Analysis of electroosmotic flow of silver-water nanofluid regulated by peristalsis using two different approaches for nanofluid
This article deals with mathematical modeling of the electroosmotically boosted peristaltic propulsion of water-based silver nanofluid through an asymmetric channel. The inherent Joule heating phenomenon is also included in the mathematical modeling of the flow problem. The no-slip boundary conditio...
Saved in:
Published in | Journal of computational science Vol. 62; p. 101696 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article deals with mathematical modeling of the electroosmotically boosted peristaltic propulsion of water-based silver nanofluid through an asymmetric channel. The inherent Joule heating phenomenon is also included in the mathematical modeling of the flow problem. The no-slip boundary conditions are utilized for velocity and temperature of the fluid and conditions of zero mass flux are considered for nanoparticle volume fraction. The electric potential generated by electroosmosis is formulated by Poisson-Boltzmann ionic distribution. The aim here is to compare the properties of nanofluid flow as predicted by the modified Buongiorno model in combination with the Corcione model for thermal conductivity and that estimated by a combination of the traditional Tiwari-Das model and the Corcione model under the same physical conditions. The numerical solution is computed for the emerging set of nonlinear coupled equations through the built-in command in Maple 17 which uses the finite difference technique in combination with Richardson extrapolation to solve a boundary value problem. Important attributes of electroosmotically controlled peristaltic fluid flow are illustrated subject to variation in different physical parameters. The analysis exhibits that under the same physical conditions, the modified Buongiorno model predicts the nanofluid properties more efficiently than the Tiwari-Das model. It is found that for larger temperature differences within a fluid medium, the Nusselt number declines in the case where the modified Buongiorno model is utilized whereas the Tiwari-Das model does not include the effect of temperature difference. Moreover, peristaltic pumping is boosted by forwarding electric field and opposed by backward electroosmosis, and the magnitude of the Nusselt number tends to raise for larger Joule heating parameter.
•Electroosmotically boosted peristaltic pumping of silver-water nanofluid is modeled mathematically.•Linearized Poisson-Boltzmann equation is utilized for electric potential distribution.•Two different approaches are used for characterizing the nanofluid properties.•A comparison between the two approaches is presented.•The mathematical model is treated numerically with Maple 17. |
---|---|
AbstractList | This article deals with mathematical modeling of the electroosmotically boosted peristaltic propulsion of water-based silver nanofluid through an asymmetric channel. The inherent Joule heating phenomenon is also included in the mathematical modeling of the flow problem. The no-slip boundary conditions are utilized for velocity and temperature of the fluid and conditions of zero mass flux are considered for nanoparticle volume fraction. The electric potential generated by electroosmosis is formulated by Poisson-Boltzmann ionic distribution. The aim here is to compare the properties of nanofluid flow as predicted by the modified Buongiorno model in combination with the Corcione model for thermal conductivity and that estimated by a combination of the traditional Tiwari-Das model and the Corcione model under the same physical conditions. The numerical solution is computed for the emerging set of nonlinear coupled equations through the built-in command in Maple 17 which uses the finite difference technique in combination with Richardson extrapolation to solve a boundary value problem. Important attributes of electroosmotically controlled peristaltic fluid flow are illustrated subject to variation in different physical parameters. The analysis exhibits that under the same physical conditions, the modified Buongiorno model predicts the nanofluid properties more efficiently than the Tiwari-Das model. It is found that for larger temperature differences within a fluid medium, the Nusselt number declines in the case where the modified Buongiorno model is utilized whereas the Tiwari-Das model does not include the effect of temperature difference. Moreover, peristaltic pumping is boosted by forwarding electric field and opposed by backward electroosmosis, and the magnitude of the Nusselt number tends to raise for larger Joule heating parameter.
•Electroosmotically boosted peristaltic pumping of silver-water nanofluid is modeled mathematically.•Linearized Poisson-Boltzmann equation is utilized for electric potential distribution.•Two different approaches are used for characterizing the nanofluid properties.•A comparison between the two approaches is presented.•The mathematical model is treated numerically with Maple 17. |
ArticleNumber | 101696 |
Author | Akram, Javaria Akbar, Noreen Sher Tripathi, Dharmendra |
Author_xml | – sequence: 1 givenname: Javaria surname: Akram fullname: Akram, Javaria email: jakram.phdmath18sns@student.nust.edu.pk, javaria.akram20@gmail.com organization: School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan – sequence: 2 givenname: Noreen Sher surname: Akbar fullname: Akbar, Noreen Sher organization: DBS&H, CEME, National University of Sciences and Technology, Islamabad, Pakistan – sequence: 3 givenname: Dharmendra surname: Tripathi fullname: Tripathi, Dharmendra organization: Department of Mathematics, National Institute of Technology, Uttarakhand 246174, India |
BookMark | eNp9kMtKAzEUhoNUsNa-gKu8wNQkM50LuCnFGxTc6DpkkpOaIU1KkrZ05as7Y0XERc_mHH74fjjfNRo57wChW0pmlNDyrpt1XsYZI4x9B015gca0rqqsmlM6-r1JfoWmMXakn7yuG5qP0efCCXuMJmKvMViQKXgfNz4ZibX1hyGOxu4hZAeRIGAnnNd2ZxQOsN7ZPlO4PeItBBOTsEPTLhq3xungsTJaQwCXsNhugxfyAyLW_k_LDbrUPQXTnz1B748Pb8vnbPX69LJcrDLJcpKyktKSClq0RcFyRZq2YdCyVimomGjmpWhqwaDKiwKq_rN5rbVsai2IbhvQTOQTVJ96ZfAxBtBcmiSS8S4FYSynhA_qeMcHl3xwyU8ue5T9Q7fBbEQ4nofuTxD0T-0NBB6lASdBmdBL5sqbc_gXbn6ToA |
CitedBy_id | crossref_primary_10_1016_j_csite_2024_104234 crossref_primary_10_3389_fmats_2023_1107661 crossref_primary_10_1016_j_jmmm_2023_170447 crossref_primary_10_1016_j_molliq_2023_123034 crossref_primary_10_1016_j_jmmm_2023_170408 crossref_primary_10_1016_j_aej_2023_09_027 crossref_primary_10_1108_HFF_04_2023_0163 crossref_primary_10_1002_zamm_202300269 crossref_primary_10_1080_10407782_2023_2238887 crossref_primary_10_3389_fenrg_2022_996556 crossref_primary_10_3389_fchem_2022_960349 crossref_primary_10_3389_fphy_2022_1065982 crossref_primary_10_1016_j_mtcomm_2022_104532 crossref_primary_10_3389_fphy_2022_984277 crossref_primary_10_1177_16878132251327070 crossref_primary_10_1080_17455030_2023_2226761 crossref_primary_10_1080_10407782_2024_2377698 crossref_primary_10_1038_s41598_023_42540_0 crossref_primary_10_1007_s10973_024_13710_7 crossref_primary_10_1002_zamm_202300694 crossref_primary_10_1016_j_ijft_2023_100499 crossref_primary_10_1007_s12648_023_02636_9 crossref_primary_10_1002_zamm_202300260 crossref_primary_10_1142_S0217979225500195 crossref_primary_10_1016_j_aej_2024_05_062 crossref_primary_10_1016_j_csite_2023_102828 crossref_primary_10_3389_fphy_2023_1121849 crossref_primary_10_1142_S0217979225500559 crossref_primary_10_1016_j_jmmm_2023_170585 crossref_primary_10_1002_zamm_202300366 crossref_primary_10_1038_s41598_024_51848_4 crossref_primary_10_1016_j_jmmm_2023_170588 crossref_primary_10_31083_j_fbl2903110 crossref_primary_10_1016_j_aej_2025_01_056 crossref_primary_10_1080_02286203_2022_2122928 crossref_primary_10_1002_zamm_202400727 crossref_primary_10_1007_s12648_023_02720_0 crossref_primary_10_1007_s12043_024_02814_2 crossref_primary_10_1016_j_cjph_2024_01_009 crossref_primary_10_1063_5_0141498 crossref_primary_10_1016_j_rinp_2023_106898 crossref_primary_10_3389_fphy_2023_1133550 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124545 crossref_primary_10_1177_16878132241252328 crossref_primary_10_1007_s10973_023_12538_x crossref_primary_10_1016_j_aej_2023_05_054 crossref_primary_10_1016_j_heliyon_2024_e26628 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123671 crossref_primary_10_1002_zamm_202300838 crossref_primary_10_3389_fmats_2022_1054138 crossref_primary_10_1142_S0217984925500137 crossref_primary_10_3390_math11061474 crossref_primary_10_1016_j_heliyon_2023_e15916 crossref_primary_10_1088_1361_6528_acf2a1 crossref_primary_10_1016_j_applthermaleng_2023_121870 crossref_primary_10_3389_fphy_2022_961201 crossref_primary_10_1016_j_cjph_2023_10_034 crossref_primary_10_1016_j_icheatmasstransfer_2022_106376 crossref_primary_10_1080_10407782_2023_2240507 |
Cites_doi | 10.1021/j100787a019 10.1016/j.icheatmasstransfer.2020.104832 10.1016/j.ijheatmasstransfer.2006.09.034 10.1007/s40819-018-0513-y 10.1006/jcis.1997.5091 10.1088/1402-4896/ab74d7 10.1016/j.aej.2020.03.017 10.1063/5.0033088 10.1007/s13369-020-05265-0 10.1016/j.watres.2010.01.033 10.1016/j.enconman.2010.06.072 10.1016/j.icheatmasstransfer.2021.105530 10.1007/978-981-16-1256-5_14 10.1038/s41598-019-51464-7 10.1177/00368504211023683 10.1007/s12043-019-1873-5 10.1088/0960-1317/21/8/085019 10.1007/s12591-019-00456-0 10.1115/1.2150834 10.1007/s12648-020-01906-0 10.3390/nano12071049 10.1002/elps.201900465 10.1016/j.icheatmasstransfer.2021.105183 10.1002/elps.201700090 10.1080/17455030.2021.1998728 10.1021/acs.langmuir.7b02895 10.1139/cjp-2019-0380 10.1016/j.mvr.2020.104062 10.1088/1402-4896/abbd6b 10.1016/j.rinp.2020.103576 10.1007/s10665-019-09988-4 10.1002/elps.200700658 10.1088/0253-6102/69/6/655 10.1016/j.cjph.2021.02.015 10.4028/www.scientific.net/DDF.387.385 10.1115/ICNMM2017-5536 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jocs.2022.101696 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Business |
EISSN | 1877-7511 |
ExternalDocumentID | 10_1016_j_jocs_2022_101696 S1877750322001004 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 P2P PC. Q38 RIG ROL SDF SES SPC SPCBC SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c230t-61161a14b4423d09b92eb2bdde72a956a98a2e7344e788958ffc98fa0fb9ef2a3 |
IEDL.DBID | .~1 |
ISSN | 1877-7503 |
IngestDate | Thu Apr 24 23:07:19 EDT 2025 Tue Jul 01 03:46:11 EDT 2025 Fri Feb 23 02:40:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Combined electroosmosis and peristaltic flow Modified Buongiorno Model Poisson-Boltzmann ionic distribution Tiwari-Das model Silver-water nanofluid |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c230t-61161a14b4423d09b92eb2bdde72a956a98a2e7344e788958ffc98fa0fb9ef2a3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jocs_2022_101696 crossref_primary_10_1016_j_jocs_2022_101696 elsevier_sciencedirect_doi_10_1016_j_jocs_2022_101696 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of computational science |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | García-Sánchez, Ramos, Electroosmosis (bib2) 2016 Akram, Akbar, Tripathi (bib17) 2021 Azam, Xu, Khan (bib25) 2020; 118 Tiwari, Das (bib21) 2007; 50 Jiang, Weng, Chon, Wu, Li (bib4) 2011; 21 Burgreen, Nakache (bib7) 1964; 68 Zeeshan, Riaz, Alzahrani, Moqeet (bib32) 2022 Shehzad, Zeeshan, Ellahi (bib11) 2018; 69 Buongiorno (bib24) 2006; 128 Azam, Xu, Mabood, Khan (bib37) 2021; 127 Saleem, Akhtar, Nadeem, Saleem, Ghalambaz, Issakhov (bib19) 2021; 71 Nadeem, Kiani, Saleem, Issakhov (bib16) 2020; 41 Huda, Akbar, Beg, Khan (bib41) 2017; 7 Narla, Tripathi, Sekhar (bib15) 2019; 114 Yen, Lin, Huang, Huang, Tung, LuS, Lin (bib12) 2019; 9 Bhatti, Bég, Abdelsalam (bib38) 2022; 12 Mukherjee, Das, Dhar, Chakraborty, DasGupta (bib5) 2017; 33 Khan, Nadeem (bib9) 2020; 98 Sridhar, Ramesh (bib33) 2021 Wakif, Boulahia, Ali, Eid, Sehaqui (bib34) 2018; 4 Mahmoud, Olivier, Vaxelaire, Hoadley (bib1) 2010; 44 Yang, Li (bib8) 1997; 194 Akram, Akbar, Maraj (bib13) 2020; 59 Akram, Akbar, Tripathi (bib40) 2020; 95 Akram, Akbar, Tripathi (bib28) 2021; 46 Abbasi, Mabood, Farooq, Khan (bib30) 2021; 123 Uslu H.D., Canpolat C., Cetin B. Modeling of an ac-electro-osmosis based microfluidic mixer. In ASME 2017, ICNMM2017–5536, V001T13A001, 15th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2017 (pp. 1–6). Tripathi, Prakash, Reddy, Kumar (bib29) 2020; 95 Akram, Akbar (bib36) 2020; 95 Bhatti, Abdelsalam (bib22) 2021 Latha, Kumar, Makinde (bib35) 2018; 387 Rana, Shukla, Bég, Bhardwaj (bib27) 2021; 29 . Akram, Akbar, Tripathi (bib31) 2020; 132 Zhang, Bhatti, Michaelides, Ellahi (bib23) 2021 Corcione (bib39) 2011; 52 Kaushik P., Mandal S., Chakraborty S. Transient electroosmosis of a Maxwell fluid in a rotating microchannel Electrophoresis, 38(21)(2017), pp. 2741–2748 Kawamata, Yamada, Yasuda, Seki (bib6) 2008; 29 Akhtar, McCash, Nadeem, Saleem, Issakhov (bib14) 2021; 104 Mahapatra, Bandopadhy (bib18) 2021; 33 Azam, Mabood, Xu, Waly, Tlili (bib26) 2020; 19 Prakash, Sharma, Tripathi (bib20) 2020; 94 Abbasi (10.1016/j.jocs.2022.101696_bib30) 2021; 123 Akram (10.1016/j.jocs.2022.101696_bib31) 2020; 132 Mahmoud (10.1016/j.jocs.2022.101696_bib1) 2010; 44 Mahapatra (10.1016/j.jocs.2022.101696_bib18) 2021; 33 Zhang (10.1016/j.jocs.2022.101696_bib23) 2021 Azam (10.1016/j.jocs.2022.101696_bib25) 2020; 118 Akram (10.1016/j.jocs.2022.101696_bib13) 2020; 59 Rana (10.1016/j.jocs.2022.101696_bib27) 2021; 29 Wakif (10.1016/j.jocs.2022.101696_bib34) 2018; 4 Bhatti (10.1016/j.jocs.2022.101696_bib22) 2021 Akram (10.1016/j.jocs.2022.101696_bib40) 2020; 95 Tiwari (10.1016/j.jocs.2022.101696_bib21) 2007; 50 Corcione (10.1016/j.jocs.2022.101696_bib39) 2011; 52 Akram (10.1016/j.jocs.2022.101696_bib36) 2020; 95 Akram (10.1016/j.jocs.2022.101696_bib17) 2021 Akhtar (10.1016/j.jocs.2022.101696_bib14) 2021; 104 Jiang (10.1016/j.jocs.2022.101696_bib4) 2011; 21 Burgreen (10.1016/j.jocs.2022.101696_bib7) 1964; 68 Prakash (10.1016/j.jocs.2022.101696_bib20) 2020; 94 Bhatti (10.1016/j.jocs.2022.101696_bib38) 2022; 12 Yen (10.1016/j.jocs.2022.101696_bib12) 2019; 9 Narla (10.1016/j.jocs.2022.101696_bib15) 2019; 114 Saleem (10.1016/j.jocs.2022.101696_bib19) 2021; 71 Huda (10.1016/j.jocs.2022.101696_bib41) 2017; 7 Buongiorno (10.1016/j.jocs.2022.101696_bib24) 2006; 128 Zeeshan (10.1016/j.jocs.2022.101696_bib32) 2022 Shehzad (10.1016/j.jocs.2022.101696_bib11) 2018; 69 10.1016/j.jocs.2022.101696_bib10 Nadeem (10.1016/j.jocs.2022.101696_bib16) 2020; 41 Akram (10.1016/j.jocs.2022.101696_bib28) 2021; 46 García-Sánchez (10.1016/j.jocs.2022.101696_bib2) 2016 Yang (10.1016/j.jocs.2022.101696_bib8) 1997; 194 Azam (10.1016/j.jocs.2022.101696_bib26) 2020; 19 Tripathi (10.1016/j.jocs.2022.101696_bib29) 2020; 95 Azam (10.1016/j.jocs.2022.101696_bib37) 2021; 127 Mukherjee (10.1016/j.jocs.2022.101696_bib5) 2017; 33 Khan (10.1016/j.jocs.2022.101696_bib9) 2020; 98 Latha (10.1016/j.jocs.2022.101696_bib35) 2018; 387 Sridhar (10.1016/j.jocs.2022.101696_bib33) 2021 10.1016/j.jocs.2022.101696_bib3 Kawamata (10.1016/j.jocs.2022.101696_bib6) 2008; 29 |
References_xml | – volume: 118 year: 2020 ident: bib25 article-title: Numerical simulation for variable thermal properties and heat source/sink in flow of Cross nanofluid over a moving cylinder publication-title: Int. Commun. Heat Mass Transf. – volume: 69 start-page: 655 year: 2018 end-page: 666 ident: bib11 article-title: Electroosmotic flow of MHD power law Al2O3-PVC nanouid in a horizontal channel: Couette-Poiseuille flow model publication-title: Commun. Theor. Phys. – volume: 12 start-page: 1049 year: 2022 ident: bib38 article-title: Computational framework of magnetized MgO–Ni/water-based stagnation nanoflow past an elastic stretching surface: application in solar energy coatings publication-title: Nanomaterials – volume: 95 year: 2020 ident: bib36 article-title: Biological analysis of Carreau nanofluid in an endoscope with variable viscosity publication-title: Phys. Scr. – start-page: 1 year: 2021 end-page: 26 ident: bib22 article-title: Bio-inspired peristaltic propulsion of hybrid nanofluid flow with Tantalum (Ta) and Gold (Au) nanoparticles under magnetic effects publication-title: Waves Random Complex Media – volume: 33 year: 2021 ident: bib18 article-title: Numerical analysis of combined electroosmotic-pressure driven flow of a viscoelastic fluid over high zeta potential modulated surfaces publication-title: Phys. Fluids – volume: 98 year: 2020 ident: bib9 article-title: Theoretical treatment of bio-convective Maxwell nanofluid over an exponentially stretching sheet publication-title: Can. J. Phys. – volume: 41 start-page: 1198 year: 2020 end-page: 1205 ident: bib16 article-title: Microvascular blood flow with heat transfer in a wavy channel having electroosmotic effect publication-title: Electrophoresis – volume: 52 start-page: 789 year: 2011 end-page: 793 ident: bib39 article-title: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids publication-title: Energy Convers. Manag. – volume: 33 start-page: 12046 year: 2017 end-page: 12055 ident: bib5 article-title: Electroosmosis of viscoelastic fluids: role of wall depletion layer publication-title: Langmuir – volume: 4 start-page: 81 year: 2018 ident: bib34 article-title: Numerical analysis of the unsteady natural convection MHD couette nanofluid flow in the presence of thermal radiation using single and two-phase nanofluid models for Cu–water nanofluids publication-title: Int. J. Appl. Comput. Math. – reference: Uslu H.D., Canpolat C., Cetin B. Modeling of an ac-electro-osmosis based microfluidic mixer. In ASME 2017, ICNMM2017–5536, V001T13A001, 15th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2017 (pp. 1–6). – volume: 59 start-page: 943 year: 2020 end-page: 956 ident: bib13 article-title: A comparative study on the role of nanoparticle dispersion in electroosmosis regulated peristaltic flow of water publication-title: Alex. Eng. J. – volume: 7 start-page: 413 year: 2017 end-page: 425 ident: bib41 article-title: Dynamics of variable-viscosity nanofluid flow with heat transfer in a flexible vertical tube under propagating waves publication-title: Res. Phys. – start-page: 33 year: 2016 end-page: 39 ident: bib2 article-title: Basics and lab-on-a-chip applications publication-title: Encycl. Nanotechnol. – volume: 132 year: 2020 ident: bib31 article-title: Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: a sutterby fluid model publication-title: Microvasc. Res. – volume: 127 year: 2021 ident: bib37 article-title: Non-linear radiative bioconvection flow of cross nano-material with gyrostatic microorganisms and activation energy publication-title: Int. Commun. Heat Mass Transf. – volume: 387 start-page: 385 year: 2018 end-page: 402 ident: bib35 article-title: Peristaltic flow of couple stress fluid in an asymmetric channel with partial slip publication-title: Defect Diffus. Forum – start-page: 261 year: 2021 end-page: 278 ident: bib33 article-title: Thermal transport of MHD electroosmotic couple stress nanofluid flow in microchannels in the presence of various zeta potentials publication-title: Energy Syst. Nanotechnol. – year: 2022 ident: bib32 article-title: Flow analysis of two-layer nano/johnson–segalman fluid in a blood vessel-like tube with complex peristaltic wave publication-title: Math. Probl. Eng. – volume: 68 start-page: 1084 year: 1964 ident: bib7 article-title: Electrokinetic flow in ultrafine capillary slits publication-title: J. Phys. Chem. – volume: 29 start-page: 193 year: 2021 end-page: 210 ident: bib27 article-title: Lie group analysis of nanofluid slip flow with stefan blowing effect via modified buongiorno’s model: entropy generation analysis publication-title: Differ. Equ. Dyn. Syst. – year: 2021 ident: bib17 article-title: Thermal analysis on MHD flow of ethylene glycol-based BNNTs nanofluids via peristaltically induced electroosmotic pumping in a curved microchannel publication-title: Arab. J. Sci. Eng. – year: 2021 ident: bib23 article-title: Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field publication-title: Eur. Phys. J. Spec. Top. – volume: 44 start-page: 2381 year: 2010 end-page: 2407 ident: bib1 article-title: Electrical field: a historical review of its application and contributions in wastewater sludge dewatering publication-title: Water Res. – volume: 9 start-page: 14794 year: 2019 ident: bib12 article-title: A low-power CMOS microfluidic pump based on travelling-wave electroosmosis for diluted serum pumping publication-title: Sci. Rep. – volume: 71 start-page: 300 year: 2021 end-page: 311 ident: bib19 article-title: Mathematical study of Electroosmotically driven peristaltic flow of Casson fluid inside a tube having systematically contracting and relaxing sinusoidal heated walls publication-title: Chin. J. Phys. – volume: 50 start-page: 2002 year: 2007 end-page: 2018.s ident: bib21 article-title: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids publication-title: Int. J. Heat Mass Transf. – volume: 95 start-page: 2411 year: 2020 end-page: 2421 ident: bib29 article-title: Numerical study of electroosmosis-induced alterations in peristaltic pumping of couple stress hybrid nanofluids through microchannel publication-title: Indian J. Phys. – reference: . – volume: 114 start-page: 177 year: 2019 end-page: 196 ident: bib15 article-title: Time-dependent analysis of electroosmotic fluid flow in a microchannel publication-title: J. Eng. Math. – volume: 123 year: 2021 ident: bib30 article-title: Radiation and joule heating effects on electroosmosis-modulated peristaltic flow of Prandtl nanofluid via tapered channel publication-title: Int. Commun. Heat Mass Transf. – volume: 29 start-page: 1423 year: 2008 end-page: 1430 ident: bib6 article-title: Continuous and precise particle separation by electroosmotic flow control in microfluidic devices publication-title: Electrophoresis – volume: 104 start-page: 1 year: 2021 end-page: 17 ident: bib14 article-title: Convective heat transfer for Peristaltic flow of SWCNT inside a sinusoidal elliptic duct publication-title: Sci. Prog. – volume: 95 year: 2020 ident: bib40 article-title: Comparative study on ethylene glycol-based Ag-Al publication-title: Phys. Scr. – volume: 194 start-page: 95 year: 1997 end-page: 107 ident: bib8 article-title: Electrokinetic effects on pressure-driven liquid flows in rectangular microchannels publication-title: J. Colloid Interface Sci. – volume: 128 start-page: 240 year: 2006 end-page: 250 ident: bib24 article-title: Convective transport in nanofluids publication-title: J. Heat Transf. – volume: 94 start-page: 4 year: 2020 ident: bib20 article-title: Convective heat transfer and double diffusive convection in ionic nanofluids flow driven by peristalsis and electromagnetohydrodynamics publication-title: Pramana - J. Phys. – volume: 46 start-page: 2911 year: 2021 end-page: 2927 ident: bib28 article-title: A theoretical investigation on the heat transfer ability of water-based hybrid (Ag–Au) nanofluids and Ag nanofluids flow driven by electroosmotic pumping through a microchannel publication-title: Arab. J. Sci. Eng. – volume: 21 year: 2011 ident: bib4 article-title: A microfluidic chip for blood plasma separation using electro-osmotic flow control publication-title: J. Micromech. Microeng. – volume: 19 year: 2020 ident: bib26 article-title: Entropy optimized radiative heat transportation in axisymmetric flow of Williamson nanofluid with activation energy publication-title: Results Phys. – reference: Kaushik P., Mandal S., Chakraborty S. Transient electroosmosis of a Maxwell fluid in a rotating microchannel Electrophoresis, 38(21)(2017), pp. 2741–2748, – volume: 68 start-page: 1084 year: 1964 ident: 10.1016/j.jocs.2022.101696_bib7 article-title: Electrokinetic flow in ultrafine capillary slits publication-title: J. Phys. Chem. doi: 10.1021/j100787a019 – volume: 118 year: 2020 ident: 10.1016/j.jocs.2022.101696_bib25 article-title: Numerical simulation for variable thermal properties and heat source/sink in flow of Cross nanofluid over a moving cylinder publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2020.104832 – volume: 50 start-page: 2002 issue: 9–10 year: 2007 ident: 10.1016/j.jocs.2022.101696_bib21 article-title: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2006.09.034 – year: 2021 ident: 10.1016/j.jocs.2022.101696_bib17 article-title: Thermal analysis on MHD flow of ethylene glycol-based BNNTs nanofluids via peristaltically induced electroosmotic pumping in a curved microchannel publication-title: Arab. J. Sci. Eng. – volume: 4 start-page: 81 year: 2018 ident: 10.1016/j.jocs.2022.101696_bib34 article-title: Numerical analysis of the unsteady natural convection MHD couette nanofluid flow in the presence of thermal radiation using single and two-phase nanofluid models for Cu–water nanofluids publication-title: Int. J. Appl. Comput. Math. doi: 10.1007/s40819-018-0513-y – volume: 194 start-page: 95 issue: 1 year: 1997 ident: 10.1016/j.jocs.2022.101696_bib8 article-title: Electrokinetic effects on pressure-driven liquid flows in rectangular microchannels publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1997.5091 – volume: 95 year: 2020 ident: 10.1016/j.jocs.2022.101696_bib36 article-title: Biological analysis of Carreau nanofluid in an endoscope with variable viscosity publication-title: Phys. Scr. doi: 10.1088/1402-4896/ab74d7 – volume: 59 start-page: 943 issue: 2 year: 2020 ident: 10.1016/j.jocs.2022.101696_bib13 article-title: A comparative study on the role of nanoparticle dispersion in electroosmosis regulated peristaltic flow of water publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.03.017 – issue: 2022 year: 2022 ident: 10.1016/j.jocs.2022.101696_bib32 article-title: Flow analysis of two-layer nano/johnson–segalman fluid in a blood vessel-like tube with complex peristaltic wave publication-title: Math. Probl. Eng. – volume: 7 start-page: 413 year: 2017 ident: 10.1016/j.jocs.2022.101696_bib41 article-title: Dynamics of variable-viscosity nanofluid flow with heat transfer in a flexible vertical tube under propagating waves publication-title: Res. Phys. – volume: 33 year: 2021 ident: 10.1016/j.jocs.2022.101696_bib18 article-title: Numerical analysis of combined electroosmotic-pressure driven flow of a viscoelastic fluid over high zeta potential modulated surfaces publication-title: Phys. Fluids doi: 10.1063/5.0033088 – year: 2021 ident: 10.1016/j.jocs.2022.101696_bib23 article-title: Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field publication-title: Eur. Phys. J. Spec. Top. – volume: 46 start-page: 2911 year: 2021 ident: 10.1016/j.jocs.2022.101696_bib28 article-title: A theoretical investigation on the heat transfer ability of water-based hybrid (Ag–Au) nanofluids and Ag nanofluids flow driven by electroosmotic pumping through a microchannel publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-020-05265-0 – volume: 44 start-page: 2381 year: 2010 ident: 10.1016/j.jocs.2022.101696_bib1 article-title: Electrical field: a historical review of its application and contributions in wastewater sludge dewatering publication-title: Water Res. doi: 10.1016/j.watres.2010.01.033 – volume: 52 start-page: 789 year: 2011 ident: 10.1016/j.jocs.2022.101696_bib39 article-title: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2010.06.072 – volume: 127 year: 2021 ident: 10.1016/j.jocs.2022.101696_bib37 article-title: Non-linear radiative bioconvection flow of cross nano-material with gyrostatic microorganisms and activation energy publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2021.105530 – start-page: 261 year: 2021 ident: 10.1016/j.jocs.2022.101696_bib33 article-title: Thermal transport of MHD electroosmotic couple stress nanofluid flow in microchannels in the presence of various zeta potentials publication-title: Energy Syst. Nanotechnol. doi: 10.1007/978-981-16-1256-5_14 – volume: 9 start-page: 14794 year: 2019 ident: 10.1016/j.jocs.2022.101696_bib12 article-title: A low-power CMOS microfluidic pump based on travelling-wave electroosmosis for diluted serum pumping publication-title: Sci. Rep. doi: 10.1038/s41598-019-51464-7 – volume: 104 start-page: 1 issue: 2 year: 2021 ident: 10.1016/j.jocs.2022.101696_bib14 article-title: Convective heat transfer for Peristaltic flow of SWCNT inside a sinusoidal elliptic duct publication-title: Sci. Prog. doi: 10.1177/00368504211023683 – volume: 94 start-page: 4 year: 2020 ident: 10.1016/j.jocs.2022.101696_bib20 article-title: Convective heat transfer and double diffusive convection in ionic nanofluids flow driven by peristalsis and electromagnetohydrodynamics publication-title: Pramana - J. Phys. doi: 10.1007/s12043-019-1873-5 – volume: 21 year: 2011 ident: 10.1016/j.jocs.2022.101696_bib4 article-title: A microfluidic chip for blood plasma separation using electro-osmotic flow control publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/21/8/085019 – volume: 29 start-page: 193 year: 2021 ident: 10.1016/j.jocs.2022.101696_bib27 article-title: Lie group analysis of nanofluid slip flow with stefan blowing effect via modified buongiorno’s model: entropy generation analysis publication-title: Differ. Equ. Dyn. Syst. doi: 10.1007/s12591-019-00456-0 – volume: 128 start-page: 240 issue: 3 year: 2006 ident: 10.1016/j.jocs.2022.101696_bib24 article-title: Convective transport in nanofluids publication-title: J. Heat Transf. doi: 10.1115/1.2150834 – volume: 95 start-page: 2411 year: 2020 ident: 10.1016/j.jocs.2022.101696_bib29 article-title: Numerical study of electroosmosis-induced alterations in peristaltic pumping of couple stress hybrid nanofluids through microchannel publication-title: Indian J. Phys. doi: 10.1007/s12648-020-01906-0 – volume: 12 start-page: 1049 issue: 7 year: 2022 ident: 10.1016/j.jocs.2022.101696_bib38 article-title: Computational framework of magnetized MgO–Ni/water-based stagnation nanoflow past an elastic stretching surface: application in solar energy coatings publication-title: Nanomaterials doi: 10.3390/nano12071049 – volume: 41 start-page: 1198 year: 2020 ident: 10.1016/j.jocs.2022.101696_bib16 article-title: Microvascular blood flow with heat transfer in a wavy channel having electroosmotic effect publication-title: Electrophoresis doi: 10.1002/elps.201900465 – volume: 123 year: 2021 ident: 10.1016/j.jocs.2022.101696_bib30 article-title: Radiation and joule heating effects on electroosmosis-modulated peristaltic flow of Prandtl nanofluid via tapered channel publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2021.105183 – ident: 10.1016/j.jocs.2022.101696_bib10 doi: 10.1002/elps.201700090 – start-page: 1 year: 2021 ident: 10.1016/j.jocs.2022.101696_bib22 article-title: Bio-inspired peristaltic propulsion of hybrid nanofluid flow with Tantalum (Ta) and Gold (Au) nanoparticles under magnetic effects publication-title: Waves Random Complex Media doi: 10.1080/17455030.2021.1998728 – volume: 33 start-page: 12046 issue: 43 year: 2017 ident: 10.1016/j.jocs.2022.101696_bib5 article-title: Electroosmosis of viscoelastic fluids: role of wall depletion layer publication-title: Langmuir doi: 10.1021/acs.langmuir.7b02895 – volume: 98 issue: 8 year: 2020 ident: 10.1016/j.jocs.2022.101696_bib9 article-title: Theoretical treatment of bio-convective Maxwell nanofluid over an exponentially stretching sheet publication-title: Can. J. Phys. doi: 10.1139/cjp-2019-0380 – volume: 132 year: 2020 ident: 10.1016/j.jocs.2022.101696_bib31 article-title: Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: a sutterby fluid model publication-title: Microvasc. Res. doi: 10.1016/j.mvr.2020.104062 – volume: 95 year: 2020 ident: 10.1016/j.jocs.2022.101696_bib40 article-title: Comparative study on ethylene glycol-based Ag-Al2O3 and Al2O3 nanofluids flow driven by electroosmotic and peristaltic pumping: a nano-coolant for radiators publication-title: Phys. Scr.. doi: 10.1088/1402-4896/abbd6b – volume: 19 year: 2020 ident: 10.1016/j.jocs.2022.101696_bib26 article-title: Entropy optimized radiative heat transportation in axisymmetric flow of Williamson nanofluid with activation energy publication-title: Results Phys. doi: 10.1016/j.rinp.2020.103576 – volume: 114 start-page: 177 year: 2019 ident: 10.1016/j.jocs.2022.101696_bib15 article-title: Time-dependent analysis of electroosmotic fluid flow in a microchannel publication-title: J. Eng. Math. doi: 10.1007/s10665-019-09988-4 – start-page: 33 year: 2016 ident: 10.1016/j.jocs.2022.101696_bib2 article-title: Basics and lab-on-a-chip applications publication-title: Encycl. Nanotechnol. – volume: 29 start-page: 1423 issue: 7 year: 2008 ident: 10.1016/j.jocs.2022.101696_bib6 article-title: Continuous and precise particle separation by electroosmotic flow control in microfluidic devices publication-title: Electrophoresis doi: 10.1002/elps.200700658 – volume: 69 start-page: 655 year: 2018 ident: 10.1016/j.jocs.2022.101696_bib11 article-title: Electroosmotic flow of MHD power law Al2O3-PVC nanouid in a horizontal channel: Couette-Poiseuille flow model publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/69/6/655 – volume: 71 start-page: 300 year: 2021 ident: 10.1016/j.jocs.2022.101696_bib19 article-title: Mathematical study of Electroosmotically driven peristaltic flow of Casson fluid inside a tube having systematically contracting and relaxing sinusoidal heated walls publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2021.02.015 – volume: 387 start-page: 385 year: 2018 ident: 10.1016/j.jocs.2022.101696_bib35 article-title: Peristaltic flow of couple stress fluid in an asymmetric channel with partial slip publication-title: Defect Diffus. Forum doi: 10.4028/www.scientific.net/DDF.387.385 – ident: 10.1016/j.jocs.2022.101696_bib3 doi: 10.1115/ICNMM2017-5536 |
SSID | ssj0000388913 |
Score | 2.4881742 |
Snippet | This article deals with mathematical modeling of the electroosmotically boosted peristaltic propulsion of water-based silver nanofluid through an asymmetric... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 101696 |
SubjectTerms | Combined electroosmosis and peristaltic flow Modified Buongiorno Model Poisson-Boltzmann ionic distribution Silver-water nanofluid Tiwari-Das model |
Title | Analysis of electroosmotic flow of silver-water nanofluid regulated by peristalsis using two different approaches for nanofluid |
URI | https://dx.doi.org/10.1016/j.jocs.2022.101696 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jgngRNxXnFzl4UKSu7dKPHMdwTMVddLBbSdpENkY7to7hRf9132vTqSA7eGzIS0rey8v7hZffI-TKEQ5sGo9ZzA9ji-nEtqSvAfNI3REAmsFO8KHw89AfjNjj2BvXSK96C4Nplcb3lz698NampW1Wsz2fTNovDlLZeTZYJAKbghOUsQCt_O7D2dyzINsJL6okY38LBczbmTLNa5rFyNrtukUDcvf_dT79OHP6B2TfBIu0W_5Pg9RU2iS7Va56kzTMzlzSa0MffXNIPiueEZppaqrcZEW1npjqWbbG5uUEE6KtNQSaC5qKNNOz1SShi7IwvUqofKfzgsQZrBNGwhnfaL7OaFVQJacVGznMDoHv9yhHZNS_f-0NLFNmwYoBf-QAHiHqEw6TDEKrxOaSuwC3JagwcAXAJ8FD4aqgw5gCvMy9UOuYh1rYWnKlXdE5JvU0S9UJodyzdWD7EpYzZr6tuGQCHKgLIbzwEpe3iFMtbhQbDnIshTGLqmSzaYQKiVAhUamQFrndyMxLBo6tvb1KZ9EvO4rgiNgid_pPuTOyh19lAu85qeeLlbqAMCWXl4UdXpKd7sPTYPgFZNDo7g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kgnoRWxXf7sGDIqFJukmzRxFLtY-LLfQWdpOstJSk1Ejx5F93Jtn4AOnB6yazG2ZmZ-cLs98AXDnSwU3jcYv7QWRxHduW8jViHqVbEkEz-gldFB4M_e6YP028yQbcV3dhqKzSxP4yphfR2ow0jTabi-m0-ewQlZ1no0cSsCFO0E1ip_JqsHn32OsOv361EOGJKBolk4hFMub6TFnpNcsiIu523WKA6Pv_OqJ-HDudPdg1-SK7Kz-pDhtJ2oCtqly9AXWzOV_ZtWGQvtmHj4pqhGWamUY3WdGwJ2J6nq1o-HVKNdHWCnPNJUtlmun52zRmy7I3fRIz9c4WBY8zOijORCu-sHyVsaqnSs4qQnJcHXPf71kOYNx5GN13LdNpwYoQguSIHzHxkw5XHLOr2BZKuIi4FVqx7UpEUFIE0k3aLc4ThMzCC7SORKClrZVItCtbh1BLszQ5AiY8W7dtX6E6I-7biVBcYgx1MYuXXuyKY3Aq5YaRoSGnbhjzsKo3m4VkkJAMEpYGOYbbL5lFScKx9m2vsln4y5VCPCXWyJ38U-4StrujQT_sPw57p7BDT8p63jOo5cu35ByzllxdGK_8BGHu658 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+electroosmotic+flow+of+silver-water+nanofluid+regulated+by+peristalsis+using+two+different+approaches+for+nanofluid&rft.jtitle=Journal+of+computational+science&rft.au=Akram%2C+Javaria&rft.au=Akbar%2C+Noreen+Sher&rft.au=Tripathi%2C+Dharmendra&rft.date=2022-07-01&rft.pub=Elsevier+B.V&rft.issn=1877-7503&rft.eissn=1877-7511&rft.volume=62&rft_id=info:doi/10.1016%2Fj.jocs.2022.101696&rft.externalDocID=S1877750322001004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon |