Preliminary assessment of the effectiveness of neoadjuvant chemotherapy in breast cancer with the use of ultrasound image quality indexes
Neoadjuvant chemotherapy (NAC) in breast cancer requires non-invasive methods of monitoring its effects after each dose of drug therapy. The aim is to isolate responding and non-responding tumors prior to surgery in order to increase patient safety and select the optimal medical follow-up. A new met...
Saved in:
Published in | Biomedical signal processing and control Vol. 80; p. 104393 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neoadjuvant chemotherapy (NAC) in breast cancer requires non-invasive methods of monitoring its effects after each dose of drug therapy. The aim is to isolate responding and non-responding tumors prior to surgery in order to increase patient safety and select the optimal medical follow-up.
A new method of monitoring NAC therapy has been proposed. The method is based on image quality indexes (IQI) calculated from ultrasound data obtained from breast tumors and surrounding tissue. Four different tissue regions from the preliminary set of 38 tumors and three data pre-processing techniques are considered. Postoperative histopathology results were used as a benchmark in evaluating the effectiveness of the IQI classification.
Out of ten parameters considered, the best results were obtained for the Gray Relational Coefficient. Responding and non-responding tumors were predicted after the first dose of NAC with an area under the receiver operating characteristics curve of 0.88 and 0.75, respectively. When considering subsequent doses of NAC, other IQI parameters also proved usefulness in evaluating NAC therapy.
The image quality parameters derived from the ultrasound data are well suited for assessing the effects of NAC therapy, in particular on breast tumors.
•A method of the analysis of ultrasound data of the lesion and surrounding tissue•A method of monitoring NAC therapy based on ultrasound data of breast tumors•Subjects responding to NAC can be detected already after the first stage of treatment•Prediction of responding and non-responding tumors with AUC of 0.88 and 0.75•The image quality parameters are well-suited for assessing the effects of NAC therapy |
---|---|
AbstractList | Neoadjuvant chemotherapy (NAC) in breast cancer requires non-invasive methods of monitoring its effects after each dose of drug therapy. The aim is to isolate responding and non-responding tumors prior to surgery in order to increase patient safety and select the optimal medical follow-up.
A new method of monitoring NAC therapy has been proposed. The method is based on image quality indexes (IQI) calculated from ultrasound data obtained from breast tumors and surrounding tissue. Four different tissue regions from the preliminary set of 38 tumors and three data pre-processing techniques are considered. Postoperative histopathology results were used as a benchmark in evaluating the effectiveness of the IQI classification.
Out of ten parameters considered, the best results were obtained for the Gray Relational Coefficient. Responding and non-responding tumors were predicted after the first dose of NAC with an area under the receiver operating characteristics curve of 0.88 and 0.75, respectively. When considering subsequent doses of NAC, other IQI parameters also proved usefulness in evaluating NAC therapy.
The image quality parameters derived from the ultrasound data are well suited for assessing the effects of NAC therapy, in particular on breast tumors.
•A method of the analysis of ultrasound data of the lesion and surrounding tissue•A method of monitoring NAC therapy based on ultrasound data of breast tumors•Subjects responding to NAC can be detected already after the first stage of treatment•Prediction of responding and non-responding tumors with AUC of 0.88 and 0.75•The image quality parameters are well-suited for assessing the effects of NAC therapy |
ArticleNumber | 104393 |
Author | Klimonda, Ziemowit Litniewski, Jerzy Dobruch-Sobczak, Katarzyna Piotrzkowska-Wróblewska, Hanna Pawłowska, Anna Żołek, Norbert Leśniak-Plewińska, Beata |
Author_xml | – sequence: 1 givenname: Anna orcidid: 0000-0001-5070-1786 surname: Pawłowska fullname: Pawłowska, Anna organization: Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland – sequence: 2 givenname: Norbert orcidid: 0000-0002-2416-7783 surname: Żołek fullname: Żołek, Norbert email: nzolek@ippt.pan.pl organization: Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland – sequence: 3 givenname: Beata orcidid: 0000-0002-0143-0753 surname: Leśniak-Plewińska fullname: Leśniak-Plewińska, Beata organization: Warsaw University of Technology, Department of Mechatronics, Warsaw, Poland – sequence: 4 givenname: Katarzyna orcidid: 0000-0003-1470-4140 surname: Dobruch-Sobczak fullname: Dobruch-Sobczak, Katarzyna organization: Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland – sequence: 5 givenname: Ziemowit orcidid: 0000-0003-1695-7096 surname: Klimonda fullname: Klimonda, Ziemowit organization: Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland – sequence: 6 givenname: Hanna orcidid: 0000-0002-0980-1360 surname: Piotrzkowska-Wróblewska fullname: Piotrzkowska-Wróblewska, Hanna organization: Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland – sequence: 7 givenname: Jerzy orcidid: 0000-0003-3978-9099 surname: Litniewski fullname: Litniewski, Jerzy organization: Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland |
BookMark | eNp9kDtOAzEQhi0EEkngAlS-QILtNfuQaFDES4oEBdSWH2PiaOMNtjeQI3BrvAQailQz-j3fyPON0bHvPCB0QcmMElpermYqbvSMEcZywIumOEIjWvFyWlNSH__1pOGnaBzjihBeV5SP0NdzgNatnZdhh2WMEOMafMKdxWkJGKwFndwWfH4YQg-dNKt-K_OMXsK6y1NBbnbYeawCyJhj6TUE_OHS8mdHH2Eg-zYFGbveG-zW8g3wey9blwbSwCfEM3RiZRvh_LdO0Ovd7cv8Ybp4un-c3yymmhUkTVnZQGEsk0QrKxvLFKe1KpnRmnGtGn1lFNGc16biRtKaEWUsN0apSlZ12RQTxPZ7dehiDGDFJuQPhZ2gRAwyxUoMMsUgU-xlZqj-B2mXZHKdz0e59jB6vUchH7V1EETUDrIi40J2K0znDuHfZCeXYw |
CitedBy_id | crossref_primary_10_1016_j_engmed_2024_100024 crossref_primary_10_1007_s12065_023_00833_3 |
Cites_doi | 10.1016/j.tranon.2019.06.004 10.3389/fonc.2021.718531 10.1186/s40644-019-0248-y 10.1038/s41598-019-44376-z 10.1634/theoncologist.8-6-521 10.1007/s10278-010-9353-y 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 10.15557/JoU.2019.0013 10.4103/0019-509X.112301 10.1038/s41598-021-82141-3 10.21037/gs-20-836 10.1093/jnci/djs528 10.1007/s00330-021-08293-y 10.1155/2016/6740956 10.1245/s10434-011-2108-2 10.1109/97.995823 10.1016/S0959-8049(00)00197-0 10.1007/s10916-011-9724-z 10.1016/S0960-9776(03)00106-1 10.1371/journal.pone.0213749 10.1109/TIP.2003.819861 10.1016/j.clbc.2017.08.003 10.1016/j.media.2014.11.009 10.1200/JCO.2014.55.2836 10.1158/1538-7445.AM2016-1439 10.1016/j.tranon.2019.05.004 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2022.104393 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
ExternalDocumentID | 10_1016_j_bspc_2022_104393 S1746809422008473 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c230t-269e3df2a0cbfa9f2b418b62dcc24cb9c5db0c448d74da1820bdf4ddbb7a78693 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Tue Jul 01 01:34:15 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 Fri Feb 23 02:39:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Image quality Neoadjuvant chemotherapy Breast cancer Treatment response Quantitative ultrasound |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c230t-269e3df2a0cbfa9f2b418b62dcc24cb9c5db0c448d74da1820bdf4ddbb7a78693 |
ORCID | 0000-0002-0143-0753 0000-0003-3978-9099 0000-0003-1695-7096 0000-0001-5070-1786 0000-0002-0980-1360 0000-0002-2416-7783 0000-0003-1470-4140 |
ParticipantIDs | crossref_primary_10_1016_j_bspc_2022_104393 crossref_citationtrail_10_1016_j_bspc_2022_104393 elsevier_sciencedirect_doi_10_1016_j_bspc_2022_104393 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Sethi, Sen, Parshad, Khetarpal, Garg, Sen (b10) 2013; 50 Tadayyon, Sannachi, Gangeh (b30) 2017; 7 Kaufmann, von Minckwitz, Mamounas, Cameron, Carey, Cristofanili (b7) 2012; 19 Ogston, Miller, Payne, Hutcheon, Sarkar, Smith, Schofield, Heys (b21) 2003; 12 Youden (b29) 1950; 3 Marinovich, Houssami, Macaskill, Sardanelli, Irwig, Mamounas (b28) 2013; 105 Dobruch-Sobczak, Piotrzkowska-Wróblewska, Klimonda, Karwat, Roszkowska-Purska, Clauser (b36) 2021; 11 Sheng-Chieh, You-Chen, Weng-Song, Jia-Ming, Tzong-Jer (b18) 2011; 24 Sannachi, Gangeh, Tadayyon, Gandhi, Wright, Slodkowska, Curpen, Sadeghi-Naini, Tran, Czarnota (b16) 2019; 12 Daoud, Bdair, Al-Najar, Alazrai (b27) 2016 Li, Huang, Wang, Lin, Li, Zheng, Wang, Cao, Zhou (b3) 2019; 19 Feng (b2) 2019; 7 Al-Ghazal, Fallowfield, Blamey (b11) 2000; 36 Fernandes, Sannachi, Tran, Koven, Watkins, Hadizad (b32) 2019; 12 Piotrzkowska-Wróblewska, Dobruch-Sobczak, Klimonda, Karwat, Roszkowska-Purska, Gumowska, Litniewski (b15) 2019; 14 Wang, Bovik, Sheikh, Simoncelli (b25) 2004; 13 Oelze (b26) 2013 Klimonda, Karwat, Dobruch-Sobczak (b31) 2019; 9 Choi, Kim, Shin, Cha, Chae, Kim (b12) 2018; 18 Loizou, Pattichis (b22) 2008 Dobruch-Sobczak, Piotrzkowska-Wróblewska, Klimoda, Secomski, Karwat, Markiewicz-Grodzicka, Kolasińska-Ćwikła, Roszkowska-Purska, Litniewski (b6) 2019; 19 Huang, Le, Miao, Zhi, Wang, Chen (b34) 2021; 10 Morigi (b4) 2017; 11 Giordano (b5) 2003; 8 Yao, Zhang, Wu, Li, He, Fengyue (b14) 2022; 75 Cui, Zhao, Han, Zhang, Fan, Zuo (b33) 2021; 11 Deng (b23) 1989; 1 (b1) 2019 Sannachi, Tadayyon, Sadeghi-Naini, Tran, Gandhi, Wright, Oelze, Czarnota (b13) 2015; 20 Mendelson, Böhm-Vélez, Berg (b20) 2013 Spring, Greenup, Reynolds, Smith, Moy, Bardia (b9) 2016; 76 Içer, Coskun, Ikizceli (b19) 2011; 36 Berruti, Amoroso, Gallo, Bertaglia, Simoncini (b8) 2014; 32 Gu, Tong, He, Xu, Yang, Tian (b35) 2022; 32 Wang, Bovik (b24) 2002; 9 Byra, Dobruch-Sobczak, Klimonda, Piotrzkowska-Wroblewska, Litniewski (b17) 2020 Deng (10.1016/j.bspc.2022.104393_b23) 1989; 1 Al-Ghazal (10.1016/j.bspc.2022.104393_b11) 2000; 36 Oelze (10.1016/j.bspc.2022.104393_b26) 2013 Huang (10.1016/j.bspc.2022.104393_b34) 2021; 10 Li (10.1016/j.bspc.2022.104393_b3) 2019; 19 Sethi (10.1016/j.bspc.2022.104393_b10) 2013; 50 Mendelson (10.1016/j.bspc.2022.104393_b20) 2013 Feng (10.1016/j.bspc.2022.104393_b2) 2019; 7 Berruti (10.1016/j.bspc.2022.104393_b8) 2014; 32 Cui (10.1016/j.bspc.2022.104393_b33) 2021; 11 Sannachi (10.1016/j.bspc.2022.104393_b13) 2015; 20 Piotrzkowska-Wróblewska (10.1016/j.bspc.2022.104393_b15) 2019; 14 Kaufmann (10.1016/j.bspc.2022.104393_b7) 2012; 19 Klimonda (10.1016/j.bspc.2022.104393_b31) 2019; 9 Loizou (10.1016/j.bspc.2022.104393_b22) 2008 Daoud (10.1016/j.bspc.2022.104393_b27) 2016 Sannachi (10.1016/j.bspc.2022.104393_b16) 2019; 12 Byra (10.1016/j.bspc.2022.104393_b17) 2020 (10.1016/j.bspc.2022.104393_b1) 2019 Youden (10.1016/j.bspc.2022.104393_b29) 1950; 3 Dobruch-Sobczak (10.1016/j.bspc.2022.104393_b36) 2021; 11 Wang (10.1016/j.bspc.2022.104393_b24) 2002; 9 Spring (10.1016/j.bspc.2022.104393_b9) 2016; 76 Wang (10.1016/j.bspc.2022.104393_b25) 2004; 13 Fernandes (10.1016/j.bspc.2022.104393_b32) 2019; 12 Yao (10.1016/j.bspc.2022.104393_b14) 2022; 75 Içer (10.1016/j.bspc.2022.104393_b19) 2011; 36 Gu (10.1016/j.bspc.2022.104393_b35) 2022; 32 Giordano (10.1016/j.bspc.2022.104393_b5) 2003; 8 Ogston (10.1016/j.bspc.2022.104393_b21) 2003; 12 Tadayyon (10.1016/j.bspc.2022.104393_b30) 2017; 7 Dobruch-Sobczak (10.1016/j.bspc.2022.104393_b6) 2019; 19 Choi (10.1016/j.bspc.2022.104393_b12) 2018; 18 Sheng-Chieh (10.1016/j.bspc.2022.104393_b18) 2011; 24 Morigi (10.1016/j.bspc.2022.104393_b4) 2017; 11 Marinovich (10.1016/j.bspc.2022.104393_b28) 2013; 105 |
References_xml | – volume: 50 start-page: 58 year: 2013 end-page: 64 ident: b10 article-title: Histopathologic changes following neoadjuvant chemotherapy in locally advanced breast cancer publication-title: Indian J. Cancer – volume: 76 start-page: 1439 year: 2016 ident: b9 article-title: Pathological complete response after neoadjuvant chemotherapy predicts improved survival in all major subtypes of breast cancer: systematic review and meta-analyses of over 18, 000 patients publication-title: Cancer Res. – year: 2013 ident: b20 article-title: ACR BI-rads® ultrasound publication-title: ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System – volume: 9 start-page: 81 year: 2002 end-page: 84 ident: b24 article-title: A universal image quality index publication-title: IEEE Signal Process. Lett. – volume: 12 start-page: 1177 year: 2019 end-page: 1184 ident: b32 article-title: Monitoring breast cancer response to neoadjuvant chemotherapy using ultrasound strain elastography publication-title: Transl. Oncol. – volume: 14 start-page: 1 year: 2019 end-page: 15 ident: b15 article-title: Monitoring breast cancer response to neoadjuvant chemotherapy with ultrasound signal statistics and integrated backscatter publication-title: PLoS ONE – volume: 12 start-page: 1271 year: 2019 end-page: 1281 ident: b16 article-title: Breast cancer treatment response monitoring using quantitative ultrasound and texture analysis: comparative analysis of analytical models publication-title: Transl. Oncol. – year: 2020 ident: b17 article-title: Early prediction of response to neoadjuvant chemotherapy in breast cancer sonography using Siamese convolutional neural networks publication-title: IEEE J. Biomed. Health Inform. – year: 2016 ident: b27 article-title: A fusion-based approach for breast ultrasound image classification using multiple-ROI texture and morphological analyses publication-title: Comput. Math. Methods Med. – volume: 32 start-page: 2099 year: 2022 end-page: 2109 ident: b35 article-title: Deep learning radiomics of ultrasonography can predict response to neoadjuvant chemotherapy in breast cancer at an early stage of treatment: a prospective study publication-title: Eur. Radiol. – volume: 75 year: 2022 ident: b14 article-title: Quantitative assessment for characterization of breast lesion tissues using adaptively decomposed ultrasound RF images publication-title: Biomed. Signal Process. Control – volume: 8 start-page: 521 year: 2003 end-page: 530 ident: b5 article-title: Update on locally advanced breast cancer publication-title: Oncologist – volume: 19 start-page: 1508 year: 2012 end-page: 1516 ident: b7 article-title: Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer publication-title: Ann. Surg. Oncol. – volume: 11 year: 2017 ident: b4 article-title: Highlights from the 15th St Gallen international breast cancer conference 15-18 march, 2017, vienna: tailored treatments for patients with early breast cancer publication-title: Ecancermedicalscience – volume: 36 start-page: 2521 year: 2011 end-page: 2528 ident: b19 article-title: Quantitative grading using grey relational analysis on ultrasonographic images of a Fatty Liver publication-title: J. Med. Syst. – volume: 105 start-page: 321 year: 2013 end-page: 333 ident: b28 article-title: Meta-analysis of magnetic resonance imaging in detecting residual breast cancer after Neoadjuvant therapy publication-title: JNCI: J. Natl. Cancer Inst. – volume: 3 start-page: 32 year: 1950 end-page: 35 ident: b29 article-title: Index for rating diagnostic tests publication-title: Cancer – volume: 19 start-page: 89 year: 2019 end-page: 97 ident: b6 article-title: Monitoring the response to neoadjuvant chemotherapy in patients with breast cancer using ultrasound scattering coefficient: A preliminary report publication-title: J. Ultrason. – volume: 7 year: 2019 ident: b2 article-title: Accurate prediction of neoadjuvant chemotherapy pathological complete remission (pCR) for the four sub-types of breast cancer publication-title: IEEE Access – volume: 7 year: 2017 ident: b30 article-title: A priori prediction of neoadjuvant chemotherapy response and survival in breast cancer patients using quantitative ultrasound publication-title: Sci. Rep. – volume: 36 start-page: 1938 year: 2000 end-page: 1943 ident: b11 article-title: Comparison of psychological aspects and patient satisfaction following breast conserving surgery, simple mastectomy and breast reconstruction publication-title: Eur. J. Cancer – volume: 32 start-page: 3883 year: 2014 end-page: 3891 ident: b8 article-title: Pathologic complete response as a potential surrogate for the clinical outcome in patients with breast cancer after neoadjuvant therapy: A meta-regression of 29 randomized prospective studies publication-title: J. Clin. Oncol. – volume: 1 start-page: 1 year: 1989 end-page: 24 ident: b23 article-title: Introduction to grey system theory publication-title: J. Grey Syst. – volume: 10 start-page: 1280 year: 2021 end-page: 1290 ident: b34 article-title: Prediction of treatment responses to neoadjuvant chemotherapy in breast cancer using contrast-enhanced ultrasound publication-title: Gland Surg. – volume: 12 start-page: 320 year: 2003 end-page: 327 ident: b21 article-title: A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival publication-title: Breast – year: 2013 ident: b26 article-title: Quantitative Ultrasound in Soft Tissues: Statistics of Scatterer Property Estimates – volume: 20 start-page: 224 year: 2015 end-page: 236 ident: b13 article-title: Non-invasive evaluation of breast cancer response to chemotherapy using quantitative ultrasonic backscatter parameters publication-title: Med. Image Anal. – volume: 24 start-page: 874 year: 2011 end-page: 882 ident: b18 article-title: A novel medical image quality index publication-title: J. Digit. Imaging – volume: 18 start-page: e115 year: 2018 end-page: e121 ident: b12 article-title: Evaluation of the tumor response after neoadjuvant chemotherapy in breast cancer patients: correlation between dynamic contrast-enhanced magnetic resonance imaging and pathologic tumor cellularity publication-title: Clin. Breast Cancer – volume: 11 start-page: 1 year: 2021 end-page: 12 ident: b33 article-title: Predicting pathological complete response after neoadjuvant chemotherapy in advanced breast cancer by ultrasound and clinicopathological features using a nomogram publication-title: Front. Oncol. – year: 2019 ident: b1 article-title: National comprehensive cancer network (NCCN) publication-title: NCCN Clinical Practice Guidelines in Oncology: Breast Cancer V.1.2019 – volume: 11 start-page: 1 year: 2021 end-page: 9 ident: b36 article-title: Multiparametric ultrasound examination for response assessment in breast cancer patients undergoing neoadjuvant therapy publication-title: Sci. Rep. – year: 2008 ident: b22 article-title: Despeckle Filtering Algorithms and Software for Ultrasound Imaging – volume: 9 start-page: 7963 year: 2019 ident: b31 article-title: Breast-lesions characterization using quantitative ultrasound features of peritumoral tissue publication-title: Sci. Rep. – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: b25 article-title: Image quality qssessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – volume: 19 start-page: 61 year: 2019 end-page: 71 ident: b3 article-title: Early differentiating between the chemotherapy responders and nonresponders: preliminary results with ultrasonic spectrum analysis of the RF time series in preclinical breast cancer models publication-title: Cancer Imaging – volume: 12 start-page: 1271 issue: 10 year: 2019 ident: 10.1016/j.bspc.2022.104393_b16 article-title: Breast cancer treatment response monitoring using quantitative ultrasound and texture analysis: comparative analysis of analytical models publication-title: Transl. Oncol. doi: 10.1016/j.tranon.2019.06.004 – volume: 75 issue: 103559 year: 2022 ident: 10.1016/j.bspc.2022.104393_b14 article-title: Quantitative assessment for characterization of breast lesion tissues using adaptively decomposed ultrasound RF images publication-title: Biomed. Signal Process. Control – volume: 11 start-page: 1 year: 2021 ident: 10.1016/j.bspc.2022.104393_b33 article-title: Predicting pathological complete response after neoadjuvant chemotherapy in advanced breast cancer by ultrasound and clinicopathological features using a nomogram publication-title: Front. Oncol. doi: 10.3389/fonc.2021.718531 – volume: 19 start-page: 61 issue: 1 year: 2019 ident: 10.1016/j.bspc.2022.104393_b3 article-title: Early differentiating between the chemotherapy responders and nonresponders: preliminary results with ultrasonic spectrum analysis of the RF time series in preclinical breast cancer models publication-title: Cancer Imaging doi: 10.1186/s40644-019-0248-y – volume: 9 start-page: 7963 year: 2019 ident: 10.1016/j.bspc.2022.104393_b31 article-title: Breast-lesions characterization using quantitative ultrasound features of peritumoral tissue publication-title: Sci. Rep. doi: 10.1038/s41598-019-44376-z – volume: 8 start-page: 521 issue: 6 year: 2003 ident: 10.1016/j.bspc.2022.104393_b5 article-title: Update on locally advanced breast cancer publication-title: Oncologist doi: 10.1634/theoncologist.8-6-521 – volume: 24 start-page: 874 issue: 5 year: 2011 ident: 10.1016/j.bspc.2022.104393_b18 article-title: A novel medical image quality index publication-title: J. Digit. Imaging doi: 10.1007/s10278-010-9353-y – volume: 3 start-page: 32 issue: 1 year: 1950 ident: 10.1016/j.bspc.2022.104393_b29 article-title: Index for rating diagnostic tests publication-title: Cancer doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 – year: 2020 ident: 10.1016/j.bspc.2022.104393_b17 article-title: Early prediction of response to neoadjuvant chemotherapy in breast cancer sonography using Siamese convolutional neural networks publication-title: IEEE J. Biomed. Health Inform. – volume: 19 start-page: 89 issue: 77 year: 2019 ident: 10.1016/j.bspc.2022.104393_b6 article-title: Monitoring the response to neoadjuvant chemotherapy in patients with breast cancer using ultrasound scattering coefficient: A preliminary report publication-title: J. Ultrason. doi: 10.15557/JoU.2019.0013 – volume: 50 start-page: 58 issue: 1 year: 2013 ident: 10.1016/j.bspc.2022.104393_b10 article-title: Histopathologic changes following neoadjuvant chemotherapy in locally advanced breast cancer publication-title: Indian J. Cancer doi: 10.4103/0019-509X.112301 – year: 2019 ident: 10.1016/j.bspc.2022.104393_b1 article-title: National comprehensive cancer network (NCCN) – volume: 11 start-page: 1 year: 2021 ident: 10.1016/j.bspc.2022.104393_b36 article-title: Multiparametric ultrasound examination for response assessment in breast cancer patients undergoing neoadjuvant therapy publication-title: Sci. Rep. doi: 10.1038/s41598-021-82141-3 – volume: 10 start-page: 1280 year: 2021 ident: 10.1016/j.bspc.2022.104393_b34 article-title: Prediction of treatment responses to neoadjuvant chemotherapy in breast cancer using contrast-enhanced ultrasound publication-title: Gland Surg. doi: 10.21037/gs-20-836 – volume: 105 start-page: 321 issue: 5 year: 2013 ident: 10.1016/j.bspc.2022.104393_b28 article-title: Meta-analysis of magnetic resonance imaging in detecting residual breast cancer after Neoadjuvant therapy publication-title: JNCI: J. Natl. Cancer Inst. doi: 10.1093/jnci/djs528 – volume: 32 start-page: 2099 year: 2022 ident: 10.1016/j.bspc.2022.104393_b35 article-title: Deep learning radiomics of ultrasonography can predict response to neoadjuvant chemotherapy in breast cancer at an early stage of treatment: a prospective study publication-title: Eur. Radiol. doi: 10.1007/s00330-021-08293-y – year: 2016 ident: 10.1016/j.bspc.2022.104393_b27 article-title: A fusion-based approach for breast ultrasound image classification using multiple-ROI texture and morphological analyses publication-title: Comput. Math. Methods Med. doi: 10.1155/2016/6740956 – volume: 19 start-page: 1508 issue: 5 year: 2012 ident: 10.1016/j.bspc.2022.104393_b7 article-title: Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer publication-title: Ann. Surg. Oncol. doi: 10.1245/s10434-011-2108-2 – volume: 11 issue: 732 year: 2017 ident: 10.1016/j.bspc.2022.104393_b4 article-title: Highlights from the 15th St Gallen international breast cancer conference 15-18 march, 2017, vienna: tailored treatments for patients with early breast cancer publication-title: Ecancermedicalscience – volume: 9 start-page: 81 issue: 3 year: 2002 ident: 10.1016/j.bspc.2022.104393_b24 article-title: A universal image quality index publication-title: IEEE Signal Process. Lett. doi: 10.1109/97.995823 – volume: 7 issue: 45733 year: 2017 ident: 10.1016/j.bspc.2022.104393_b30 article-title: A priori prediction of neoadjuvant chemotherapy response and survival in breast cancer patients using quantitative ultrasound publication-title: Sci. Rep. – volume: 7 year: 2019 ident: 10.1016/j.bspc.2022.104393_b2 article-title: Accurate prediction of neoadjuvant chemotherapy pathological complete remission (pCR) for the four sub-types of breast cancer publication-title: IEEE Access – volume: 1 start-page: 1 issue: 1 year: 1989 ident: 10.1016/j.bspc.2022.104393_b23 article-title: Introduction to grey system theory publication-title: J. Grey Syst. – year: 2008 ident: 10.1016/j.bspc.2022.104393_b22 – volume: 36 start-page: 1938 issue: 15 year: 2000 ident: 10.1016/j.bspc.2022.104393_b11 article-title: Comparison of psychological aspects and patient satisfaction following breast conserving surgery, simple mastectomy and breast reconstruction publication-title: Eur. J. Cancer doi: 10.1016/S0959-8049(00)00197-0 – volume: 36 start-page: 2521 issue: 4 year: 2011 ident: 10.1016/j.bspc.2022.104393_b19 article-title: Quantitative grading using grey relational analysis on ultrasonographic images of a Fatty Liver publication-title: J. Med. Syst. doi: 10.1007/s10916-011-9724-z – volume: 12 start-page: 320 issue: 5 year: 2003 ident: 10.1016/j.bspc.2022.104393_b21 article-title: A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival publication-title: Breast doi: 10.1016/S0960-9776(03)00106-1 – volume: 14 start-page: 1 issue: 3 year: 2019 ident: 10.1016/j.bspc.2022.104393_b15 article-title: Monitoring breast cancer response to neoadjuvant chemotherapy with ultrasound signal statistics and integrated backscatter publication-title: PLoS ONE doi: 10.1371/journal.pone.0213749 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.1016/j.bspc.2022.104393_b25 article-title: Image quality qssessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 18 start-page: e115 issue: 1 year: 2018 ident: 10.1016/j.bspc.2022.104393_b12 article-title: Evaluation of the tumor response after neoadjuvant chemotherapy in breast cancer patients: correlation between dynamic contrast-enhanced magnetic resonance imaging and pathologic tumor cellularity publication-title: Clin. Breast Cancer doi: 10.1016/j.clbc.2017.08.003 – volume: 20 start-page: 224 issue: 1 year: 2015 ident: 10.1016/j.bspc.2022.104393_b13 article-title: Non-invasive evaluation of breast cancer response to chemotherapy using quantitative ultrasonic backscatter parameters publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.11.009 – volume: 32 start-page: 3883 issue: 34 year: 2014 ident: 10.1016/j.bspc.2022.104393_b8 article-title: Pathologic complete response as a potential surrogate for the clinical outcome in patients with breast cancer after neoadjuvant therapy: A meta-regression of 29 randomized prospective studies publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2014.55.2836 – year: 2013 ident: 10.1016/j.bspc.2022.104393_b26 – volume: 76 start-page: 1439 issue: 14 year: 2016 ident: 10.1016/j.bspc.2022.104393_b9 article-title: Pathological complete response after neoadjuvant chemotherapy predicts improved survival in all major subtypes of breast cancer: systematic review and meta-analyses of over 18, 000 patients publication-title: Cancer Res. doi: 10.1158/1538-7445.AM2016-1439 – volume: 12 start-page: 1177 year: 2019 ident: 10.1016/j.bspc.2022.104393_b32 article-title: Monitoring breast cancer response to neoadjuvant chemotherapy using ultrasound strain elastography publication-title: Transl. Oncol. doi: 10.1016/j.tranon.2019.05.004 – year: 2013 ident: 10.1016/j.bspc.2022.104393_b20 article-title: ACR BI-rads® ultrasound |
SSID | ssj0048714 |
Score | 2.2983377 |
Snippet | Neoadjuvant chemotherapy (NAC) in breast cancer requires non-invasive methods of monitoring its effects after each dose of drug therapy. The aim is to isolate... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104393 |
SubjectTerms | Breast cancer Image quality Neoadjuvant chemotherapy Quantitative ultrasound Treatment response |
Title | Preliminary assessment of the effectiveness of neoadjuvant chemotherapy in breast cancer with the use of ultrasound image quality indexes |
URI | https://dx.doi.org/10.1016/j.bspc.2022.104393 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEG5EL8lBoklQo0sfvIVxZ3t6eqaPIspqyCJEwdvQ1Q9YWWeX2VmIl9zzr1M107soBA9em65m6CrqMf3VV4ydjopUgMx1EoLBAgUjfGJyXyaFkKFMAUYupUbhnxM1vpc3D_nDFrtY98IQrDL6_t6nd946rgzjbQ4X0-nwF-bSqsTqRNATviyI8VPKgqz87M8G5oH5eMfvTZsT2h0bZ3qMFywXRGMoBD11Zjr7f3B6EXCuPrHdmCny8_5j9tiWr_fZxxf8gZ_Z39vGz7qxXM0zNxuOTT4PHPM63mM1ojujxdrPjXtcYfLcclTWU-y-eubTmgOh03GZrKDh9Hu2O2O19CS5mrWNWdIIJj59QhfE-2ZMknT-t19-YfdXl3cX4yTOVkgsFh1tIpT2mQvCpBaC0QEVNipBCWetkBa0zR2kFms3V0hniOUdXJDOARSmKJXOvrLtel77A8adAgFO2zJYkKkJmAFpjUeHTGlQmTpko_WlVjYSj9P8i1m1Rpg9VqSIihRR9Yo4ZN83MoueduPN3flaV9Ur46kwLrwhd_ROuW_sA02d78Hbx2y7bVb-BHOTFgad8Q3Yzvn1j_HkH7Ct56c |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9xADBbp5tD2UNIXTdu0c-itmPWO7bHnGELDpkmWQhPIzYzmARs23sXrheQn5F9XWo9DCiWHXofRYEZC-uSRPgF8m5SpxLzQSQiGEhSK8IkpfJWUMg9VijhxKTcKn8_U9DL_eVVc7cDR0AvDZZXR9_c-feut48o43uZ4NZ-PfxOWVhVlJ5Kf8PMyewa7zE5VjGD38OR0OhscMkHyLcU3709YIPbO9GVeuF4xk6GU_NqZ6ezf8elRzDneg1cRLIrD_ntew45v3sDLRxSCb-H-V-sX28lc7Z0wDzSbYhkEQTvRl2tEj8aLjV8ad70h_NwJ0tdNbMC6E_NGIBeo0zIbQiv4D-32jM3as-Rm0bVmzVOYxPyGvJDo-zFZ0vlbv34Hl8c_Lo6mSRyvkFjKO7pEKu0zF6RJLQajA-lsUqGSzlqZW9S2cJhaSt9cmTvDRO_oQu4cYmnKSunsPYyaZeM_gHAKJTptq2AxT00gEKQ1HR0ypVFlah8mw6XWNnKP8wiMRT0UmV3XrIiaFVH3itiH7w8yq55548ndxaCr-i_7qSk0PCH38T_lvsLz6cX5WX12Mjv9BC94CH1fy_0ZRl278QcEVTr8Ek3xD5zt6lg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preliminary+assessment+of+the+effectiveness+of+neoadjuvant+chemotherapy+in+breast+cancer+with+the+use+of+ultrasound+image+quality+indexes&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Paw%C5%82owska%2C+Anna&rft.au=%C5%BBo%C5%82ek%2C+Norbert&rft.au=Le%C5%9Bniak-Plewi%C5%84ska%2C+Beata&rft.au=Dobruch-Sobczak%2C+Katarzyna&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=80&rft_id=info:doi/10.1016%2Fj.bspc.2022.104393&rft.externalDocID=S1746809422008473 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |