Comprehensive review of machine learning in geotechnical reliability analysis: Algorithms, applications and further challenges
Geotechnical reliability analysis provides a novel way to rationally take the underlying geotechnical uncertainties into account and evaluate the stability of geotechnical structures by failure probability (or equivalently, reliability index) from a probabilistic perspective, which has gained great...
Saved in:
Published in | Applied soft computing Vol. 136; p. 110066 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Geotechnical reliability analysis provides a novel way to rationally take the underlying geotechnical uncertainties into account and evaluate the stability of geotechnical structures by failure probability (or equivalently, reliability index) from a probabilistic perspective, which has gained great attention in the past few decades. With the rapid development of artificial intelligence techniques, various machine learning (ML) algorithms have been successfully applied in geotechnical reliability analysis and the number of relevant papers has been increasing at an accelerating pace. Although significant advances have been made in the past two decades, a systematic summary of this subject is still lacking. To better conclude current achievements and further shed light on future research, this paper aims to provide a state-of-the-art review of ML in geotechnical reliability analysis applications. Through reviewing the papers published in the period from 2002 to 2022 with the topic of applying ML in the reliability analysis of slopes, tunneling, and excavations, the pros and cons of the developed methods are explicitly tabulated. The great achievements that have been made are systematically summarized from two major aspects. In addition, the four potential challenges and prospective research possibilities underlying geotechnical reliability analysis are also outlined, including multisensor data fusion, time-variant reliability analysis, three-dimensional reliability analysis of practical cases, and ML model selection and optimization.
•A state-of-the-art review of ML in geotechnical reliability analysis applications.•Several commonly used ML algorithms and some latest advanced ML methods are summarized.•The potential challenges and prospective research possibilities are outlined. |
---|---|
AbstractList | Geotechnical reliability analysis provides a novel way to rationally take the underlying geotechnical uncertainties into account and evaluate the stability of geotechnical structures by failure probability (or equivalently, reliability index) from a probabilistic perspective, which has gained great attention in the past few decades. With the rapid development of artificial intelligence techniques, various machine learning (ML) algorithms have been successfully applied in geotechnical reliability analysis and the number of relevant papers has been increasing at an accelerating pace. Although significant advances have been made in the past two decades, a systematic summary of this subject is still lacking. To better conclude current achievements and further shed light on future research, this paper aims to provide a state-of-the-art review of ML in geotechnical reliability analysis applications. Through reviewing the papers published in the period from 2002 to 2022 with the topic of applying ML in the reliability analysis of slopes, tunneling, and excavations, the pros and cons of the developed methods are explicitly tabulated. The great achievements that have been made are systematically summarized from two major aspects. In addition, the four potential challenges and prospective research possibilities underlying geotechnical reliability analysis are also outlined, including multisensor data fusion, time-variant reliability analysis, three-dimensional reliability analysis of practical cases, and ML model selection and optimization.
•A state-of-the-art review of ML in geotechnical reliability analysis applications.•Several commonly used ML algorithms and some latest advanced ML methods are summarized.•The potential challenges and prospective research possibilities are outlined. |
ArticleNumber | 110066 |
Author | Zhang, Wengang Han, Liang Wang, Lin Hong, Li Gu, Xin |
Author_xml | – sequence: 1 givenname: Wengang surname: Zhang fullname: Zhang, Wengang organization: School of Civil Engineering, Chongqing University, Chongqing 400045, China – sequence: 2 givenname: Xin surname: Gu fullname: Gu, Xin organization: School of Civil Engineering, Chongqing University, Chongqing 400045, China – sequence: 3 givenname: Li surname: Hong fullname: Hong, Li organization: School of Civil Engineering, Chongqing University, Chongqing 400045, China – sequence: 4 givenname: Liang surname: Han fullname: Han, Liang organization: School of Civil Engineering, Chongqing University, Chongqing 400045, China – sequence: 5 givenname: Lin surname: Wang fullname: Wang, Lin email: linwang@bnu.edu.cn organization: School of National Safety and Emergency Management, Beijing Normal University, Zhuhai 519087, China |
BookMark | eNp9kMtOWzEQhq0KpALlBbryA_QEXxLHp2KDonKRkNjA2vLxGedM5NiRbUDZ9NnrNKxYsJqR5v9G-r9zchJTBEJ-cjbjjKurzcyW5GaCCTnjnDGlvpEzrpei65XmJ21fKN3N-7n6Ts5L2bAG9UKfkb-rtN1lmCAWfAOa4Q3hnSZPt9ZNGIEGsDliXFOMdA2pgpsiOhtaNKAdMGDdUxtt2Bcsv-lNWKeMddqWX9TudqFFK6ZYWmSk_jXXCTJ1kw0B4hrKD3LqbShw-TEvyMvtn-fVfff4dPewunnsnJCsdkp6B3MGgnk5LL3QCz8sleSjl7LnWo-LJW8H6cB7PrBROTEMY--56DV4NcgLIo5_XU6lZPBml3Fr895wZg4GzcYcDJqDQXM02CD9CXJY_9ep2WL4Gr0-otBKNaXZFIcQHYyYwVUzJvwK_wdLKZJt |
CitedBy_id | crossref_primary_10_3389_fevo_2023_1257854 crossref_primary_10_1038_s41598_024_74850_2 crossref_primary_10_1016_j_jksus_2023_102846 crossref_primary_10_1007_s12145_024_01600_3 crossref_primary_10_1007_s10489_024_05560_5 crossref_primary_10_1002_gj_4770 crossref_primary_10_1108_WJE_12_2023_0536 crossref_primary_10_1177_09718907241286336 crossref_primary_10_1007_s42107_025_01287_x crossref_primary_10_1088_1755_1315_1334_1_012039 crossref_primary_10_1515_jmbm_2022_0309 crossref_primary_10_1016_j_enggeo_2024_107605 crossref_primary_10_3390_geosciences14020044 crossref_primary_10_1016_j_conbuildmat_2024_138021 crossref_primary_10_1016_j_tust_2024_105928 crossref_primary_10_1016_j_autcon_2024_105276 crossref_primary_10_1016_j_jrmge_2023_09_034 crossref_primary_10_3390_app142411792 crossref_primary_10_32604_cmes_2024_052830 crossref_primary_10_32604_cmes_2024_056319 crossref_primary_10_1007_s10346_024_02398_3 crossref_primary_10_1016_j_oceaneng_2024_117758 crossref_primary_10_1016_j_jrmge_2024_02_048 crossref_primary_10_1016_j_compgeo_2024_106918 crossref_primary_10_1007_s41939_023_00280_8 crossref_primary_10_3390_su15076160 crossref_primary_10_3390_su152115260 crossref_primary_10_37394_23206_2024_23_35 crossref_primary_10_1016_j_clay_2023_107239 crossref_primary_10_1016_j_ghm_2024_06_001 crossref_primary_10_1108_MLAG_10_2024_0010 crossref_primary_10_1016_j_conbuildmat_2025_140248 crossref_primary_10_1016_j_enggeo_2025_108043 crossref_primary_10_1590_2318_0331_282320230087 crossref_primary_10_3390_buildings14040954 crossref_primary_10_1007_s11069_024_06652_8 crossref_primary_10_1016_j_engappai_2023_106821 crossref_primary_10_1016_j_taml_2025_100578 crossref_primary_10_1007_s10999_023_09679_0 crossref_primary_10_1007_s41748_024_00508_8 crossref_primary_10_1016_j_jece_2025_115463 crossref_primary_10_1016_j_tust_2025_106448 crossref_primary_10_1016_j_soildyn_2024_108805 crossref_primary_10_1016_j_ghm_2024_11_001 crossref_primary_10_1016_j_oceaneng_2024_120119 crossref_primary_10_1021_acs_jcim_4c02062 crossref_primary_10_1080_10298436_2024_2431610 crossref_primary_10_1007_s11629_023_8158_7 crossref_primary_10_1007_s41872_024_00259_5 crossref_primary_10_1002_gj_5049 crossref_primary_10_1061_AJRUA6_RUENG_1172 crossref_primary_10_3390_app13148084 crossref_primary_10_1155_2024_7776212 crossref_primary_10_3390_w15142675 crossref_primary_10_1016_j_tre_2025_103969 crossref_primary_10_1016_j_gsf_2023_101720 crossref_primary_10_1016_j_tafmec_2024_104627 crossref_primary_10_1080_10916466_2024_2378207 crossref_primary_10_1007_s13198_024_02535_0 crossref_primary_10_1016_j_heliyon_2023_e20902 crossref_primary_10_1016_j_engappai_2023_107840 crossref_primary_10_1080_07038992_2025_2470710 crossref_primary_10_3390_math11102318 crossref_primary_10_1007_s13369_023_07962_y crossref_primary_10_1016_j_asoc_2023_110462 crossref_primary_10_1177_00368504241302972 crossref_primary_10_1007_s41064_025_00333_2 crossref_primary_10_1029_2024JH000318 crossref_primary_10_1016_j_enggeo_2023_107372 crossref_primary_10_3934_era_2024284 crossref_primary_10_1016_j_cscm_2023_e02554 crossref_primary_10_1016_j_jafrearsci_2025_105631 crossref_primary_10_3390_su15129404 |
Cites_doi | 10.1007/s40899-017-0104-9 10.1061/(ASCE)CP.1943-5487.0000620 10.1016/j.compgeo.2021.104498 10.1016/j.gsf.2020.05.003 10.1016/j.ress.2020.106948 10.1007/s10346-008-0130-7 10.1016/j.tust.2018.09.027 10.1016/j.tust.2016.02.007 10.1007/s11440-020-00962-4 10.1016/j.gsf.2020.02.011 10.1016/j.compgeo.2012.09.016 10.1016/j.compgeo.2020.103711 10.1016/j.asoc.2011.03.009 10.1016/j.gsf.2018.03.013 10.1016/j.gsf.2020.03.017 10.1016/j.tust.2013.11.004 10.1016/j.gsf.2020.02.012 10.1016/j.jrmge.2021.09.001 10.1061/(ASCE)GT.1943-5606.0000801 10.1016/j.compgeo.2009.01.003 10.1016/j.gsf.2020.03.007 10.1007/s11709-020-0655-y 10.1016/j.fuel.2018.01.101 10.1016/j.compgeo.2020.103507 10.1139/cgj-2017-0254 10.1080/10298436.2018.1485917 10.1007/s10064-020-01940-6 10.1016/j.advengsoft.2012.07.007 10.1016/j.tust.2012.08.011 10.1007/s00477-019-01718-7 10.1016/j.enggeo.2018.03.008 10.1016/j.gsf.2020.05.004 10.1061/(ASCE)GT.1943-5606.0000782 10.1061/(ASCE)GT.1943-5606.0002486 10.1016/j.gsf.2019.12.003 10.1016/j.probengmech.2007.12.022 10.1007/s12665-019-8458-y 10.1016/j.strusafe.2016.03.001 10.1016/j.strusafe.2019.02.002 10.1016/j.enbuild.2019.109564 10.1016/j.gsf.2020.03.016 10.1016/j.gsf.2020.04.014 10.1007/s10064-020-02090-5 10.1016/j.gsf.2020.02.014 10.1007/s40098-022-00610-6 10.1016/j.sandf.2022.101189 10.1016/j.undsp.2019.07.001 10.1016/j.gsf.2014.10.003 10.1061/(ASCE)GT.1943-5606.0002297 10.1007/s10706-018-00777-x 10.1016/j.apm.2020.07.034 10.1016/j.strusafe.2017.04.006 10.1016/j.apm.2016.01.050 10.1016/j.tust.2019.01.008 10.1061/(ASCE)EM.1943-7889.0001560 10.1016/j.compgeo.2022.104744 10.1016/j.probengmech.2014.12.001 10.1016/j.gsf.2020.03.003 10.1007/s10064-020-01730-0 10.1016/j.enggeo.2021.106342 10.1016/j.autcon.2018.02.032 10.4028/www.scientific.net/AMR.859.315 10.1080/1064119X.2019.1673855 10.1016/j.enggeo.2018.02.019 10.1016/j.enggeo.2019.105430 10.1007/s10462-021-09967-1 10.1007/s11069-012-0396-x 10.1061/(ASCE)CP.1943-5487.0000796 10.1007/s11440-021-01326-2 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2023.110066 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2023_110066 S1568494623000844 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c230t-63fce40e20f3b7f285fb7631df339188d5713b73ceff1b0d6c2bbd9f1298ef6b3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 23:11:26 EDT 2025 Tue Jul 01 01:50:18 EDT 2025 Fri Feb 23 02:38:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ANN CNN Uncertainty BF RLEM RV ELM SLFN RVM GPR Geotechnical engineering SVM FS SVR BPNN 2D LS-SVM XGBoost Pf RBF Reliability analysis GA LSF ML AI CSRSM PSO RSM FEM 3D PCE BCS RF MARS ARVM ASVM Machine learning RFEM GCV MCS |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c230t-63fce40e20f3b7f285fb7631df339188d5713b73ceff1b0d6c2bbd9f1298ef6b3 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2023_110066 crossref_citationtrail_10_1016_j_asoc_2023_110066 elsevier_sciencedirect_doi_10_1016_j_asoc_2023_110066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2023 2023-03-00 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Phoon, Cao, Ji, Leung, Najjar, Shuku, Tang, Yin, Ikumasa, Ching (b3) 2022; 62 Kang, Xu, Li (b47) 2016; 40 Zhang, Wu, Zhong, Li, Wang (b84) 2021 Wang, Huang, Wang, Li (b22) 2020; 146 Zhang, Goh (b40) 2016; 7 Wang, Zhao, Hu, Phoon (b78) 2019; 145 Jiang, Huang, Griffiths, Deng (b4) 2022; 141 Hu, Zhao, Wang, Choi, Ng (b77) 2019; 33 Cho (b17) 2009; 36 Zhang, Zhang, Huang, Phoon, Tang, Li (b80) 2021 Friedman (b38) 1991; 19 Samui, Lansivaara, Kim (b59) 2011; 11 Zhuang, Ma, Tang, Liang, Wang, Wang (b63) 2019; 83 He, Xu, Sabetamal, Sheng (b44) 2020; 126 Song, Yu, Xu, Pang, Zhang (b45) 2021; 80 Qi, Xu, Wu, Yu (b50) 2008; 16 Wang, Goh, Zhang (b24) 2022; 1 Qasem, Ebtehaj, Bonakdari (b35) 2017; 3 Li, Wang, Zhang, Yang, Wang (b37) 2020; 21 Chen, Guestrin (b42) 2016 Li, Li, Su (b54) 2016; 61 Hamrouni, Dias, Sbartai (b60) 2019; 86 Li, Zhao, Ru (b18) 2013; 65 Liu, Gilbert, Cepeda, Lysdahl, Piciullo, Hefre, Lacasse (b28) 2021; 12 Li, Zhang, Liu, Huang, Cheng, Dias (b6) 2022; 146 Shen, Li, Wang, Xie (b21) 2021; 12 Huang, Zhu, Siew (b41) 2004 Luo, Hu (b74) 2020; 38 Wang (b83) 2020 Zhou, Li, Zhou, Luo (b67) 2019; 33 Zhang, Phoon, Zhang, Huang, Tang (b79) 2021; 294 Wang, Wu, Gu, Liu, Mei, Zhang (b10) 2020; 79 Wang, Zhang, Yin, Luo, Li (b12) 2021; 12 Zhou, Guo, Zhang, Dias, Pan (b61) 2020; 122 Wang, Goh (b14) 2021; 281 Kumar, Samui (b20) 2019; 37 Li, Li, Guo, Li, Chen (b27) 2021; 12 Zhang, Huang, Phoon (b46) 2013; 139 Moreira, Miranda, Pinheiro, Fernandes, Dias, Costa, Sena-Cruz (b62) 2013; 33 Huang, Gu, Song, Cen, Zeng (b81) 2018; 238 Li, Pan, Dias (b15) 2021; 89 Juang, Luo, Atamturktur, Huang (b73) 2013; 139 Zhang, Tang, Li, Wang, Cheng, Zhou, Chen (b82) 2020 Leung, Liu, Lei, Hsu (b75) 2018; 90 Zhang, Li, He (b68) 2019; 78 Huang, Wang (b70) 2007 Zhang, Li, Li, Liu, Chen (b31) 2021; 54 Wang, Zhang, Huo, Peng, Wang, Yamasaki (b1) 2008; 5 Wu, Hong, Wang, Zhang, Pijush, Zhang (b25) 2022 Roy, Chakraborty (b53) 2020; 200 Karkevandi-Talkhooncheh, Rostami, Hemmati-Sarapardeh, Ahmadi, Husein, Dabir (b34) 2018; 220 Zhang, Zhang, Wu, Goh, Lacasse, Liu, Liu (b69) 2020; 11 Zhang, Goh (b39) 2013; 48 Ji, Zhang, Gui, Lue, Kodikara (b48) 2017; 31 Pan, Leung, Hsu (b16) 2021; 12 Zhao, Wang (b26) 2020; 265 Zhan, Zhang, Chen, Chen, Zhang, Liu, Li (b2) 2018; 238 Zhang, Yin, Jin, Chan, Gao (b29) 2021; 12 Zhao, Ru, Chang, Yin, Li (b51) 2014; 41 Zhou, Shadabfar, Xue, Zhang, Huang (b64) 2021; 7 Wang, Goh (b7) 2022; 17 Ray, Kumar, Samui, Roy, Goh, Zhang (b9) 2021; 12 Zhang, Phoon, Zhang, Huang, Tang (b66) 2021; 13 Cui, Ghosn (b58) 2019; 79 Wang, Fang, Shen (b56) 2016; 56 He, Liu, Bi, Wang, Broggi, Beer (b72) 2020 Ling, Zhang, Wei, Kong, Zhu (b5) 2021; 80 Cao, Sun, Liu (b71) 2014; 859 Yi, Wei, Kong, Zhu (b19) 2015; 39 Pan, Dias (b57) 2017; 67 Mo, Sun, Liu, Wei (b43) 2019; 205 Chivata Cardenas (b49) 2019; 13 Bucher, Most (b52) 2008; 23 Wang, Zhao, Phoon (b76) 2018; 55 Ching, Yoshida, Phoon (b33) 2022 Liu, Zhang, Cheng, Liang (b8) 2019; 10 Verma, Pain, Agarwal, Pradhan (b65) 2022; 52 Wang, Wu, Tang, Zhang, Lacasse, Liu, Gao (b11) 2020; 15 Zhang, Wu, Tang, Gu, Wang (b23) 2022 Zheng, Zhu, Li, Cao, Deng, Phoon (b32) 2021; 12 Fukushima, Miyake (b36) 1982 Wang, Xiao, Goh, Deng (b13) 2021; 147 Zhang, Wu, Goh, Bohlke, Zhang (b30) 2021; 12 Bai, Han, Jiang, Liu (b55) 2012; 53 Mo (10.1016/j.asoc.2023.110066_b43) 2019; 205 Li (10.1016/j.asoc.2023.110066_b15) 2021; 89 Li (10.1016/j.asoc.2023.110066_b27) 2021; 12 Zheng (10.1016/j.asoc.2023.110066_b32) 2021; 12 Ling (10.1016/j.asoc.2023.110066_b5) 2021; 80 Hamrouni (10.1016/j.asoc.2023.110066_b60) 2019; 86 Moreira (10.1016/j.asoc.2023.110066_b62) 2013; 33 Yi (10.1016/j.asoc.2023.110066_b19) 2015; 39 Liu (10.1016/j.asoc.2023.110066_b8) 2019; 10 Wang (10.1016/j.asoc.2023.110066_b14) 2021; 281 Zhang (10.1016/j.asoc.2023.110066_b66) 2021; 13 Shen (10.1016/j.asoc.2023.110066_b21) 2021; 12 Ching (10.1016/j.asoc.2023.110066_b33) 2022 Luo (10.1016/j.asoc.2023.110066_b74) 2020; 38 Bai (10.1016/j.asoc.2023.110066_b55) 2012; 53 Wang (10.1016/j.asoc.2023.110066_b7) 2022; 17 Pan (10.1016/j.asoc.2023.110066_b16) 2021; 12 Wang (10.1016/j.asoc.2023.110066_b24) 2022; 1 Li (10.1016/j.asoc.2023.110066_b54) 2016; 61 Liu (10.1016/j.asoc.2023.110066_b28) 2021; 12 Friedman (10.1016/j.asoc.2023.110066_b38) 1991; 19 Roy (10.1016/j.asoc.2023.110066_b53) 2020; 200 Zhang (10.1016/j.asoc.2023.110066_b82) 2020 Huang (10.1016/j.asoc.2023.110066_b70) 2007 Zhang (10.1016/j.asoc.2023.110066_b39) 2013; 48 Zhang (10.1016/j.asoc.2023.110066_b40) 2016; 7 Zhang (10.1016/j.asoc.2023.110066_b29) 2021; 12 Li (10.1016/j.asoc.2023.110066_b6) 2022; 146 Juang (10.1016/j.asoc.2023.110066_b73) 2013; 139 Wang (10.1016/j.asoc.2023.110066_b56) 2016; 56 Zhou (10.1016/j.asoc.2023.110066_b61) 2020; 122 Samui (10.1016/j.asoc.2023.110066_b59) 2011; 11 Ji (10.1016/j.asoc.2023.110066_b48) 2017; 31 Ray (10.1016/j.asoc.2023.110066_b9) 2021; 12 Wang (10.1016/j.asoc.2023.110066_b11) 2020; 15 Bucher (10.1016/j.asoc.2023.110066_b52) 2008; 23 Zhang (10.1016/j.asoc.2023.110066_b79) 2021; 294 He (10.1016/j.asoc.2023.110066_b44) 2020; 126 Huang (10.1016/j.asoc.2023.110066_b81) 2018; 238 Qasem (10.1016/j.asoc.2023.110066_b35) 2017; 3 Leung (10.1016/j.asoc.2023.110066_b75) 2018; 90 Zhao (10.1016/j.asoc.2023.110066_b26) 2020; 265 Wang (10.1016/j.asoc.2023.110066_b78) 2019; 145 Wang (10.1016/j.asoc.2023.110066_b1) 2008; 5 Verma (10.1016/j.asoc.2023.110066_b65) 2022; 52 Zhao (10.1016/j.asoc.2023.110066_b51) 2014; 41 Qi (10.1016/j.asoc.2023.110066_b50) 2008; 16 Zhuang (10.1016/j.asoc.2023.110066_b63) 2019; 83 Jiang (10.1016/j.asoc.2023.110066_b4) 2022; 141 Zhang (10.1016/j.asoc.2023.110066_b31) 2021; 54 Song (10.1016/j.asoc.2023.110066_b45) 2021; 80 Wu (10.1016/j.asoc.2023.110066_b25) 2022 Chivata Cardenas (10.1016/j.asoc.2023.110066_b49) 2019; 13 Karkevandi-Talkhooncheh (10.1016/j.asoc.2023.110066_b34) 2018; 220 Zhou (10.1016/j.asoc.2023.110066_b67) 2019; 33 Zhang (10.1016/j.asoc.2023.110066_b80) 2021 Li (10.1016/j.asoc.2023.110066_b18) 2013; 65 Kang (10.1016/j.asoc.2023.110066_b47) 2016; 40 Zhang (10.1016/j.asoc.2023.110066_b84) 2021 Zhan (10.1016/j.asoc.2023.110066_b2) 2018; 238 Fukushima (10.1016/j.asoc.2023.110066_b36) 1982 He (10.1016/j.asoc.2023.110066_b72) 2020 Zhang (10.1016/j.asoc.2023.110066_b30) 2021; 12 Wang (10.1016/j.asoc.2023.110066_b10) 2020; 79 Zhang (10.1016/j.asoc.2023.110066_b68) 2019; 78 Phoon (10.1016/j.asoc.2023.110066_b3) 2022; 62 Chen (10.1016/j.asoc.2023.110066_b42) 2016 Wang (10.1016/j.asoc.2023.110066_b76) 2018; 55 Li (10.1016/j.asoc.2023.110066_b37) 2020; 21 Wang (10.1016/j.asoc.2023.110066_b83) 2020 Zhang (10.1016/j.asoc.2023.110066_b46) 2013; 139 Zhang (10.1016/j.asoc.2023.110066_b23) 2022 Wang (10.1016/j.asoc.2023.110066_b13) 2021; 147 Huang (10.1016/j.asoc.2023.110066_b41) 2004 Zhang (10.1016/j.asoc.2023.110066_b69) 2020; 11 Pan (10.1016/j.asoc.2023.110066_b57) 2017; 67 Zhou (10.1016/j.asoc.2023.110066_b64) 2021; 7 Kumar (10.1016/j.asoc.2023.110066_b20) 2019; 37 Hu (10.1016/j.asoc.2023.110066_b77) 2019; 33 Wang (10.1016/j.asoc.2023.110066_b22) 2020; 146 Wang (10.1016/j.asoc.2023.110066_b12) 2021; 12 Cho (10.1016/j.asoc.2023.110066_b17) 2009; 36 Cui (10.1016/j.asoc.2023.110066_b58) 2019; 79 Cao (10.1016/j.asoc.2023.110066_b71) 2014; 859 |
References_xml | – volume: 78 start-page: 15 year: 2019 ident: b68 article-title: Application of optimized grey discrete Verhulst-BP neural network model in settlement prediction of foundation pit publication-title: Environ. Earth Sci. – volume: 3 start-page: 391 year: 2017 end-page: 401 ident: b35 article-title: Potential of radial basis function network with particle swarm optimization for prediction of sediment transport at the limit of deposition in a clean pipe publication-title: Sustain. Water Resour. Manag. – volume: 65 start-page: 707 year: 2013 end-page: 722 ident: b18 article-title: Slope reliability analysis by updated support vector machine and Monte Carlo simulation publication-title: Nat. Hazards – volume: 21 start-page: 457 year: 2020 end-page: 463 ident: b37 article-title: Automatic classification of pavement crack using deep convolutional neural network publication-title: Int. J. Pavement Eng. – volume: 33 start-page: 143 year: 2013 end-page: 158 ident: b62 article-title: Back analysis of geomechanical parameters in underground works using an evolution strategy algorithm publication-title: Tunn. Undergr. Space Technol. – year: 2020 ident: b72 article-title: Estimation of failure probability in braced excavation using Bayesian networks with integrated model updating publication-title: Undergr. Space – volume: 52 start-page: 780 year: 2022 end-page: 798 ident: b65 article-title: Reliability assessment of tunnels using machine learning algorithms publication-title: Indian Geotech. J. – volume: 139 start-page: 395 year: 2013 end-page: 406 ident: b73 article-title: Bayesian updating of soil parameters for braced excavations using field observations publication-title: J. Geotech. Geoenviron. Eng. – year: 2022 ident: b25 article-title: Prediction of wall deflection induced by braced excavation in spatially variable soils via convolutional neural network publication-title: Gondwana Res. – volume: 126 year: 2020 ident: b44 article-title: Machine learning aided stochastic reliability analysis of spatially variable slopes publication-title: Comput. Geotech. – year: 2022 ident: b33 article-title: Comparison of trend models for geotechnical spatial variability: Sparse Bayesian learning vs. Gaussian process regression publication-title: Gondwana Res. – volume: 13 start-page: 53 year: 2019 end-page: 65 ident: b49 article-title: On the use of Bayesian networks as a meta-modelling approach to analyse uncertainties in slope stability analysis publication-title: Georisk-Assess. Manag. Risk Eng. Syst. Geohazards – volume: 53 start-page: 61 year: 2012 end-page: 71 ident: b55 article-title: Comparative study of metamodeling techniques for reliability analysis using evidence theory publication-title: Adv. Eng. Softw. – volume: 12 start-page: 351 year: 2021 end-page: 364 ident: b12 article-title: Landslide identification using machine learning publication-title: Geosci. Front. – volume: 17 start-page: 1147 year: 2022 end-page: 1166 ident: b7 article-title: A maximum entropy method using fractional moments and deep learning for geotechnical reliability analysis publication-title: Acta Geotech. – volume: 19 start-page: 1 year: 1991 end-page: 67 ident: b38 article-title: Multivariate adaptive regression splines publication-title: Ann. Statist. – volume: 141 year: 2022 ident: b4 article-title: Advances in reliability and risk analyses of slopes in spatially variable soils: A state-of-the-art review publication-title: Comput. Geotech. – volume: 62 year: 2022 ident: b3 article-title: Geotechnical uncertainty, modeling, and decision making publication-title: Soils Found – volume: 294 year: 2021 ident: b79 article-title: Novel approach to estimate vertical scale of fluctuation based on CPT data using convolutional neural networks publication-title: Eng. Geol. – volume: 56 start-page: 45 year: 2016 end-page: 53 ident: b56 article-title: Reliability analysis of tunnels using a metamodeling technique based on augmented radial basis functions publication-title: Tunn. Undergr. Space Technol. – volume: 36 start-page: 787 year: 2009 end-page: 797 ident: b17 article-title: Probabilistic stability analyses of slopes using the ANN-based response surface publication-title: Comput. Geotech. – volume: 1 start-page: 1 year: 2022 end-page: 15 ident: b24 article-title: Reliability-based design in spatially variable soils using deep learning: An illustration using shallow foundation publication-title: Georisk – volume: 86 start-page: 22 year: 2019 end-page: 33 ident: b60 article-title: Probability analysis of shallow circular tunnels in homogeneous soil using the surface response methodology optimized by a genetic algorithm publication-title: Tunn. Undergr. Space Technol. – volume: 54 start-page: 5633 year: 2021 end-page: 5673 ident: b31 article-title: Application of deep learning algorithms in geotechnical engineering: A short critical review publication-title: Artif. Intell. Rev. – volume: 7 start-page: 1 year: 2021 end-page: 14 ident: b64 article-title: Probabilistic analysis of tunnel roof deflection under sequential excavation using ANN-based Monte Carlo simulation and simplified reliability approach publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst. A – start-page: 267 year: 1982 end-page: 285 ident: b36 article-title: Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Visual Pattern Recognition, Competition and Cooperation in Neural Nets – start-page: 2039 year: 2007 end-page: 2046 ident: b70 article-title: ANN-based reliability analysis for deep excavation publication-title: EUROCON 2007 - The International Conference on Computer as a Tool – volume: 83 start-page: 425 year: 2019 end-page: 436 ident: b63 article-title: Mechanical parameter inversion in tunnel engineering using support vector regression optimized by multi-strategy artificial fish swarm algorithm publication-title: Tunn. Undergr. Space Technol. – volume: 12 start-page: 405 year: 2021 end-page: 414 ident: b16 article-title: Stochastic seismic slope stability assessment using polynomial chaos expansions combined with relevance vector machine publication-title: Geosci. Front. – volume: 79 start-page: 12 year: 2019 end-page: 25 ident: b58 article-title: Implementation of machine learning techniques into the subset simulation method publication-title: Struct. Saf. – volume: 12 start-page: 385 year: 2021 end-page: 393 ident: b28 article-title: Modelling of shallow landslides with machine learning algorithms publication-title: Geosci. Front. – volume: 41 start-page: 14 year: 2014 end-page: 23 ident: b51 article-title: Reliability analysis of tunnel using least square support vector machine publication-title: Tunn. Undergr. Space Technol. – volume: 146 year: 2020 ident: b22 article-title: SS-XGBoost: A machine learning framework for predicting newmark sliding displacements of slopes publication-title: J. Geotech. Geoenviron. Eng. – volume: 33 start-page: 1477 year: 2019 end-page: 1496 ident: b77 article-title: Direct simulation of two-dimensional isotropic or anisotropic random field from sparse measurement using Bayesian compressive sampling publication-title: Stoch. Environ. Res. Risk Assess. – year: 2021 ident: b80 article-title: Hybrid machine learning model with random field and limited CPT data to quantify horizontal scale of fluctuation of soil spatial variability publication-title: Acta Geotech. – volume: 23 start-page: 154 year: 2008 end-page: 163 ident: b52 article-title: A comparison of approximate response functions in structural reliability analysis publication-title: Probab. Eng. Mech. – volume: 12 start-page: 415 year: 2021 end-page: 423 ident: b21 article-title: Prediction of load–displacement performance of grouted anchors in weathered granites using FastICA-MARS as a novel model publication-title: Geosci. Front. – volume: 89 start-page: 381 year: 2021 end-page: 399 ident: b15 article-title: Active learning relevant vector machine for reliability analysis publication-title: Appl. Math. Model. – volume: 220 start-page: 270 year: 2018 end-page: 282 ident: b34 article-title: Modeling minimum miscibility pressure during pure and impure CO2 flooding using hybrid of radial basis function neural network and evolutionary techniques publication-title: Fuel – volume: 265 year: 2020 ident: b26 article-title: Interpolation and stratification of multilayer soil property profile from sparse measurements using machine learning methods publication-title: Eng. Geol. – volume: 205 year: 2019 ident: b43 article-title: Developing window behavior models for residential buildings using XGBoost algorithm publication-title: Energy Build. – volume: 37 start-page: 3447 year: 2019 end-page: 3457 ident: b20 article-title: Reliability analysis of pile foundation using ELM and MARS publication-title: Geotech. Geol. Eng. – volume: 12 start-page: 425 year: 2021 end-page: 439 ident: b32 article-title: Probabilistic outlier detection for sparse multivariate geotechnical site investigation data using Bayesian learning publication-title: Geosci. Front. – volume: 11 start-page: 4036 year: 2011 end-page: 4040 ident: b59 article-title: Utilization relevance vector machine for slope reliability analysis publication-title: Appl. Soft Comput. – volume: 145 start-page: 1 year: 2019 end-page: 12 ident: b78 article-title: Simulation of random fields with trend from sparse measurements without detrending publication-title: J. Eng. Mech. – volume: 80 start-page: 735 year: 2021 end-page: 749 ident: b45 article-title: 3D slope reliability analysis based on the intelligent response surface methodology publication-title: Bull. Eng. Geol. Environ. – volume: 12 start-page: 441 year: 2021 end-page: 452 ident: b29 article-title: Intelligent modelling of clay compressibility using hybrid meta-heuristic and machine learning algorithms publication-title: Geosci. Front. – year: 2021 ident: b84 article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization publication-title: Geosci. Front. – volume: 859 start-page: 315 year: 2014 end-page: 321 ident: b71 article-title: Application of SVM to reliability analysis of foundation excavations system publication-title: Adv. Mater. Res. – volume: 48 start-page: 82 year: 2013 end-page: 95 ident: b39 article-title: Multivariate adaptive regression splines for analysis of geotechnical engineering systems publication-title: Comput. Geotech. – volume: 80 start-page: 2011 year: 2021 end-page: 2024 ident: b5 article-title: Slope reliability evaluation based on multi-objective grey wolf optimization-multi-kernel-based extreme learning machine agent model publication-title: Bull. Eng. Geol. Environ. – volume: 90 start-page: 243 year: 2018 end-page: 252 ident: b75 article-title: Quantifying cost-effectiveness of subsurface strata exploration in excavation projects through geostatistics and spatial tessellation publication-title: Autom. Constr. – volume: 281 year: 2021 ident: b14 article-title: Novel approach to efficient slope reliability analysis in spatially variable soils publication-title: Eng. Geol. – volume: 61 start-page: 22 year: 2016 end-page: 42 ident: b54 article-title: A hybrid approach combining uniform design and support vector machine to probabilistic tunnel stability assessment publication-title: Struct. Saf. – volume: 238 start-page: 15 year: 2018 end-page: 26 ident: b2 article-title: The 2015 Shenzhen catastrophic landslide in a construction waste dump : Reconstitution of dump structure and failure mechanisms via geotechnical investigations publication-title: Eng. Geol. – volume: 12 start-page: 331 year: 2021 end-page: 338 ident: b27 article-title: Advanced prediction of tunnel boring machine performance based on big data publication-title: Geosci. Front. – volume: 122 year: 2020 ident: b61 article-title: Influence of a weak layer on the tunnel face stability - Reliability and sensitivity analysis publication-title: Comput. Geotech. – volume: 200 year: 2020 ident: b53 article-title: Support vector regression based metamodel by sequential adaptive sampling for reliability analysis of structures publication-title: Reliab. Eng. Syst. Saf. – year: 2020 ident: b83 article-title: Reliability-based design of lining structures for underground space against water seepage publication-title: Undergr. Space – volume: 5 start-page: 379 year: 2008 end-page: 386 ident: b1 article-title: Mechanism for the rapid motion of the Qianjiangping landslide during reactivation by the first impoundment of the Three Gorges dam reservoir publication-title: China. Landslides – volume: 15 start-page: 3135 year: 2020 end-page: 3150 ident: b11 article-title: Efficient reliability analysis of earth dam slope stability using extreme gradient boosting method publication-title: Acta Geotech. – volume: 31 year: 2017 ident: b48 article-title: New observations on the application of LS-SVM in slope system reliability analysis publication-title: J. Comput. Civ. Eng. – volume: 16 start-page: 258 year: 2008 end-page: 262 ident: b50 article-title: Reliability analysis of rock mass deformation in tunnel excavation based on genetic algorithm publication-title: J. Eng. Geol. – volume: 55 start-page: 862 year: 2018 end-page: 880 ident: b76 article-title: Direct simulation of random field samples from sparsely measured geotechnical data with consideration of uncertainty in interpretation publication-title: Can. Geotech. J. – volume: 79 start-page: 2763 year: 2020 end-page: 2775 ident: b10 article-title: Probabilistic stability analysis of earth dam slope under transient seepage using multivariate adaptive regression splines publication-title: Bull. Eng. Geol. Environ. – year: 2020 ident: b82 article-title: Probabilistic stability analysis of Bazimen landslide with monitored rainfall data and water level fluctuations in Three Gorges reservoir, China publication-title: Front. Struct. Civ. Eng. – volume: 33 year: 2019 ident: b67 article-title: Intelligent approach based on random forest for safety risk prediction of deep foundation pit in subway stations publication-title: J. Comput. Civ. Eng. – volume: 11 start-page: 1095 year: 2020 end-page: 1106 ident: b69 article-title: State-of-the-art review of soft computing applications in underground excavations publication-title: Geosci. Front. – volume: 7 start-page: 45 year: 2016 end-page: 52 ident: b40 article-title: Multivariate adaptive regression splines and neural network models for prediction of pile drivability publication-title: Geosci. Front. – start-page: 785 year: 2016 end-page: 794 ident: b42 article-title: Xgboost: A scalable tree boosting system publication-title: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining – volume: 12 start-page: 365 year: 2021 end-page: 373 ident: b30 article-title: Estimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learning publication-title: Geosci. Front. – year: 2022 ident: b23 article-title: Efficient time-variant reliability analysis of Bazimen landslide in the Three Gorges Reservoir Area using XGBoost and LightGBM algorithms publication-title: Gondwana Res. – volume: 39 start-page: 39 year: 2015 end-page: 45 ident: b19 article-title: Cumulative PSO-Kriging model for slope reliability analysis publication-title: Probab. Eng. Mech. – volume: 139 start-page: 651 year: 2013 end-page: 655 ident: b46 article-title: Application of the kriging-based response surface method to the system reliability of soil slopes publication-title: J. Geotech. Geoenviron. Eng. – volume: 67 start-page: 85 year: 2017 end-page: 95 ident: b57 article-title: An efficient reliability method combining adaptive support vector machine and Monte Carlo simulation publication-title: Struct. Saf. – volume: 13 start-page: 1358 year: 2021 end-page: 1367 ident: b66 article-title: Deep learning-based evaluation of factor of safety with confidence interval for tunnel deformation in spatially variable soil publication-title: J. Rock Mech. Geotech. Eng. – start-page: 985 year: 2004 end-page: 990 ident: b41 article-title: Extreme learning machine: A new learning scheme of feedforward neural networks publication-title: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541) – volume: 146 year: 2022 ident: b6 article-title: Probabilistic analysis of pile-reinforced slopes in spatially variable soils with rotated anisotropy publication-title: Comput. Geotech. – volume: 147 year: 2021 ident: b13 article-title: Metamodel-based reliability analysis in spatially variable soils using convolutional neural networks publication-title: J. Geotech. Geoenviron. Eng. – volume: 238 start-page: 36 year: 2018 end-page: 51 ident: b81 article-title: Towards a complete understanding of the triggering mechanism of a large reactivated landslide in the Three Gorges reservoir publication-title: Eng. Geol. – volume: 40 start-page: 6105 year: 2016 end-page: 6120 ident: b47 article-title: Slope reliability analysis using surrogate models via new support vector machines with swarm intelligence publication-title: Appl. Math. Model. – volume: 38 start-page: 1235 year: 2020 end-page: 1244 ident: b74 article-title: Bayesian model and parameter calibration for braced excavations in soft clays publication-title: Mar. Georesour. Geotechnol. – volume: 10 start-page: 671 year: 2019 end-page: 682 ident: b8 article-title: Advanced reliability analysis of slopes in spatially variable soils using multivariate adaptive regression splines publication-title: Geosci. Front. – volume: 12 start-page: 375 year: 2021 end-page: 383 ident: b9 article-title: Application of soft computing techniques for shallow foundation reliability in geotechnical engineering publication-title: Geosci. Front. – volume: 3 start-page: 391 year: 2017 ident: 10.1016/j.asoc.2023.110066_b35 article-title: Potential of radial basis function network with particle swarm optimization for prediction of sediment transport at the limit of deposition in a clean pipe publication-title: Sustain. Water Resour. Manag. doi: 10.1007/s40899-017-0104-9 – start-page: 785 year: 2016 ident: 10.1016/j.asoc.2023.110066_b42 article-title: Xgboost: A scalable tree boosting system – volume: 31 year: 2017 ident: 10.1016/j.asoc.2023.110066_b48 article-title: New observations on the application of LS-SVM in slope system reliability analysis publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000620 – volume: 13 start-page: 53 year: 2019 ident: 10.1016/j.asoc.2023.110066_b49 article-title: On the use of Bayesian networks as a meta-modelling approach to analyse uncertainties in slope stability analysis publication-title: Georisk-Assess. Manag. Risk Eng. Syst. Geohazards – volume: 141 year: 2022 ident: 10.1016/j.asoc.2023.110066_b4 article-title: Advances in reliability and risk analyses of slopes in spatially variable soils: A state-of-the-art review publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2021.104498 – volume: 12 start-page: 375 issue: 1 year: 2021 ident: 10.1016/j.asoc.2023.110066_b9 article-title: Application of soft computing techniques for shallow foundation reliability in geotechnical engineering publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.05.003 – volume: 200 year: 2020 ident: 10.1016/j.asoc.2023.110066_b53 article-title: Support vector regression based metamodel by sequential adaptive sampling for reliability analysis of structures publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2020.106948 – volume: 5 start-page: 379 issue: 4 year: 2008 ident: 10.1016/j.asoc.2023.110066_b1 article-title: Mechanism for the rapid motion of the Qianjiangping landslide during reactivation by the first impoundment of the Three Gorges dam reservoir publication-title: China. Landslides doi: 10.1007/s10346-008-0130-7 – volume: 83 start-page: 425 year: 2019 ident: 10.1016/j.asoc.2023.110066_b63 article-title: Mechanical parameter inversion in tunnel engineering using support vector regression optimized by multi-strategy artificial fish swarm algorithm publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2018.09.027 – year: 2022 ident: 10.1016/j.asoc.2023.110066_b25 article-title: Prediction of wall deflection induced by braced excavation in spatially variable soils via convolutional neural network publication-title: Gondwana Res. – volume: 56 start-page: 45 year: 2016 ident: 10.1016/j.asoc.2023.110066_b56 article-title: Reliability analysis of tunnels using a metamodeling technique based on augmented radial basis functions publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2016.02.007 – volume: 15 start-page: 3135 issue: 11 year: 2020 ident: 10.1016/j.asoc.2023.110066_b11 article-title: Efficient reliability analysis of earth dam slope stability using extreme gradient boosting method publication-title: Acta Geotech. doi: 10.1007/s11440-020-00962-4 – volume: 281 issue: 1 year: 2021 ident: 10.1016/j.asoc.2023.110066_b14 article-title: Novel approach to efficient slope reliability analysis in spatially variable soils publication-title: Eng. Geol. – volume: 12 start-page: 331 issue: 1 year: 2021 ident: 10.1016/j.asoc.2023.110066_b27 article-title: Advanced prediction of tunnel boring machine performance based on big data publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.02.011 – volume: 48 start-page: 82 year: 2013 ident: 10.1016/j.asoc.2023.110066_b39 article-title: Multivariate adaptive regression splines for analysis of geotechnical engineering systems publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2012.09.016 – volume: 126 year: 2020 ident: 10.1016/j.asoc.2023.110066_b44 article-title: Machine learning aided stochastic reliability analysis of spatially variable slopes publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2020.103711 – volume: 11 start-page: 4036 issue: 5 year: 2011 ident: 10.1016/j.asoc.2023.110066_b59 article-title: Utilization relevance vector machine for slope reliability analysis publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.03.009 – year: 2022 ident: 10.1016/j.asoc.2023.110066_b33 article-title: Comparison of trend models for geotechnical spatial variability: Sparse Bayesian learning vs. Gaussian process regression publication-title: Gondwana Res. – volume: 10 start-page: 671 issue: 2 year: 2019 ident: 10.1016/j.asoc.2023.110066_b8 article-title: Advanced reliability analysis of slopes in spatially variable soils using multivariate adaptive regression splines publication-title: Geosci. Front. doi: 10.1016/j.gsf.2018.03.013 – volume: 12 start-page: 425 issue: 1 year: 2021 ident: 10.1016/j.asoc.2023.110066_b32 article-title: Probabilistic outlier detection for sparse multivariate geotechnical site investigation data using Bayesian learning publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.03.017 – volume: 41 start-page: 14 year: 2014 ident: 10.1016/j.asoc.2023.110066_b51 article-title: Reliability analysis of tunnel using least square support vector machine publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2013.11.004 – volume: 19 start-page: 1 year: 1991 ident: 10.1016/j.asoc.2023.110066_b38 article-title: Multivariate adaptive regression splines publication-title: Ann. Statist. – volume: 12 start-page: 351 issue: 1 year: 2021 ident: 10.1016/j.asoc.2023.110066_b12 article-title: Landslide identification using machine learning publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.02.012 – volume: 13 start-page: 1358 year: 2021 ident: 10.1016/j.asoc.2023.110066_b66 article-title: Deep learning-based evaluation of factor of safety with confidence interval for tunnel deformation in spatially variable soil publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2021.09.001 – volume: 139 start-page: 651 year: 2013 ident: 10.1016/j.asoc.2023.110066_b46 article-title: Application of the kriging-based response surface method to the system reliability of soil slopes publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0000801 – volume: 36 start-page: 787 year: 2009 ident: 10.1016/j.asoc.2023.110066_b17 article-title: Probabilistic stability analyses of slopes using the ANN-based response surface publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2009.01.003 – year: 2021 ident: 10.1016/j.asoc.2023.110066_b84 article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.03.007 – year: 2020 ident: 10.1016/j.asoc.2023.110066_b82 article-title: Probabilistic stability analysis of Bazimen landslide with monitored rainfall data and water level fluctuations in Three Gorges reservoir, China publication-title: Front. Struct. Civ. Eng. doi: 10.1007/s11709-020-0655-y – volume: 220 start-page: 270 year: 2018 ident: 10.1016/j.asoc.2023.110066_b34 article-title: Modeling minimum miscibility pressure during pure and impure CO2 flooding using hybrid of radial basis function neural network and evolutionary techniques publication-title: Fuel doi: 10.1016/j.fuel.2018.01.101 – volume: 122 year: 2020 ident: 10.1016/j.asoc.2023.110066_b61 article-title: Influence of a weak layer on the tunnel face stability - Reliability and sensitivity analysis publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2020.103507 – volume: 55 start-page: 862 issue: 6 year: 2018 ident: 10.1016/j.asoc.2023.110066_b76 article-title: Direct simulation of random field samples from sparsely measured geotechnical data with consideration of uncertainty in interpretation publication-title: Can. Geotech. J. doi: 10.1139/cgj-2017-0254 – volume: 21 start-page: 457 year: 2020 ident: 10.1016/j.asoc.2023.110066_b37 article-title: Automatic classification of pavement crack using deep convolutional neural network publication-title: Int. J. Pavement Eng. doi: 10.1080/10298436.2018.1485917 – volume: 16 start-page: 258 issue: 2 year: 2008 ident: 10.1016/j.asoc.2023.110066_b50 article-title: Reliability analysis of rock mass deformation in tunnel excavation based on genetic algorithm publication-title: J. Eng. Geol. – volume: 80 start-page: 735 year: 2021 ident: 10.1016/j.asoc.2023.110066_b45 article-title: 3D slope reliability analysis based on the intelligent response surface methodology publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-020-01940-6 – volume: 7 start-page: 1 issue: 4 year: 2021 ident: 10.1016/j.asoc.2023.110066_b64 article-title: Probabilistic analysis of tunnel roof deflection under sequential excavation using ANN-based Monte Carlo simulation and simplified reliability approach publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst. A – volume: 53 start-page: 61 year: 2012 ident: 10.1016/j.asoc.2023.110066_b55 article-title: Comparative study of metamodeling techniques for reliability analysis using evidence theory publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2012.07.007 – volume: 33 start-page: 143 year: 2013 ident: 10.1016/j.asoc.2023.110066_b62 article-title: Back analysis of geomechanical parameters in underground works using an evolution strategy algorithm publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2012.08.011 – volume: 33 start-page: 1477 issue: 8–9 year: 2019 ident: 10.1016/j.asoc.2023.110066_b77 article-title: Direct simulation of two-dimensional isotropic or anisotropic random field from sparse measurement using Bayesian compressive sampling publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-019-01718-7 – volume: 238 start-page: 36 year: 2018 ident: 10.1016/j.asoc.2023.110066_b81 article-title: Towards a complete understanding of the triggering mechanism of a large reactivated landslide in the Three Gorges reservoir publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2018.03.008 – volume: 12 start-page: 415 issue: 1 year: 2021 ident: 10.1016/j.asoc.2023.110066_b21 article-title: Prediction of load–displacement performance of grouted anchors in weathered granites using FastICA-MARS as a novel model publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.05.004 – volume: 139 start-page: 395 issue: 3 year: 2013 ident: 10.1016/j.asoc.2023.110066_b73 article-title: Bayesian updating of soil parameters for braced excavations using field observations publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0000782 – volume: 147 issue: 3 year: 2021 ident: 10.1016/j.asoc.2023.110066_b13 article-title: Metamodel-based reliability analysis in spatially variable soils using convolutional neural networks publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0002486 – volume: 11 start-page: 1095 issue: 4 year: 2020 ident: 10.1016/j.asoc.2023.110066_b69 article-title: State-of-the-art review of soft computing applications in underground excavations publication-title: Geosci. Front. doi: 10.1016/j.gsf.2019.12.003 – volume: 23 start-page: 154 issue: 2–3 year: 2008 ident: 10.1016/j.asoc.2023.110066_b52 article-title: A comparison of approximate response functions in structural reliability analysis publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2007.12.022 – volume: 78 start-page: 15 issue: 15 year: 2019 ident: 10.1016/j.asoc.2023.110066_b68 article-title: Application of optimized grey discrete Verhulst-BP neural network model in settlement prediction of foundation pit publication-title: Environ. Earth Sci. doi: 10.1007/s12665-019-8458-y – year: 2020 ident: 10.1016/j.asoc.2023.110066_b83 article-title: Reliability-based design of lining structures for underground space against water seepage publication-title: Undergr. Space – volume: 61 start-page: 22 year: 2016 ident: 10.1016/j.asoc.2023.110066_b54 article-title: A hybrid approach combining uniform design and support vector machine to probabilistic tunnel stability assessment publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2016.03.001 – year: 2021 ident: 10.1016/j.asoc.2023.110066_b80 article-title: Hybrid machine learning model with random field and limited CPT data to quantify horizontal scale of fluctuation of soil spatial variability publication-title: Acta Geotech. – start-page: 267 year: 1982 ident: 10.1016/j.asoc.2023.110066_b36 – volume: 79 start-page: 12 year: 2019 ident: 10.1016/j.asoc.2023.110066_b58 article-title: Implementation of machine learning techniques into the subset simulation method publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2019.02.002 – volume: 205 year: 2019 ident: 10.1016/j.asoc.2023.110066_b43 article-title: Developing window behavior models for residential buildings using XGBoost algorithm publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.109564 – volume: 12 start-page: 405 issue: 1 year: 2021 ident: 10.1016/j.asoc.2023.110066_b16 article-title: Stochastic seismic slope stability assessment using polynomial chaos expansions combined with relevance vector machine publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.03.016 – volume: 12 start-page: 385 issue: 1 year: 2021 ident: 10.1016/j.asoc.2023.110066_b28 article-title: Modelling of shallow landslides with machine learning algorithms publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.04.014 – volume: 80 start-page: 2011 year: 2021 ident: 10.1016/j.asoc.2023.110066_b5 article-title: Slope reliability evaluation based on multi-objective grey wolf optimization-multi-kernel-based extreme learning machine agent model publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-020-02090-5 – volume: 12 start-page: 441 issue: 1 year: 2021 ident: 10.1016/j.asoc.2023.110066_b29 article-title: Intelligent modelling of clay compressibility using hybrid meta-heuristic and machine learning algorithms publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.02.014 – volume: 52 start-page: 780 year: 2022 ident: 10.1016/j.asoc.2023.110066_b65 article-title: Reliability assessment of tunnels using machine learning algorithms publication-title: Indian Geotech. J. doi: 10.1007/s40098-022-00610-6 – start-page: 2039 year: 2007 ident: 10.1016/j.asoc.2023.110066_b70 article-title: ANN-based reliability analysis for deep excavation – volume: 62 issue: 5 year: 2022 ident: 10.1016/j.asoc.2023.110066_b3 article-title: Geotechnical uncertainty, modeling, and decision making publication-title: Soils Found doi: 10.1016/j.sandf.2022.101189 – year: 2020 ident: 10.1016/j.asoc.2023.110066_b72 article-title: Estimation of failure probability in braced excavation using Bayesian networks with integrated model updating publication-title: Undergr. Space doi: 10.1016/j.undsp.2019.07.001 – volume: 7 start-page: 45 issue: 1 year: 2016 ident: 10.1016/j.asoc.2023.110066_b40 article-title: Multivariate adaptive regression splines and neural network models for prediction of pile drivability publication-title: Geosci. Front. doi: 10.1016/j.gsf.2014.10.003 – volume: 146 issue: 9 year: 2020 ident: 10.1016/j.asoc.2023.110066_b22 article-title: SS-XGBoost: A machine learning framework for predicting newmark sliding displacements of slopes publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0002297 – volume: 37 start-page: 3447 issue: 4 year: 2019 ident: 10.1016/j.asoc.2023.110066_b20 article-title: Reliability analysis of pile foundation using ELM and MARS publication-title: Geotech. Geol. Eng. doi: 10.1007/s10706-018-00777-x – start-page: 985 year: 2004 ident: 10.1016/j.asoc.2023.110066_b41 article-title: Extreme learning machine: A new learning scheme of feedforward neural networks – volume: 1 start-page: 1 year: 2022 ident: 10.1016/j.asoc.2023.110066_b24 article-title: Reliability-based design in spatially variable soils using deep learning: An illustration using shallow foundation publication-title: Georisk – volume: 89 start-page: 381 year: 2021 ident: 10.1016/j.asoc.2023.110066_b15 article-title: Active learning relevant vector machine for reliability analysis publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2020.07.034 – year: 2022 ident: 10.1016/j.asoc.2023.110066_b23 article-title: Efficient time-variant reliability analysis of Bazimen landslide in the Three Gorges Reservoir Area using XGBoost and LightGBM algorithms publication-title: Gondwana Res. – volume: 67 start-page: 85 year: 2017 ident: 10.1016/j.asoc.2023.110066_b57 article-title: An efficient reliability method combining adaptive support vector machine and Monte Carlo simulation publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2017.04.006 – volume: 40 start-page: 6105 year: 2016 ident: 10.1016/j.asoc.2023.110066_b47 article-title: Slope reliability analysis using surrogate models via new support vector machines with swarm intelligence publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2016.01.050 – volume: 86 start-page: 22 year: 2019 ident: 10.1016/j.asoc.2023.110066_b60 article-title: Probability analysis of shallow circular tunnels in homogeneous soil using the surface response methodology optimized by a genetic algorithm publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2019.01.008 – volume: 145 start-page: 1 issue: 2 year: 2019 ident: 10.1016/j.asoc.2023.110066_b78 article-title: Simulation of random fields with trend from sparse measurements without detrending publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0001560 – volume: 146 year: 2022 ident: 10.1016/j.asoc.2023.110066_b6 article-title: Probabilistic analysis of pile-reinforced slopes in spatially variable soils with rotated anisotropy publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2022.104744 – volume: 39 start-page: 39 year: 2015 ident: 10.1016/j.asoc.2023.110066_b19 article-title: Cumulative PSO-Kriging model for slope reliability analysis publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2014.12.001 – volume: 12 start-page: 365 issue: 1 year: 2021 ident: 10.1016/j.asoc.2023.110066_b30 article-title: Estimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learning publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.03.003 – volume: 79 start-page: 2763 issue: 6 year: 2020 ident: 10.1016/j.asoc.2023.110066_b10 article-title: Probabilistic stability analysis of earth dam slope under transient seepage using multivariate adaptive regression splines publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-020-01730-0 – volume: 294 year: 2021 ident: 10.1016/j.asoc.2023.110066_b79 article-title: Novel approach to estimate vertical scale of fluctuation based on CPT data using convolutional neural networks publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2021.106342 – volume: 90 start-page: 243 year: 2018 ident: 10.1016/j.asoc.2023.110066_b75 article-title: Quantifying cost-effectiveness of subsurface strata exploration in excavation projects through geostatistics and spatial tessellation publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.02.032 – volume: 859 start-page: 315 year: 2014 ident: 10.1016/j.asoc.2023.110066_b71 article-title: Application of SVM to reliability analysis of foundation excavations system publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.859.315 – volume: 38 start-page: 1235 issue: 10 year: 2020 ident: 10.1016/j.asoc.2023.110066_b74 article-title: Bayesian model and parameter calibration for braced excavations in soft clays publication-title: Mar. Georesour. Geotechnol. doi: 10.1080/1064119X.2019.1673855 – volume: 238 start-page: 15 year: 2018 ident: 10.1016/j.asoc.2023.110066_b2 article-title: The 2015 Shenzhen catastrophic landslide in a construction waste dump : Reconstitution of dump structure and failure mechanisms via geotechnical investigations publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2018.02.019 – volume: 265 year: 2020 ident: 10.1016/j.asoc.2023.110066_b26 article-title: Interpolation and stratification of multilayer soil property profile from sparse measurements using machine learning methods publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2019.105430 – volume: 54 start-page: 5633 issue: 8 year: 2021 ident: 10.1016/j.asoc.2023.110066_b31 article-title: Application of deep learning algorithms in geotechnical engineering: A short critical review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-09967-1 – volume: 65 start-page: 707 issue: 1 year: 2013 ident: 10.1016/j.asoc.2023.110066_b18 article-title: Slope reliability analysis by updated support vector machine and Monte Carlo simulation publication-title: Nat. Hazards doi: 10.1007/s11069-012-0396-x – volume: 33 issue: 1 year: 2019 ident: 10.1016/j.asoc.2023.110066_b67 article-title: Intelligent approach based on random forest for safety risk prediction of deep foundation pit in subway stations publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000796 – volume: 17 start-page: 1147 issue: 4 year: 2022 ident: 10.1016/j.asoc.2023.110066_b7 article-title: A maximum entropy method using fractional moments and deep learning for geotechnical reliability analysis publication-title: Acta Geotech. doi: 10.1007/s11440-021-01326-2 |
SSID | ssj0016928 |
Score | 2.6246784 |
SecondaryResourceType | review_article |
Snippet | Geotechnical reliability analysis provides a novel way to rationally take the underlying geotechnical uncertainties into account and evaluate the stability of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110066 |
SubjectTerms | Geotechnical engineering Machine learning Reliability analysis Uncertainty |
Title | Comprehensive review of machine learning in geotechnical reliability analysis: Algorithms, applications and further challenges |
URI | https://dx.doi.org/10.1016/j.asoc.2023.110066 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbsIwELUQvfTSveqKfOitDSR4SdIbQkV0Q1VbJG4R3iAVmwIceuHba8cOolLFoaco1liKZuyZsfL8HgA3Ae4rHvrKI7o58LCgxIswiTxfIUJlFAuZqyi8dmi7i596pFcCzeIujIFVutxvc3qerd1IzXmzNkvT2oc-eUQ4xrp-m0KGDScoxqFZ5dXVGuYR0DjXVzXGnrF2F2csxquvPVA1AuIGDe_nTIl_FKeNgtM6AHuuU4QN-zGHoCQnR2C_UGGAblMeg5UZyuTQItGhvYsCpwqOc5ykhE4YYgDTCRzIqWVt1aHRpqPU0nR_w74jJ7mHjdFgmqWL4Xh-Bzd_b2sTAdUyMx0j5IUGy_wEdFsPn82251QVPK49tfAoUlxiX9Z1OFio6hFRTCeZQCiE4iCKBNHnVhYiLpUKmC8orzMmYqUbg0gqytApKE-mE3kGoIgJUn3u41AQzImIEdKpk8YMK0pkWD8HQeHOhDvKcaN8MUoKbNlXYkKQmBAkNgTn4HY9Z2YJN7ZakyJKya9lk-iKsGXexT_nXYJd82ZBaFegvMiW8lp3JQtWyZddBew0mu8vb-b5-Nzu_ACxz-Tt |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOMClPKtSSvEBThA2iR9JKvWACmh5XgCJW7p-LamWXbS7qOLCn-IPMo4dBBLigMTVGUfOzGRmLH-eD2AjYR2rsthGHIuDiGnBo5zxPIot5cLkhTY1i8LpmWhfsqMrfjUBj81dGAerDLHfx_Q6WoeRVtBm67aqWue488hZwTB_u0TGWEBWHpv7_7hvG_0-3EMjb6bpwf7Fn3YUqAUiheLjSFCrDItNimuSmU1zbiX-aYm2lBZJnmuOmzeZUWWsTWSshUql1IXF7JgbKyTF907CNMNw4WgTdh6ecSWJKGpCV7e6yC0v3NTxoLIOqnzHMZY7-H1ct2Z8Ixu-yHAH8_AllKZk13_9AkyY_iLMNbQPJESBJXhwQ0Nz7aHvxF9-IQNLbmpgpiGBiaJLqj7pmoFvE4u-gKK9yvcFvyed0A3lF9ntdQfDanx9M9omL8_TUUQTezd0JSpRDenLaBkuP0XXX2GqP-ibb0B0wantqJhlmjPFdUEpxmpRSGYFN1m6AkmjzlKFHueOaqNXNmC2f6UzQelMUHoTrMDW85xb3-HjXWneWKl85aclpqB35n3_4Lx1mGlfnJ6UJ4dnx6sw6554BNwPmBoP78walkRj-bN2QQJ_P9vnnwCN6R_1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+review+of+machine+learning+in+geotechnical+reliability+analysis%3A+Algorithms%2C+applications+and+further+challenges&rft.jtitle=Applied+soft+computing&rft.au=Zhang%2C+Wengang&rft.au=Gu%2C+Xin&rft.au=Hong%2C+Li&rft.au=Han%2C+Liang&rft.date=2023-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=136&rft_id=info:doi/10.1016%2Fj.asoc.2023.110066&rft.externalDocID=S1568494623000844 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |