
  start-page: 22
  year: 2019
  ident: 10.1016/j.asoc.2023.110066_b60
  article-title: Probability analysis of shallow circular tunnels in homogeneous soil using the surface response methodology optimized by a genetic algorithm
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2019.01.008
– volume: 145
  start-page: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2023.110066_b78
  article-title: Simulation of random fields with trend from sparse measurements without detrending
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0001560
– volume: 146
  year: 2022
  ident: 10.1016/j.asoc.2023.110066_b6
  article-title: Probabilistic analysis of pile-reinforced slopes in spatially variable soils with rotated anisotropy
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2022.104744
– volume: 39
  start-page: 39
  year: 2015
  ident: 10.1016/j.asoc.2023.110066_b19
  article-title: Cumulative PSO-Kriging model for slope reliability analysis
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/j.probengmech.2014.12.001
– volume: 12
  start-page: 365
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2023.110066_b30
  article-title: Estimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learning
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.03.003
– volume: 79
  start-page: 2763
  issue: 6
  year: 2020
  ident: 10.1016/j.asoc.2023.110066_b10
  article-title: Probabilistic stability analysis of earth dam slope under transient seepage using multivariate adaptive regression splines
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-020-01730-0
– volume: 294
  year: 2021
  ident: 10.1016/j.asoc.2023.110066_b79
  article-title: Novel approach to estimate vertical scale of fluctuation based on CPT data using convolutional neural networks
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2021.106342
– volume: 90
  start-page: 243
  year: 2018
  ident: 10.1016/j.asoc.2023.110066_b75
  article-title: Quantifying cost-effectiveness of subsurface strata exploration in excavation projects through geostatistics and spatial tessellation
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.02.032
– volume: 859
  start-page: 315
  year: 2014
  ident: 10.1016/j.asoc.2023.110066_b71
  article-title: Application of SVM to reliability analysis of foundation excavations system
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.859.315
– volume: 38
  start-page: 1235
  issue: 10
  year: 2020
  ident: 10.1016/j.asoc.2023.110066_b74
  article-title: Bayesian model and parameter calibration for braced excavations in soft clays
  publication-title: Mar. Georesour. Geotechnol.
  doi: 10.1080/1064119X.2019.1673855
– volume: 238
  start-page: 15
  year: 2018
  ident: 10.1016/j.asoc.2023.110066_b2
  article-title: The 2015 Shenzhen catastrophic landslide in a construction waste dump : Reconstitution of dump structure and failure mechanisms via geotechnical investigations
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2018.02.019
– volume: 265
  year: 2020
  ident: 10.1016/j.asoc.2023.110066_b26
  article-title: Interpolation and stratification of multilayer soil property profile from sparse measurements using machine learning methods
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2019.105430
– volume: 54
  start-page: 5633
  issue: 8
  year: 2021
  ident: 10.1016/j.asoc.2023.110066_b31
  article-title: Application of deep learning algorithms in geotechnical engineering: A short critical review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-09967-1
– volume: 65
  start-page: 707
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2023.110066_b18
  article-title: Slope reliability analysis by updated support vector machine and Monte Carlo simulation
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-012-0396-x
– volume: 33
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2023.110066_b67
  article-title: Intelligent approach based on random forest for safety risk prediction of deep foundation pit in subway stations
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000796
– volume: 17
  start-page: 1147
  issue: 4
  year: 2022
  ident: 10.1016/j.asoc.2023.110066_b7
  article-title: A maximum entropy method using fractional moments and deep learning for geotechnical reliability analysis
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-021-01326-2
SSID ssj0016928
Score 2.6246784
SecondaryResourceType review_article
Snippet Geotechnical reliability analysis provides a novel way to rationally take the underlying geotechnical uncertainties into account and evaluate the stability of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110066
SubjectTerms Geotechnical engineering
Machine learning
Reliability analysis
Uncertainty
Title Comprehensive review of machine learning in geotechnical reliability analysis: Algorithms, applications and further challenges
URI https://dx.doi.org/10.1016/j.asoc.2023.110066
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbsIwELUQvfTSveqKfOitDSR4SdIbQkV0Q1VbJG4R3iAVmwIceuHba8cOolLFoaco1liKZuyZsfL8HgA3Ae4rHvrKI7o58LCgxIswiTxfIUJlFAuZqyi8dmi7i596pFcCzeIujIFVutxvc3qerd1IzXmzNkvT2oc-eUQ4xrp-m0KGDScoxqFZ5dXVGuYR0DjXVzXGnrF2F2csxquvPVA1AuIGDe_nTIl_FKeNgtM6AHuuU4QN-zGHoCQnR2C_UGGAblMeg5UZyuTQItGhvYsCpwqOc5ykhE4YYgDTCRzIqWVt1aHRpqPU0nR_w74jJ7mHjdFgmqWL4Xh-Bzd_b2sTAdUyMx0j5IUGy_wEdFsPn82251QVPK49tfAoUlxiX9Z1OFio6hFRTCeZQCiE4iCKBNHnVhYiLpUKmC8orzMmYqUbg0gqytApKE-mE3kGoIgJUn3u41AQzImIEdKpk8YMK0pkWD8HQeHOhDvKcaN8MUoKbNlXYkKQmBAkNgTn4HY9Z2YJN7ZakyJKya9lk-iKsGXexT_nXYJd82ZBaFegvMiW8lp3JQtWyZddBew0mu8vb-b5-Nzu_ACxz-Tt
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOMClPKtSSvEBThA2iR9JKvWACmh5XgCJW7p-LamWXbS7qOLCn-IPMo4dBBLigMTVGUfOzGRmLH-eD2AjYR2rsthGHIuDiGnBo5zxPIot5cLkhTY1i8LpmWhfsqMrfjUBj81dGAerDLHfx_Q6WoeRVtBm67aqWue488hZwTB_u0TGWEBWHpv7_7hvG_0-3EMjb6bpwf7Fn3YUqAUiheLjSFCrDItNimuSmU1zbiX-aYm2lBZJnmuOmzeZUWWsTWSshUql1IXF7JgbKyTF907CNMNw4WgTdh6ecSWJKGpCV7e6yC0v3NTxoLIOqnzHMZY7-H1ct2Z8Ixu-yHAH8_AllKZk13_9AkyY_iLMNbQPJESBJXhwQ0Nz7aHvxF9-IQNLbmpgpiGBiaJLqj7pmoFvE4u-gKK9yvcFvyed0A3lF9ntdQfDanx9M9omL8_TUUQTezd0JSpRDenLaBkuP0XXX2GqP-ibb0B0wantqJhlmjPFdUEpxmpRSGYFN1m6AkmjzlKFHueOaqNXNmC2f6UzQelMUHoTrMDW85xb3-HjXWneWKl85aclpqB35n3_4Lx1mGlfnJ6UJ4dnx6sw6554BNwPmBoP78walkRj-bN2QQJ_P9vnnwCN6R_1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+review+of+machine+learning+in+geotechnical+reliability+analysis%3A+Algorithms%2C+applications+and+further+challenges&rft.jtitle=Applied+soft+computing&rft.au=Zhang%2C+Wengang&rft.au=Gu%2C+Xin&rft.au=Hong%2C+Li&rft.au=Han%2C+Liang&rft.date=2023-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=136&rft_id=info:doi/10.1016%2Fj.asoc.2023.110066&rft.externalDocID=S1568494623000844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon