Analysis of electroosmotic flow of silver-water nanofluid regulated by peristalsis using two different approaches for nanofluid

This article deals with mathematical modeling of the electroosmotically boosted peristaltic propulsion of water-based silver nanofluid through an asymmetric channel. The inherent Joule heating phenomenon is also included in the mathematical modeling of the flow problem. The no-slip boundary conditio...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational science Vol. 62; p. 101696
Main Authors Akram, Javaria, Akbar, Noreen Sher, Tripathi, Dharmendra
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article deals with mathematical modeling of the electroosmotically boosted peristaltic propulsion of water-based silver nanofluid through an asymmetric channel. The inherent Joule heating phenomenon is also included in the mathematical modeling of the flow problem. The no-slip boundary conditions are utilized for velocity and temperature of the fluid and conditions of zero mass flux are considered for nanoparticle volume fraction. The electric potential generated by electroosmosis is formulated by Poisson-Boltzmann ionic distribution. The aim here is to compare the properties of nanofluid flow as predicted by the modified Buongiorno model in combination with the Corcione model for thermal conductivity and that estimated by a combination of the traditional Tiwari-Das model and the Corcione model under the same physical conditions. The numerical solution is computed for the emerging set of nonlinear coupled equations through the built-in command in Maple 17 which uses the finite difference technique in combination with Richardson extrapolation to solve a boundary value problem. Important attributes of electroosmotically controlled peristaltic fluid flow are illustrated subject to variation in different physical parameters. The analysis exhibits that under the same physical conditions, the modified Buongiorno model predicts the nanofluid properties more efficiently than the Tiwari-Das model. It is found that for larger temperature differences within a fluid medium, the Nusselt number declines in the case where the modified Buongiorno model is utilized whereas the Tiwari-Das model does not include the effect of temperature difference. Moreover, peristaltic pumping is boosted by forwarding electric field and opposed by backward electroosmosis, and the magnitude of the Nusselt number tends to raise for larger Joule heating parameter. •Electroosmotically boosted peristaltic pumping of silver-water nanofluid is modeled mathematically.•Linearized Poisson-Boltzmann equation is utilized for electric potential distribution.•Two different approaches are used for characterizing the nanofluid properties.•A comparison between the two approaches is presented.•The mathematical model is treated numerically with Maple 17.
AbstractList This article deals with mathematical modeling of the electroosmotically boosted peristaltic propulsion of water-based silver nanofluid through an asymmetric channel. The inherent Joule heating phenomenon is also included in the mathematical modeling of the flow problem. The no-slip boundary conditions are utilized for velocity and temperature of the fluid and conditions of zero mass flux are considered for nanoparticle volume fraction. The electric potential generated by electroosmosis is formulated by Poisson-Boltzmann ionic distribution. The aim here is to compare the properties of nanofluid flow as predicted by the modified Buongiorno model in combination with the Corcione model for thermal conductivity and that estimated by a combination of the traditional Tiwari-Das model and the Corcione model under the same physical conditions. The numerical solution is computed for the emerging set of nonlinear coupled equations through the built-in command in Maple 17 which uses the finite difference technique in combination with Richardson extrapolation to solve a boundary value problem. Important attributes of electroosmotically controlled peristaltic fluid flow are illustrated subject to variation in different physical parameters. The analysis exhibits that under the same physical conditions, the modified Buongiorno model predicts the nanofluid properties more efficiently than the Tiwari-Das model. It is found that for larger temperature differences within a fluid medium, the Nusselt number declines in the case where the modified Buongiorno model is utilized whereas the Tiwari-Das model does not include the effect of temperature difference. Moreover, peristaltic pumping is boosted by forwarding electric field and opposed by backward electroosmosis, and the magnitude of the Nusselt number tends to raise for larger Joule heating parameter. •Electroosmotically boosted peristaltic pumping of silver-water nanofluid is modeled mathematically.•Linearized Poisson-Boltzmann equation is utilized for electric potential distribution.•Two different approaches are used for characterizing the nanofluid properties.•A comparison between the two approaches is presented.•The mathematical model is treated numerically with Maple 17.
ArticleNumber 101696
Author Akram, Javaria
Akbar, Noreen Sher
Tripathi, Dharmendra
Author_xml – sequence: 1
  givenname: Javaria
  surname: Akram
  fullname: Akram, Javaria
  email: jakram.phdmath18sns@student.nust.edu.pk, javaria.akram20@gmail.com
  organization: School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
– sequence: 2
  givenname: Noreen Sher
  surname: Akbar
  fullname: Akbar, Noreen Sher
  organization: DBS&H, CEME, National University of Sciences and Technology, Islamabad, Pakistan
– sequence: 3
  givenname: Dharmendra
  surname: Tripathi
  fullname: Tripathi, Dharmendra
  organization: Department of Mathematics, National Institute of Technology, Uttarakhand 246174, India
BookMark eNp9kMtKAzEUhoNUsNa-gKu8wNQkM50LuCnFGxTc6DpkkpOaIU1KkrZ05as7Y0XERc_mHH74fjjfNRo57wChW0pmlNDyrpt1XsYZI4x9B015gca0rqqsmlM6-r1JfoWmMXakn7yuG5qP0efCCXuMJmKvMViQKXgfNz4ZibX1hyGOxu4hZAeRIGAnnNd2ZxQOsN7ZPlO4PeItBBOTsEPTLhq3xungsTJaQwCXsNhugxfyAyLW_k_LDbrUPQXTnz1B748Pb8vnbPX69LJcrDLJcpKyktKSClq0RcFyRZq2YdCyVimomGjmpWhqwaDKiwKq_rN5rbVsai2IbhvQTOQTVJ96ZfAxBtBcmiSS8S4FYSynhA_qeMcHl3xwyU8ue5T9Q7fBbEQ4nofuTxD0T-0NBB6lASdBmdBL5sqbc_gXbn6ToA
CitedBy_id crossref_primary_10_1016_j_csite_2024_104234
crossref_primary_10_3389_fmats_2023_1107661
crossref_primary_10_1016_j_jmmm_2023_170447
crossref_primary_10_1016_j_molliq_2023_123034
crossref_primary_10_1016_j_jmmm_2023_170408
crossref_primary_10_1016_j_aej_2023_09_027
crossref_primary_10_1108_HFF_04_2023_0163
crossref_primary_10_1002_zamm_202300269
crossref_primary_10_1080_10407782_2023_2238887
crossref_primary_10_3389_fenrg_2022_996556
crossref_primary_10_3389_fchem_2022_960349
crossref_primary_10_3389_fphy_2022_1065982
crossref_primary_10_1016_j_mtcomm_2022_104532
crossref_primary_10_3389_fphy_2022_984277
crossref_primary_10_1177_16878132251327070
crossref_primary_10_1080_17455030_2023_2226761
crossref_primary_10_1080_10407782_2024_2377698
crossref_primary_10_1038_s41598_023_42540_0
crossref_primary_10_1007_s10973_024_13710_7
crossref_primary_10_1002_zamm_202300694
crossref_primary_10_1016_j_ijft_2023_100499
crossref_primary_10_1007_s12648_023_02636_9
crossref_primary_10_1002_zamm_202300260
crossref_primary_10_1142_S0217979225500195
crossref_primary_10_1016_j_aej_2024_05_062
crossref_primary_10_1016_j_csite_2023_102828
crossref_primary_10_3389_fphy_2023_1121849
crossref_primary_10_1142_S0217979225500559
crossref_primary_10_1016_j_jmmm_2023_170585
crossref_primary_10_1002_zamm_202300366
crossref_primary_10_1038_s41598_024_51848_4
crossref_primary_10_1016_j_jmmm_2023_170588
crossref_primary_10_31083_j_fbl2903110
crossref_primary_10_1016_j_aej_2025_01_056
crossref_primary_10_1080_02286203_2022_2122928
crossref_primary_10_1002_zamm_202400727
crossref_primary_10_1007_s12648_023_02720_0
crossref_primary_10_1007_s12043_024_02814_2
crossref_primary_10_1016_j_cjph_2024_01_009
crossref_primary_10_1063_5_0141498
crossref_primary_10_1016_j_rinp_2023_106898
crossref_primary_10_3389_fphy_2023_1133550
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124545
crossref_primary_10_1177_16878132241252328
crossref_primary_10_1007_s10973_023_12538_x
crossref_primary_10_1016_j_aej_2023_05_054
crossref_primary_10_1016_j_heliyon_2024_e26628
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123671
crossref_primary_10_1002_zamm_202300838
crossref_primary_10_3389_fmats_2022_1054138
crossref_primary_10_1142_S0217984925500137
crossref_primary_10_3390_math11061474
crossref_primary_10_1016_j_heliyon_2023_e15916
crossref_primary_10_1088_1361_6528_acf2a1
crossref_primary_10_1016_j_applthermaleng_2023_121870
crossref_primary_10_3389_fphy_2022_961201
crossref_primary_10_1016_j_cjph_2023_10_034
crossref_primary_10_1016_j_icheatmasstransfer_2022_106376
crossref_primary_10_1080_10407782_2023_2240507
Cites_doi 10.1021/j100787a019
10.1016/j.icheatmasstransfer.2020.104832
10.1016/j.ijheatmasstransfer.2006.09.034
10.1007/s40819-018-0513-y
10.1006/jcis.1997.5091
10.1088/1402-4896/ab74d7
10.1016/j.aej.2020.03.017
10.1063/5.0033088
10.1007/s13369-020-05265-0
10.1016/j.watres.2010.01.033
10.1016/j.enconman.2010.06.072
10.1016/j.icheatmasstransfer.2021.105530
10.1007/978-981-16-1256-5_14
10.1038/s41598-019-51464-7
10.1177/00368504211023683
10.1007/s12043-019-1873-5
10.1088/0960-1317/21/8/085019
10.1007/s12591-019-00456-0
10.1115/1.2150834
10.1007/s12648-020-01906-0
10.3390/nano12071049
10.1002/elps.201900465
10.1016/j.icheatmasstransfer.2021.105183
10.1002/elps.201700090
10.1080/17455030.2021.1998728
10.1021/acs.langmuir.7b02895
10.1139/cjp-2019-0380
10.1016/j.mvr.2020.104062
10.1088/1402-4896/abbd6b
10.1016/j.rinp.2020.103576
10.1007/s10665-019-09988-4
10.1002/elps.200700658
10.1088/0253-6102/69/6/655
10.1016/j.cjph.2021.02.015
10.4028/www.scientific.net/DDF.387.385
10.1115/ICNMM2017-5536
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jocs.2022.101696
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Business
EISSN 1877-7511
ExternalDocumentID 10_1016_j_jocs_2022_101696
S1877750322001004
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
P2P
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c230t-61161a14b4423d09b92eb2bdde72a956a98a2e7344e788958ffc98fa0fb9ef2a3
IEDL.DBID .~1
ISSN 1877-7503
IngestDate Thu Apr 24 23:07:19 EDT 2025
Tue Jul 01 03:46:11 EDT 2025
Fri Feb 23 02:40:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Combined electroosmosis and peristaltic flow
Modified Buongiorno Model
Poisson-Boltzmann ionic distribution
Tiwari-Das model
Silver-water nanofluid
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c230t-61161a14b4423d09b92eb2bdde72a956a98a2e7344e788958ffc98fa0fb9ef2a3
ParticipantIDs crossref_citationtrail_10_1016_j_jocs_2022_101696
crossref_primary_10_1016_j_jocs_2022_101696
elsevier_sciencedirect_doi_10_1016_j_jocs_2022_101696
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Journal of computational science
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References García-Sánchez, Ramos, Electroosmosis (bib2) 2016
Akram, Akbar, Tripathi (bib17) 2021
Azam, Xu, Khan (bib25) 2020; 118
Tiwari, Das (bib21) 2007; 50
Jiang, Weng, Chon, Wu, Li (bib4) 2011; 21
Burgreen, Nakache (bib7) 1964; 68
Zeeshan, Riaz, Alzahrani, Moqeet (bib32) 2022
Shehzad, Zeeshan, Ellahi (bib11) 2018; 69
Buongiorno (bib24) 2006; 128
Azam, Xu, Mabood, Khan (bib37) 2021; 127
Saleem, Akhtar, Nadeem, Saleem, Ghalambaz, Issakhov (bib19) 2021; 71
Nadeem, Kiani, Saleem, Issakhov (bib16) 2020; 41
Huda, Akbar, Beg, Khan (bib41) 2017; 7
Narla, Tripathi, Sekhar (bib15) 2019; 114
Yen, Lin, Huang, Huang, Tung, LuS, Lin (bib12) 2019; 9
Bhatti, Bég, Abdelsalam (bib38) 2022; 12
Mukherjee, Das, Dhar, Chakraborty, DasGupta (bib5) 2017; 33
Khan, Nadeem (bib9) 2020; 98
Sridhar, Ramesh (bib33) 2021
Wakif, Boulahia, Ali, Eid, Sehaqui (bib34) 2018; 4
Mahmoud, Olivier, Vaxelaire, Hoadley (bib1) 2010; 44
Yang, Li (bib8) 1997; 194
Akram, Akbar, Maraj (bib13) 2020; 59
Akram, Akbar, Tripathi (bib40) 2020; 95
Akram, Akbar, Tripathi (bib28) 2021; 46
Abbasi, Mabood, Farooq, Khan (bib30) 2021; 123
Uslu H.D., Canpolat C., Cetin B. Modeling of an ac-electro-osmosis based microfluidic mixer. In ASME 2017, ICNMM2017–5536, V001T13A001, 15th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2017 (pp. 1–6).
Tripathi, Prakash, Reddy, Kumar (bib29) 2020; 95
Akram, Akbar (bib36) 2020; 95
Bhatti, Abdelsalam (bib22) 2021
Latha, Kumar, Makinde (bib35) 2018; 387
Rana, Shukla, Bég, Bhardwaj (bib27) 2021; 29
.
Akram, Akbar, Tripathi (bib31) 2020; 132
Zhang, Bhatti, Michaelides, Ellahi (bib23) 2021
Corcione (bib39) 2011; 52
Kaushik P., Mandal S., Chakraborty S. Transient electroosmosis of a Maxwell fluid in a rotating microchannel Electrophoresis, 38(21)(2017), pp. 2741–2748
Kawamata, Yamada, Yasuda, Seki (bib6) 2008; 29
Akhtar, McCash, Nadeem, Saleem, Issakhov (bib14) 2021; 104
Mahapatra, Bandopadhy (bib18) 2021; 33
Azam, Mabood, Xu, Waly, Tlili (bib26) 2020; 19
Prakash, Sharma, Tripathi (bib20) 2020; 94
Abbasi (10.1016/j.jocs.2022.101696_bib30) 2021; 123
Akram (10.1016/j.jocs.2022.101696_bib31) 2020; 132
Mahmoud (10.1016/j.jocs.2022.101696_bib1) 2010; 44
Mahapatra (10.1016/j.jocs.2022.101696_bib18) 2021; 33
Zhang (10.1016/j.jocs.2022.101696_bib23) 2021
Azam (10.1016/j.jocs.2022.101696_bib25) 2020; 118
Akram (10.1016/j.jocs.2022.101696_bib13) 2020; 59
Rana (10.1016/j.jocs.2022.101696_bib27) 2021; 29
Wakif (10.1016/j.jocs.2022.101696_bib34) 2018; 4
Bhatti (10.1016/j.jocs.2022.101696_bib22) 2021
Akram (10.1016/j.jocs.2022.101696_bib40) 2020; 95
Tiwari (10.1016/j.jocs.2022.101696_bib21) 2007; 50
Corcione (10.1016/j.jocs.2022.101696_bib39) 2011; 52
Akram (10.1016/j.jocs.2022.101696_bib36) 2020; 95
Akram (10.1016/j.jocs.2022.101696_bib17) 2021
Akhtar (10.1016/j.jocs.2022.101696_bib14) 2021; 104
Jiang (10.1016/j.jocs.2022.101696_bib4) 2011; 21
Burgreen (10.1016/j.jocs.2022.101696_bib7) 1964; 68
Prakash (10.1016/j.jocs.2022.101696_bib20) 2020; 94
Bhatti (10.1016/j.jocs.2022.101696_bib38) 2022; 12
Yen (10.1016/j.jocs.2022.101696_bib12) 2019; 9
Narla (10.1016/j.jocs.2022.101696_bib15) 2019; 114
Saleem (10.1016/j.jocs.2022.101696_bib19) 2021; 71
Huda (10.1016/j.jocs.2022.101696_bib41) 2017; 7
Buongiorno (10.1016/j.jocs.2022.101696_bib24) 2006; 128
Zeeshan (10.1016/j.jocs.2022.101696_bib32) 2022
Shehzad (10.1016/j.jocs.2022.101696_bib11) 2018; 69
10.1016/j.jocs.2022.101696_bib10
Nadeem (10.1016/j.jocs.2022.101696_bib16) 2020; 41
Akram (10.1016/j.jocs.2022.101696_bib28) 2021; 46
García-Sánchez (10.1016/j.jocs.2022.101696_bib2) 2016
Yang (10.1016/j.jocs.2022.101696_bib8) 1997; 194
Azam (10.1016/j.jocs.2022.101696_bib26) 2020; 19
Tripathi (10.1016/j.jocs.2022.101696_bib29) 2020; 95
Azam (10.1016/j.jocs.2022.101696_bib37) 2021; 127
Mukherjee (10.1016/j.jocs.2022.101696_bib5) 2017; 33
Khan (10.1016/j.jocs.2022.101696_bib9) 2020; 98
Latha (10.1016/j.jocs.2022.101696_bib35) 2018; 387
Sridhar (10.1016/j.jocs.2022.101696_bib33) 2021
10.1016/j.jocs.2022.101696_bib3
Kawamata (10.1016/j.jocs.2022.101696_bib6) 2008; 29
References_xml – volume: 118
  year: 2020
  ident: bib25
  article-title: Numerical simulation for variable thermal properties and heat source/sink in flow of Cross nanofluid over a moving cylinder
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 69
  start-page: 655
  year: 2018
  end-page: 666
  ident: bib11
  article-title: Electroosmotic flow of MHD power law Al2O3-PVC nanouid in a horizontal channel: Couette-Poiseuille flow model
  publication-title: Commun. Theor. Phys.
– volume: 12
  start-page: 1049
  year: 2022
  ident: bib38
  article-title: Computational framework of magnetized MgO–Ni/water-based stagnation nanoflow past an elastic stretching surface: application in solar energy coatings
  publication-title: Nanomaterials
– volume: 95
  year: 2020
  ident: bib36
  article-title: Biological analysis of Carreau nanofluid in an endoscope with variable viscosity
  publication-title: Phys. Scr.
– start-page: 1
  year: 2021
  end-page: 26
  ident: bib22
  article-title: Bio-inspired peristaltic propulsion of hybrid nanofluid flow with Tantalum (Ta) and Gold (Au) nanoparticles under magnetic effects
  publication-title: Waves Random Complex Media
– volume: 33
  year: 2021
  ident: bib18
  article-title: Numerical analysis of combined electroosmotic-pressure driven flow of a viscoelastic fluid over high zeta potential modulated surfaces
  publication-title: Phys. Fluids
– volume: 98
  year: 2020
  ident: bib9
  article-title: Theoretical treatment of bio-convective Maxwell nanofluid over an exponentially stretching sheet
  publication-title: Can. J. Phys.
– volume: 41
  start-page: 1198
  year: 2020
  end-page: 1205
  ident: bib16
  article-title: Microvascular blood flow with heat transfer in a wavy channel having electroosmotic effect
  publication-title: Electrophoresis
– volume: 52
  start-page: 789
  year: 2011
  end-page: 793
  ident: bib39
  article-title: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids
  publication-title: Energy Convers. Manag.
– volume: 33
  start-page: 12046
  year: 2017
  end-page: 12055
  ident: bib5
  article-title: Electroosmosis of viscoelastic fluids: role of wall depletion layer
  publication-title: Langmuir
– volume: 4
  start-page: 81
  year: 2018
  ident: bib34
  article-title: Numerical analysis of the unsteady natural convection MHD couette nanofluid flow in the presence of thermal radiation using single and two-phase nanofluid models for Cu–water nanofluids
  publication-title: Int. J. Appl. Comput. Math.
– reference: Uslu H.D., Canpolat C., Cetin B. Modeling of an ac-electro-osmosis based microfluidic mixer. In ASME 2017, ICNMM2017–5536, V001T13A001, 15th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2017 (pp. 1–6).
– volume: 59
  start-page: 943
  year: 2020
  end-page: 956
  ident: bib13
  article-title: A comparative study on the role of nanoparticle dispersion in electroosmosis regulated peristaltic flow of water
  publication-title: Alex. Eng. J.
– volume: 7
  start-page: 413
  year: 2017
  end-page: 425
  ident: bib41
  article-title: Dynamics of variable-viscosity nanofluid flow with heat transfer in a flexible vertical tube under propagating waves
  publication-title: Res. Phys.
– start-page: 33
  year: 2016
  end-page: 39
  ident: bib2
  article-title: Basics and lab-on-a-chip applications
  publication-title: Encycl. Nanotechnol.
– volume: 132
  year: 2020
  ident: bib31
  article-title: Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: a sutterby fluid model
  publication-title: Microvasc. Res.
– volume: 127
  year: 2021
  ident: bib37
  article-title: Non-linear radiative bioconvection flow of cross nano-material with gyrostatic microorganisms and activation energy
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 387
  start-page: 385
  year: 2018
  end-page: 402
  ident: bib35
  article-title: Peristaltic flow of couple stress fluid in an asymmetric channel with partial slip
  publication-title: Defect Diffus. Forum
– start-page: 261
  year: 2021
  end-page: 278
  ident: bib33
  article-title: Thermal transport of MHD electroosmotic couple stress nanofluid flow in microchannels in the presence of various zeta potentials
  publication-title: Energy Syst. Nanotechnol.
– year: 2022
  ident: bib32
  article-title: Flow analysis of two-layer nano/johnson–segalman fluid in a blood vessel-like tube with complex peristaltic wave
  publication-title: Math. Probl. Eng.
– volume: 68
  start-page: 1084
  year: 1964
  ident: bib7
  article-title: Electrokinetic flow in ultrafine capillary slits
  publication-title: J. Phys. Chem.
– volume: 29
  start-page: 193
  year: 2021
  end-page: 210
  ident: bib27
  article-title: Lie group analysis of nanofluid slip flow with stefan blowing effect via modified buongiorno’s model: entropy generation analysis
  publication-title: Differ. Equ. Dyn. Syst.
– year: 2021
  ident: bib17
  article-title: Thermal analysis on MHD flow of ethylene glycol-based BNNTs nanofluids via peristaltically induced electroosmotic pumping in a curved microchannel
  publication-title: Arab. J. Sci. Eng.
– year: 2021
  ident: bib23
  article-title: Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field
  publication-title: Eur. Phys. J. Spec. Top.
– volume: 44
  start-page: 2381
  year: 2010
  end-page: 2407
  ident: bib1
  article-title: Electrical field: a historical review of its application and contributions in wastewater sludge dewatering
  publication-title: Water Res.
– volume: 9
  start-page: 14794
  year: 2019
  ident: bib12
  article-title: A low-power CMOS microfluidic pump based on travelling-wave electroosmosis for diluted serum pumping
  publication-title: Sci. Rep.
– volume: 71
  start-page: 300
  year: 2021
  end-page: 311
  ident: bib19
  article-title: Mathematical study of Electroosmotically driven peristaltic flow of Casson fluid inside a tube having systematically contracting and relaxing sinusoidal heated walls
  publication-title: Chin. J. Phys.
– volume: 50
  start-page: 2002
  year: 2007
  end-page: 2018.s
  ident: bib21
  article-title: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids
  publication-title: Int. J. Heat Mass Transf.
– volume: 95
  start-page: 2411
  year: 2020
  end-page: 2421
  ident: bib29
  article-title: Numerical study of electroosmosis-induced alterations in peristaltic pumping of couple stress hybrid nanofluids through microchannel
  publication-title: Indian J. Phys.
– reference: .
– volume: 114
  start-page: 177
  year: 2019
  end-page: 196
  ident: bib15
  article-title: Time-dependent analysis of electroosmotic fluid flow in a microchannel
  publication-title: J. Eng. Math.
– volume: 123
  year: 2021
  ident: bib30
  article-title: Radiation and joule heating effects on electroosmosis-modulated peristaltic flow of Prandtl nanofluid via tapered channel
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 29
  start-page: 1423
  year: 2008
  end-page: 1430
  ident: bib6
  article-title: Continuous and precise particle separation by electroosmotic flow control in microfluidic devices
  publication-title: Electrophoresis
– volume: 104
  start-page: 1
  year: 2021
  end-page: 17
  ident: bib14
  article-title: Convective heat transfer for Peristaltic flow of SWCNT inside a sinusoidal elliptic duct
  publication-title: Sci. Prog.
– volume: 95
  year: 2020
  ident: bib40
  article-title: Comparative study on ethylene glycol-based Ag-Al
  publication-title: Phys. Scr.
– volume: 194
  start-page: 95
  year: 1997
  end-page: 107
  ident: bib8
  article-title: Electrokinetic effects on pressure-driven liquid flows in rectangular microchannels
  publication-title: J. Colloid Interface Sci.
– volume: 128
  start-page: 240
  year: 2006
  end-page: 250
  ident: bib24
  article-title: Convective transport in nanofluids
  publication-title: J. Heat Transf.
– volume: 94
  start-page: 4
  year: 2020
  ident: bib20
  article-title: Convective heat transfer and double diffusive convection in ionic nanofluids flow driven by peristalsis and electromagnetohydrodynamics
  publication-title: Pramana - J. Phys.
– volume: 46
  start-page: 2911
  year: 2021
  end-page: 2927
  ident: bib28
  article-title: A theoretical investigation on the heat transfer ability of water-based hybrid (Ag–Au) nanofluids and Ag nanofluids flow driven by electroosmotic pumping through a microchannel
  publication-title: Arab. J. Sci. Eng.
– volume: 21
  year: 2011
  ident: bib4
  article-title: A microfluidic chip for blood plasma separation using electro-osmotic flow control
  publication-title: J. Micromech. Microeng.
– volume: 19
  year: 2020
  ident: bib26
  article-title: Entropy optimized radiative heat transportation in axisymmetric flow of Williamson nanofluid with activation energy
  publication-title: Results Phys.
– reference: Kaushik P., Mandal S., Chakraborty S. Transient electroosmosis of a Maxwell fluid in a rotating microchannel Electrophoresis, 38(21)(2017), pp. 2741–2748,
– volume: 68
  start-page: 1084
  year: 1964
  ident: 10.1016/j.jocs.2022.101696_bib7
  article-title: Electrokinetic flow in ultrafine capillary slits
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100787a019
– volume: 118
  year: 2020
  ident: 10.1016/j.jocs.2022.101696_bib25
  article-title: Numerical simulation for variable thermal properties and heat source/sink in flow of Cross nanofluid over a moving cylinder
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2020.104832
– volume: 50
  start-page: 2002
  issue: 9–10
  year: 2007
  ident: 10.1016/j.jocs.2022.101696_bib21
  article-title: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2006.09.034
– year: 2021
  ident: 10.1016/j.jocs.2022.101696_bib17
  article-title: Thermal analysis on MHD flow of ethylene glycol-based BNNTs nanofluids via peristaltically induced electroosmotic pumping in a curved microchannel
  publication-title: Arab. J. Sci. Eng.
– volume: 4
  start-page: 81
  year: 2018
  ident: 10.1016/j.jocs.2022.101696_bib34
  article-title: Numerical analysis of the unsteady natural convection MHD couette nanofluid flow in the presence of thermal radiation using single and two-phase nanofluid models for Cu–water nanofluids
  publication-title: Int. J. Appl. Comput. Math.
  doi: 10.1007/s40819-018-0513-y
– volume: 194
  start-page: 95
  issue: 1
  year: 1997
  ident: 10.1016/j.jocs.2022.101696_bib8
  article-title: Electrokinetic effects on pressure-driven liquid flows in rectangular microchannels
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1997.5091
– volume: 95
  year: 2020
  ident: 10.1016/j.jocs.2022.101696_bib36
  article-title: Biological analysis of Carreau nanofluid in an endoscope with variable viscosity
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ab74d7
– volume: 59
  start-page: 943
  issue: 2
  year: 2020
  ident: 10.1016/j.jocs.2022.101696_bib13
  article-title: A comparative study on the role of nanoparticle dispersion in electroosmosis regulated peristaltic flow of water
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.03.017
– issue: 2022
  year: 2022
  ident: 10.1016/j.jocs.2022.101696_bib32
  article-title: Flow analysis of two-layer nano/johnson–segalman fluid in a blood vessel-like tube with complex peristaltic wave
  publication-title: Math. Probl. Eng.
– volume: 7
  start-page: 413
  year: 2017
  ident: 10.1016/j.jocs.2022.101696_bib41
  article-title: Dynamics of variable-viscosity nanofluid flow with heat transfer in a flexible vertical tube under propagating waves
  publication-title: Res. Phys.
– volume: 33
  year: 2021
  ident: 10.1016/j.jocs.2022.101696_bib18
  article-title: Numerical analysis of combined electroosmotic-pressure driven flow of a viscoelastic fluid over high zeta potential modulated surfaces
  publication-title: Phys. Fluids
  doi: 10.1063/5.0033088
– year: 2021
  ident: 10.1016/j.jocs.2022.101696_bib23
  article-title: Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field
  publication-title: Eur. Phys. J. Spec. Top.
– volume: 46
  start-page: 2911
  year: 2021
  ident: 10.1016/j.jocs.2022.101696_bib28
  article-title: A theoretical investigation on the heat transfer ability of water-based hybrid (Ag–Au) nanofluids and Ag nanofluids flow driven by electroosmotic pumping through a microchannel
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-020-05265-0
– volume: 44
  start-page: 2381
  year: 2010
  ident: 10.1016/j.jocs.2022.101696_bib1
  article-title: Electrical field: a historical review of its application and contributions in wastewater sludge dewatering
  publication-title: Water Res.
  doi: 10.1016/j.watres.2010.01.033
– volume: 52
  start-page: 789
  year: 2011
  ident: 10.1016/j.jocs.2022.101696_bib39
  article-title: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2010.06.072
– volume: 127
  year: 2021
  ident: 10.1016/j.jocs.2022.101696_bib37
  article-title: Non-linear radiative bioconvection flow of cross nano-material with gyrostatic microorganisms and activation energy
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2021.105530
– start-page: 261
  year: 2021
  ident: 10.1016/j.jocs.2022.101696_bib33
  article-title: Thermal transport of MHD electroosmotic couple stress nanofluid flow in microchannels in the presence of various zeta potentials
  publication-title: Energy Syst. Nanotechnol.
  doi: 10.1007/978-981-16-1256-5_14
– volume: 9
  start-page: 14794
  year: 2019
  ident: 10.1016/j.jocs.2022.101696_bib12
  article-title: A low-power CMOS microfluidic pump based on travelling-wave electroosmosis for diluted serum pumping
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-51464-7
– volume: 104
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.jocs.2022.101696_bib14
  article-title: Convective heat transfer for Peristaltic flow of SWCNT inside a sinusoidal elliptic duct
  publication-title: Sci. Prog.
  doi: 10.1177/00368504211023683
– volume: 94
  start-page: 4
  year: 2020
  ident: 10.1016/j.jocs.2022.101696_bib20
  article-title: Convective heat transfer and double diffusive convection in ionic nanofluids flow driven by peristalsis and electromagnetohydrodynamics
  publication-title: Pramana - J. Phys.
  doi: 10.1007/s12043-019-1873-5
– volume: 21
  year: 2011
  ident: 10.1016/j.jocs.2022.101696_bib4
  article-title: A microfluidic chip for blood plasma separation using electro-osmotic flow control
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/21/8/085019
– volume: 29
  start-page: 193
  year: 2021
  ident: 10.1016/j.jocs.2022.101696_bib27
  article-title: Lie group analysis of nanofluid slip flow with stefan blowing effect via modified buongiorno’s model: entropy generation analysis
  publication-title: Differ. Equ. Dyn. Syst.
  doi: 10.1007/s12591-019-00456-0
– volume: 128
  start-page: 240
  issue: 3
  year: 2006
  ident: 10.1016/j.jocs.2022.101696_bib24
  article-title: Convective transport in nanofluids
  publication-title: J. Heat Transf.
  doi: 10.1115/1.2150834
– volume: 95
  start-page: 2411
  year: 2020
  ident: 10.1016/j.jocs.2022.101696_bib29
  article-title: Numerical study of electroosmosis-induced alterations in peristaltic pumping of couple stress hybrid nanofluids through microchannel
  publication-title: Indian J. Phys.
  doi: 10.1007/s12648-020-01906-0
– volume: 12
  start-page: 1049
  issue: 7
  year: 2022
  ident: 10.1016/j.jocs.2022.101696_bib38
  article-title: Computational framework of magnetized MgO–Ni/water-based stagnation nanoflow past an elastic stretching surface: application in solar energy coatings
  publication-title: Nanomaterials
  doi: 10.3390/nano12071049
– volume: 41
  start-page: 1198
  year: 2020
  ident: 10.1016/j.jocs.2022.101696_bib16
  article-title: Microvascular blood flow with heat transfer in a wavy channel having electroosmotic effect
  publication-title: Electrophoresis
  doi: 10.1002/elps.201900465
– volume: 123
  year: 2021
  ident: 10.1016/j.jocs.2022.101696_bib30
  article-title: Radiation and joule heating effects on electroosmosis-modulated peristaltic flow of Prandtl nanofluid via tapered channel
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2021.105183
– ident: 10.1016/j.jocs.2022.101696_bib10
  doi: 10.1002/elps.201700090
– start-page: 1
  year: 2021
  ident: 10.1016/j.jocs.2022.101696_bib22
  article-title: Bio-inspired peristaltic propulsion of hybrid nanofluid flow with Tantalum (Ta) and Gold (Au) nanoparticles under magnetic effects
  publication-title: Waves Random Complex Media
  doi: 10.1080/17455030.2021.1998728
– volume: 33
  start-page: 12046
  issue: 43
  year: 2017
  ident: 10.1016/j.jocs.2022.101696_bib5
  article-title: Electroosmosis of viscoelastic fluids: role of wall depletion layer
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b02895
– volume: 98
  issue: 8
  year: 2020
  ident: 10.1016/j.jocs.2022.101696_bib9
  article-title: Theoretical treatment of bio-convective Maxwell nanofluid over an exponentially stretching sheet
  publication-title: Can. J. Phys.
  doi: 10.1139/cjp-2019-0380
– volume: 132
  year: 2020
  ident: 10.1016/j.jocs.2022.101696_bib31
  article-title: Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: a sutterby fluid model
  publication-title: Microvasc. Res.
  doi: 10.1016/j.mvr.2020.104062
– volume: 95
  year: 2020
  ident: 10.1016/j.jocs.2022.101696_bib40
  article-title: Comparative study on ethylene glycol-based Ag-Al2O3 and Al2O3 nanofluids flow driven by electroosmotic and peristaltic pumping: a nano-coolant for radiators
  publication-title: Phys. Scr..
  doi: 10.1088/1402-4896/abbd6b
– volume: 19
  year: 2020
  ident: 10.1016/j.jocs.2022.101696_bib26
  article-title: Entropy optimized radiative heat transportation in axisymmetric flow of Williamson nanofluid with activation energy
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2020.103576
– volume: 114
  start-page: 177
  year: 2019
  ident: 10.1016/j.jocs.2022.101696_bib15
  article-title: Time-dependent analysis of electroosmotic fluid flow in a microchannel
  publication-title: J. Eng. Math.
  doi: 10.1007/s10665-019-09988-4
– start-page: 33
  year: 2016
  ident: 10.1016/j.jocs.2022.101696_bib2
  article-title: Basics and lab-on-a-chip applications
  publication-title: Encycl. Nanotechnol.
– volume: 29
  start-page: 1423
  issue: 7
  year: 2008
  ident: 10.1016/j.jocs.2022.101696_bib6
  article-title: Continuous and precise particle separation by electroosmotic flow control in microfluidic devices
  publication-title: Electrophoresis
  doi: 10.1002/elps.200700658
– volume: 69
  start-page: 655
  year: 2018
  ident: 10.1016/j.jocs.2022.101696_bib11
  article-title: Electroosmotic flow of MHD power law Al2O3-PVC nanouid in a horizontal channel: Couette-Poiseuille flow model
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/69/6/655
– volume: 71
  start-page: 300
  year: 2021
  ident: 10.1016/j.jocs.2022.101696_bib19
  article-title: Mathematical study of Electroosmotically driven peristaltic flow of Casson fluid inside a tube having systematically contracting and relaxing sinusoidal heated walls
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2021.02.015
– volume: 387
  start-page: 385
  year: 2018
  ident: 10.1016/j.jocs.2022.101696_bib35
  article-title: Peristaltic flow of couple stress fluid in an asymmetric channel with partial slip
  publication-title: Defect Diffus. Forum
  doi: 10.4028/www.scientific.net/DDF.387.385
– ident: 10.1016/j.jocs.2022.101696_bib3
  doi: 10.1115/ICNMM2017-5536
SSID ssj0000388913
Score 2.4881742
Snippet This article deals with mathematical modeling of the electroosmotically boosted peristaltic propulsion of water-based silver nanofluid through an asymmetric...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101696
SubjectTerms Combined electroosmosis and peristaltic flow
Modified Buongiorno Model
Poisson-Boltzmann ionic distribution
Silver-water nanofluid
Tiwari-Das model
Title Analysis of electroosmotic flow of silver-water nanofluid regulated by peristalsis using two different approaches for nanofluid
URI https://dx.doi.org/10.1016/j.jocs.2022.101696
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jgngRNxXnFzl4UKSu7dKPHMdwTMVddLBbSdpENkY7to7hRf9132vTqSA7eGzIS0rey8v7hZffI-TKEQ5sGo9ZzA9ji-nEtqSvAfNI3REAmsFO8KHw89AfjNjj2BvXSK96C4Nplcb3lz698NampW1Wsz2fTNovDlLZeTZYJAKbghOUsQCt_O7D2dyzINsJL6okY38LBczbmTLNa5rFyNrtukUDcvf_dT79OHP6B2TfBIu0W_5Pg9RU2iS7Va56kzTMzlzSa0MffXNIPiueEZppaqrcZEW1npjqWbbG5uUEE6KtNQSaC5qKNNOz1SShi7IwvUqofKfzgsQZrBNGwhnfaL7OaFVQJacVGznMDoHv9yhHZNS_f-0NLFNmwYoBf-QAHiHqEw6TDEKrxOaSuwC3JagwcAXAJ8FD4aqgw5gCvMy9UOuYh1rYWnKlXdE5JvU0S9UJodyzdWD7EpYzZr6tuGQCHKgLIbzwEpe3iFMtbhQbDnIshTGLqmSzaYQKiVAhUamQFrndyMxLBo6tvb1KZ9EvO4rgiNgid_pPuTOyh19lAu85qeeLlbqAMCWXl4UdXpKd7sPTYPgFZNDo7g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kgnoRWxXf7sGDIqFJukmzRxFLtY-LLfQWdpOstJSk1Ejx5F93Jtn4AOnB6yazG2ZmZ-cLs98AXDnSwU3jcYv7QWRxHduW8jViHqVbEkEz-gldFB4M_e6YP028yQbcV3dhqKzSxP4yphfR2ow0jTabi-m0-ewQlZ1no0cSsCFO0E1ip_JqsHn32OsOv361EOGJKBolk4hFMub6TFnpNcsiIu523WKA6Pv_OqJ-HDudPdg1-SK7Kz-pDhtJ2oCtqly9AXWzOV_ZtWGQvtmHj4pqhGWamUY3WdGwJ2J6nq1o-HVKNdHWCnPNJUtlmun52zRmy7I3fRIz9c4WBY8zOijORCu-sHyVsaqnSs4qQnJcHXPf71kOYNx5GN13LdNpwYoQguSIHzHxkw5XHLOr2BZKuIi4FVqx7UpEUFIE0k3aLc4ThMzCC7SORKClrZVItCtbh1BLszQ5AiY8W7dtX6E6I-7biVBcYgx1MYuXXuyKY3Aq5YaRoSGnbhjzsKo3m4VkkJAMEpYGOYbbL5lFScKx9m2vsln4y5VCPCXWyJ38U-4StrujQT_sPw57p7BDT8p63jOo5cu35ByzllxdGK_8BGHu658
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+electroosmotic+flow+of+silver-water+nanofluid+regulated+by+peristalsis+using+two+different+approaches+for+nanofluid&rft.jtitle=Journal+of+computational+science&rft.au=Akram%2C+Javaria&rft.au=Akbar%2C+Noreen+Sher&rft.au=Tripathi%2C+Dharmendra&rft.date=2022-07-01&rft.pub=Elsevier+B.V&rft.issn=1877-7503&rft.eissn=1877-7511&rft.volume=62&rft_id=info:doi/10.1016%2Fj.jocs.2022.101696&rft.externalDocID=S1877750322001004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon