Identification of the geographic origin of peaches by VIS-NIR spectroscopy, fluorescence spectroscopy and image processing technology
Identifying the geographic origin of peaches will not only help producers obtain higher economic benefits, but also enable consumers to buy the most satisfactory fruits. In this study, the feasibility of distinguishing the geographic origin of four traditional famous peaches in China by visible-near...
Saved in:
Published in | Journal of food composition and analysis Vol. 114; p. 104843 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Identifying the geographic origin of peaches will not only help producers obtain higher economic benefits, but also enable consumers to buy the most satisfactory fruits. In this study, the feasibility of distinguishing the geographic origin of four traditional famous peaches in China by visible-near infrared spectroscopy, fluorescence spectroscopy and image processing technology was explored. Visible-near infrared spectra and fluorescence spectra of 397–1175 nm and color characteristics extracted from images were used to establish the support vector machine, k-nearest neighbor, random forest and extreme learning machine classification models. The factors most related to the geographic origin were found by decision tree analysis. The results showed that the support vector machine models had the highest classification accuracy, some reaching 100%. In order to improve the calculation speed, the spectral principal components were used, resulting in the accuracy of support vector machine, k-nearest neighbor and random forest models more than 95%. The decision tree showed that R value, the first principal component of fluorescence spectra and H value played a decisive role in identifying the geographic origin, leading to the accuracy of support vector machine, k-nearest neighbor and random forest models more than 95%. This study compared the advantages and disadvantages of visible-near infrared spectroscopy, fluorescence spectroscopy and image processing technology in identifying geographic origin, and found that the combination of these three methods could effectively distinguished the geographic origin of peaches.
•The quality attributes of peaches from different geographic origins were compared.•Three non-destructive methods were compared in identifying the geographic origins.•The SVM models based on spectral and image data had the highest accuracy.•Three factors most related to geographic origin of peaches were found. |
---|---|
AbstractList | Identifying the geographic origin of peaches will not only help producers obtain higher economic benefits, but also enable consumers to buy the most satisfactory fruits. In this study, the feasibility of distinguishing the geographic origin of four traditional famous peaches in China by visible-near infrared spectroscopy, fluorescence spectroscopy and image processing technology was explored. Visible-near infrared spectra and fluorescence spectra of 397–1175 nm and color characteristics extracted from images were used to establish the support vector machine, k-nearest neighbor, random forest and extreme learning machine classification models. The factors most related to the geographic origin were found by decision tree analysis. The results showed that the support vector machine models had the highest classification accuracy, some reaching 100%. In order to improve the calculation speed, the spectral principal components were used, resulting in the accuracy of support vector machine, k-nearest neighbor and random forest models more than 95%. The decision tree showed that R value, the first principal component of fluorescence spectra and H value played a decisive role in identifying the geographic origin, leading to the accuracy of support vector machine, k-nearest neighbor and random forest models more than 95%. This study compared the advantages and disadvantages of visible-near infrared spectroscopy, fluorescence spectroscopy and image processing technology in identifying geographic origin, and found that the combination of these three methods could effectively distinguished the geographic origin of peaches.
•The quality attributes of peaches from different geographic origins were compared.•Three non-destructive methods were compared in identifying the geographic origins.•The SVM models based on spectral and image data had the highest accuracy.•Three factors most related to geographic origin of peaches were found. |
ArticleNumber | 104843 |
Author | Xu, Huirong Tian, Shijie Yang, Qinyi |
Author_xml | – sequence: 1 givenname: Qinyi surname: Yang fullname: Yang, Qinyi organization: College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China – sequence: 2 givenname: Shijie surname: Tian fullname: Tian, Shijie organization: College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China – sequence: 3 givenname: Huirong surname: Xu fullname: Xu, Huirong email: hrxu@zju.edu.cn organization: College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China |
BookMark | eNp9kMtOwzAQRS1UJNrCD7DyB5Bi51VHYoMqHpEqkHhtLWc8SVyVOLIDUj6A_8ahbNiwGs3jju49CzLrbIeEnHO24oznl7vVrga1ilkch0Eq0uSIzDkr8ig0fEbmTIgi4tk6OyEL73eMsSxOxZx8lRq7wdQG1GBsR21NhxZpg7Zxqm8NUOtMY34WPSpo0dNqpG_lc_RQPlHfIwzOerD9eEHr_Yd16AE7wD8rqjpNzbtqkPbOAnpvuoYOCG1n97YZT8lxrfYez37rkrze3rxs7qPt4125ud5GECdsiDhCnrNC51jkotA1MORFxdZaVYnWIW5aYczFWigosnBYi4wVGaYaqjhTlUqWJD78hWDMO6xl74ItN0rO5ARS7uQEUk4g5QFkEF0dRBicfRp00oOZImrjQkSprflP_g18A4FR |
CitedBy_id | crossref_primary_10_3390_w15010100 crossref_primary_10_3389_fnut_2023_1224955 crossref_primary_10_1007_s12161_024_02625_6 crossref_primary_10_1016_j_saa_2023_122343 crossref_primary_10_1016_j_saa_2023_123037 crossref_primary_10_1016_j_jfca_2024_106378 crossref_primary_10_1016_j_microc_2024_111037 crossref_primary_10_3389_fpls_2023_1180203 crossref_primary_10_3390_app14114527 crossref_primary_10_1139_cjfas_2022_0292 crossref_primary_10_1111_1541_4337_13196 |
Cites_doi | 10.1016/j.postharvbio.2020.111320 10.1016/j.microc.2020.105702 10.1016/j.postharvbio.2019.02.001 10.1016/j.neucom.2005.12.126 10.1016/j.biosystemseng.2019.04.022 10.1016/j.saa.2021.119872 10.1016/j.vibspec.2020.103152 10.1364/AO.56.001753 10.1016/j.microc.2021.107066 10.1016/j.jfca.2021.103843 10.1016/j.biosystemseng.2018.12.009 10.1016/j.postharvbio.2020.111134 10.13031/trans.13844 10.1016/S0169-7439(02)00046-1 10.1016/j.vibspec.2014.02.010 10.1016/j.foodcont.2018.12.033 10.1023/A:1010933404324 10.1016/j.foodchem.2020.126704 10.1016/j.isprsjprs.2016.01.011 10.1016/j.geoderma.2008.05.008 10.1016/j.microc.2021.106893 10.1117/1.JBO.19.6.067001 10.1016/j.saa.2018.07.033 10.1016/j.vibspec.2020.103182 10.1080/10408340600969486 10.1016/j.compag.2020.105553 10.1021/jf303248z 10.1016/j.aca.2012.11.020 10.1016/j.compag.2012.03.008 10.1016/j.foodcont.2020.107231 10.1016/j.compag.2016.03.005 10.1016/j.foodchem.2021.131063 10.1016/j.compag.2021.106638 10.1016/j.ijleo.2016.03.049 10.1016/j.jfoodeng.2012.05.038 10.1016/j.biosystemseng.2020.03.006 10.1016/j.postharvbio.2022.111851 10.1016/j.marpolbul.2022.113640 10.1016/j.jfoodeng.2016.01.008 10.1016/j.saa.2021.120737 10.1016/j.postharvbio.2015.08.006 10.1016/j.neunet.2014.10.001 10.1016/j.saa.2021.119798 10.1016/j.lwt.2021.111292 10.1016/j.biosystemseng.2021.10.004 10.1023/A:1012450327387 10.1007/s12161-017-0829-y 10.1016/j.foodchem.2019.126060 10.1016/j.foodchem.2021.131713 10.1016/j.jfca.2021.103916 10.1021/jf3043727 10.1016/j.talanta.2016.12.035 10.1016/j.foodchem.2017.06.070 10.1016/j.saa.2021.120537 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. |
Copyright_xml | – notice: 2022 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jfca.2022.104843 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Chemistry Diet & Clinical Nutrition |
EISSN | 1096-0481 |
ExternalDocumentID | 10_1016_j_jfca_2022_104843 S0889157522004616 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARLI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADFGL ADHUB ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CBWCG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q G8K GBLVA HLV HVGLF HZ~ IHE J1W KOM LG5 LW8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAB SCB SDF SDG SDP SES SEW SPC SPCBC SSA SSK SSZ T5K UHS UNMZH WUQ XPP ZMT ZU3 ~G- ~KM AAHBH AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c230t-1ec6609d6e9689dfc0e19b07dab3dd1094be21878ac95609f85095e4dcb25aba3 |
IEDL.DBID | AIKHN |
ISSN | 0889-1575 |
IngestDate | Thu Sep 26 17:24:03 EDT 2024 Fri Feb 23 02:37:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fluorescence spectroscopy Image processing technology VIS-NIR spectroscopy Classification models Geographic origin identification Peach |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c230t-1ec6609d6e9689dfc0e19b07dab3dd1094be21878ac95609f85095e4dcb25aba3 |
ParticipantIDs | crossref_primary_10_1016_j_jfca_2022_104843 elsevier_sciencedirect_doi_10_1016_j_jfca_2022_104843 |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of food composition and analysis |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Guo, Gu, Liu, Shang (bib17) 2016; 123 Xu, Zomer, Brereton (bib59) 2006; 36 Arndt, Rurik, Drees, Ahlers, Feldmann, Kohlbacher, Fischer (bib1) 2021; 160 Chang, Wu, Wang, Chen, Yang, Fu, Yang, Li, Zhang, Yu (bib6) 2022; 269 Zhang, Huang, Li, Wu, Svanberg, Svanberg (bib63) 2014; 19 Barea-Sepúlveda, Ferreiro-González, Calle, Barbero, Ayuso, Palma (bib2) 2022; 172 Marsol-Vall, Balcells, Eras, Canela-Garayoa (bib35) 2018; 239 Chapelle, Vapnik, Bousquet, Mukherjee (bib7) 2002; 46 Liu, Huang, Li, Chen, Cui, Lu, Wang, Li, Xu, Zhong, Ning (bib29) 2022; 267 Guo, Ma, Yang, Mankin (bib16) 2019; 184 Ivorra, Sánchez, Verdú, Barat, Grau (bib22) 2016; 178 Giraudo, Grassi, Savorani, Gavoci, Casiraghi, Geobaldo (bib14) 2019; 99 Nascimento, Carvalho, Júnior, Pereira, Teixeira (bib36) 2016; 111 Ullah, Khan, Bilal, Nurjis, Saleem (bib56) 2016; 127 Xiang, Cheng, Xia, Tang, Mu, Bi (bib58) 2020; 111 Wu, Xu, Xu (bib57) 2019; 179 Long, Wu, Wang, Dong, Chen, Yu (bib32) 2021; 258 Choi, Kim, Moon (bib9) 2021; 101 Grimm, Behrens, Mrker, Elsenbeer (bib15) 2008; 146 Malegori, Nascimento Marques, de Freitas, Pimentel, Pasquini, Casiraghi (bib34) 2017; 165 Suchithra, Pai (bib49) 2020; 7 Yang, Wu, Fang, Zhang, Wang, Fu, Majeed, Li, Cui (bib60) 2021 Zhu (bib65) 2019 Jamshidi, Minaei, Mohajerani, Ghassemian (bib23) 2012; 85 Shao, Wang, Xuan (bib43) 2021; 212 Ma, Feng, Pan, Wei, Liu, Tu, Zhao, Peng (bib33) 2020; 163 Sun, Li, Pan, Abbas, Jiang, Wang (bib50) 2021; 171 Liu, Zhang, Jiang, Liu (bib30) 2020; 111 Huang, Huang, Song, You (bib19) 2013; 61 Robert, de Gois, Rocha, Luna (bib39) 2022; 371 Song, Shao, Yan, Li, Peng, Guo (bib46) 2021; 146 Lga, Qiang, Ke, Yong, Gz, Wf, Xw, Cc, Jian, Qi (bib26) 2021; 276 Shao, Wang, Xuan, Gao, Wang, Gao (bib44) 2020; 51 Chen, Bai, Xu, Zhou, Li, Wang, Hu (bib8) 2017; 10 Fan, Li, Xia, Tian, Guo, Huang (bib11) 2019; 151 Tian, Wang, Xu (bib53) 2022; 187 Ib, Rc, Db, Cg, Mc, As (bib21) 2021; 278 Obledo-Vázquez, Optics (bib37) 2017; 56 Liu, Ma, Wei, Tu, Pan (bib28) 2021; 98 Statistics, Breiman (bib48) 2001; 45 Zhang, He, Zhang, Whiting, Karkee, Zhang (bib64) 2020; 193 Sonja, Davidovic, Mile, Veljovic, Milica, Agricultural, Chemistry (bib47) 2013; 61 Ge, Shi, Zhu, Yang, Hao (bib13) 2020; 22 Hu, Yin, Ma, Liu (bib18) 2018; 205 Jiang, Cao, Zhu, Wu, Du, Ao (bib24) 2013; 29 Shuai, Peng, Niu, Shao, Hou, Cai (bib45) 2022; 374 Yu, Lin (bib62) 2017 Belgiu, Drăguţ (bib4) 2016; 114 Rong, Wang, Ying, Zhang, Zhang (bib40) 2020; 175 Tahir, Arslan, Mahunu, Mariod, Wen, Xiaobo, Xiaowei, Jiyong, El-Seedi (bib52) 2020; 114 Lima, Fernandes, Pereira, Gomes, Araújo, Diniz (bib27) 2020; 312 Liu, Yang, Wang, Zhang (bib31) 2021; 258 Oliveri, Casolino, Casale, Medini, Mare, Lanteri (bib38) 2013; 761 Jiao, Lu, Liu (bib25) 2022; 178 Schmutzler, Huck (bib41) 2014; 72 Be Lousov, Verzakov, Frese, Systems (bib3) 2002; 64 Tian, Wang, Xu (bib54) 2022; 193 Huang, Zhu, Siew (bib20) 2006; 70 Sun, Lu, Pan, Wang, Tu (bib51) 2020; 321 Capitani, Sobolev, Tomassini, Sciubba, Salvador, Mannina, Delfini (bib10) 2012; 61 Garrido-Novell, Pérez-Marin, Amigo, Fernández-Novales, Guerrero, Garrido-Varo (bib12) 2012; 113 Tian, Ma, Yang, Duan (bib55) 2022; 9 Shakiba, Gerdes, Holz, Wenck, Bachmann, Schneider, Seifert, Fischer, Hackl (bib42) 2022; 174 Chang, Wu, Tian, Yan, Xu (bib5) 2020; 63 Yue, Yan, Zhao, Cheng, Wang, Guan (bib61) 2021; 21 Choi (10.1016/j.jfca.2022.104843_bib9) 2021; 101 Ib (10.1016/j.jfca.2022.104843_bib21) 2021; 278 Zhu (10.1016/j.jfca.2022.104843_bib65) 2019 Fan (10.1016/j.jfca.2022.104843_bib11) 2019; 151 Ma (10.1016/j.jfca.2022.104843_bib33) 2020; 163 Grimm (10.1016/j.jfca.2022.104843_bib15) 2008; 146 Marsol-Vall (10.1016/j.jfca.2022.104843_bib35) 2018; 239 Chen (10.1016/j.jfca.2022.104843_bib8) 2017; 10 Arndt (10.1016/j.jfca.2022.104843_bib1) 2021; 160 Statistics (10.1016/j.jfca.2022.104843_bib48) 2001; 45 Wu (10.1016/j.jfca.2022.104843_bib57) 2019; 179 Garrido-Novell (10.1016/j.jfca.2022.104843_bib12) 2012; 113 Shuai (10.1016/j.jfca.2022.104843_bib45) 2022; 374 Liu (10.1016/j.jfca.2022.104843_bib29) 2022; 267 Tian (10.1016/j.jfca.2022.104843_bib55) 2022; 9 Tahir (10.1016/j.jfca.2022.104843_bib52) 2020; 114 Nascimento (10.1016/j.jfca.2022.104843_bib36) 2016; 111 Suchithra (10.1016/j.jfca.2022.104843_bib49) 2020; 7 Chang (10.1016/j.jfca.2022.104843_bib5) 2020; 63 Huang (10.1016/j.jfca.2022.104843_bib19) 2013; 61 Jamshidi (10.1016/j.jfca.2022.104843_bib23) 2012; 85 Jiao (10.1016/j.jfca.2022.104843_bib25) 2022; 178 Chapelle (10.1016/j.jfca.2022.104843_bib7) 2002; 46 Zhang (10.1016/j.jfca.2022.104843_bib63) 2014; 19 Hu (10.1016/j.jfca.2022.104843_bib18) 2018; 205 Liu (10.1016/j.jfca.2022.104843_bib28) 2021; 98 Tian (10.1016/j.jfca.2022.104843_bib54) 2022; 193 Be Lousov (10.1016/j.jfca.2022.104843_bib3) 2002; 64 Liu (10.1016/j.jfca.2022.104843_bib31) 2021; 258 Song (10.1016/j.jfca.2022.104843_bib46) 2021; 146 Jiang (10.1016/j.jfca.2022.104843_bib24) 2013; 29 Ullah (10.1016/j.jfca.2022.104843_bib56) 2016; 127 Shao (10.1016/j.jfca.2022.104843_bib44) 2020; 51 Xiang (10.1016/j.jfca.2022.104843_bib58) 2020; 111 Chang (10.1016/j.jfca.2022.104843_bib6) 2022; 269 Shakiba (10.1016/j.jfca.2022.104843_bib42) 2022; 174 Lima (10.1016/j.jfca.2022.104843_bib27) 2020; 312 Guo (10.1016/j.jfca.2022.104843_bib17) 2016; 123 Shao (10.1016/j.jfca.2022.104843_bib43) 2021; 212 Liu (10.1016/j.jfca.2022.104843_bib30) 2020; 111 Yang (10.1016/j.jfca.2022.104843_bib60) 2021 Giraudo (10.1016/j.jfca.2022.104843_bib14) 2019; 99 Rong (10.1016/j.jfca.2022.104843_bib40) 2020; 175 Sun (10.1016/j.jfca.2022.104843_bib51) 2020; 321 Ge (10.1016/j.jfca.2022.104843_bib13) 2020; 22 Malegori (10.1016/j.jfca.2022.104843_bib34) 2017; 165 Ivorra (10.1016/j.jfca.2022.104843_bib22) 2016; 178 Obledo-Vázquez (10.1016/j.jfca.2022.104843_bib37) 2017; 56 Yue (10.1016/j.jfca.2022.104843_bib61) 2021; 21 Tian (10.1016/j.jfca.2022.104843_bib53) 2022; 187 Oliveri (10.1016/j.jfca.2022.104843_bib38) 2013; 761 Belgiu (10.1016/j.jfca.2022.104843_bib4) 2016; 114 Sun (10.1016/j.jfca.2022.104843_bib50) 2021; 171 Barea-Sepúlveda (10.1016/j.jfca.2022.104843_bib2) 2022; 172 Huang (10.1016/j.jfca.2022.104843_bib20) 2006; 70 Capitani (10.1016/j.jfca.2022.104843_bib10) 2012; 61 Robert (10.1016/j.jfca.2022.104843_bib39) 2022; 371 Schmutzler (10.1016/j.jfca.2022.104843_bib41) 2014; 72 Xu (10.1016/j.jfca.2022.104843_bib59) 2006; 36 Lga (10.1016/j.jfca.2022.104843_bib26) 2021; 276 Sonja (10.1016/j.jfca.2022.104843_bib47) 2013; 61 Long (10.1016/j.jfca.2022.104843_bib32) 2021; 258 Yu (10.1016/j.jfca.2022.104843_bib62) 2017 Guo (10.1016/j.jfca.2022.104843_bib16) 2019; 184 Zhang (10.1016/j.jfca.2022.104843_bib64) 2020; 193 |
References_xml | – volume: 61 start-page: 1718 year: 2012 end-page: 1726 ident: bib10 article-title: Peach fruit: metabolic comparative analysis of two varieties with different resistances to insect attacks by NMR spectroscopy publication-title: J. Agric. Food Chem. contributor: fullname: Delfini – volume: 267 year: 2022 ident: bib29 article-title: Rapid identification of the green tea geographical origin and processing month based on near-infrared hyperspectral imaging combined with chemometrics publication-title: Spectroc. Acta Pt. A-Molec. BioMolec. Spectr. contributor: fullname: Ning – volume: 374 year: 2022 ident: bib45 article-title: Recent techniques for the authentication of the geographical origin of tea leaves from Camellia sinensis: A review publication-title: Food Chem. contributor: fullname: Cai – volume: 205 start-page: 207 year: 2018 end-page: 213 ident: bib18 article-title: Comparison and application of fluorescence EEMs and DRIFTS combined with chemometrics for tracing the geographical origin of Radix Astragali publication-title: Spectroc. Acta Pt. A-Molec. BioMolec. Spectr. contributor: fullname: Liu – volume: 278 year: 2021 ident: bib21 article-title: Characterization of fruit quality traits for organic acids content and profile in a large peach germplasm collection publication-title: Sci. Hortic. contributor: fullname: As – volume: 321 year: 2020 ident: bib51 article-title: Assessment of the optical properties of peaches with fungal infection using spatially-resolved diffuse reflectance technique and their relationships with tissue structural and biochemical properties publication-title: Food Chem. contributor: fullname: Tu – volume: 19 year: 2014 ident: bib63 article-title: Studies of tropical fruit ripening using three different spectroscopic techniques publication-title: J. Biomed. Opt. contributor: fullname: Svanberg – volume: 258 year: 2021 ident: bib31 article-title: Multi-platform integration based on NIR and UV–Vis spectroscopies for the geographical traceability of the fruits of Amomum tsao-ko publication-title: Spectroc. Acta Pt. A-Molec. BioMolec. Spectr. contributor: fullname: Zhang – volume: 98 year: 2021 ident: bib28 article-title: Quantitative determination of sugar profiles in peach fruit during storage by an integrating sphere system publication-title: J. Food Compos. Anal. contributor: fullname: Pan – volume: 56 start-page: 1753 year: 2017 end-page: 1756 ident: bib37 article-title: Laser-induced fluorescence spectral analysis of papaya fruits at different stages of ripening publication-title: Appl. Opt. contributor: fullname: Optics – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib48 article-title: Random forests publication-title: Mach. Learn. contributor: fullname: Breiman – volume: 85 start-page: 64 year: 2012 end-page: 69 ident: bib23 article-title: Reflectance Vis/NIR spectroscopy for nondestructive taste characterization of Valencia oranges publication-title: Comput. Electron. Agric. contributor: fullname: Ghassemian – volume: 371 year: 2022 ident: bib39 article-title: Direct solid sample analysis using synchronous fluorescence spectroscopy coupled with chemometric tools for the geographical discrimination of coffee samples publication-title: Food Chem. contributor: fullname: Luna – volume: 269 year: 2022 ident: bib6 article-title: Geographical origin traceability of traditional Chinese medicine Atractylodes macrocephala Koidz. by using multi-way fluorescence fingerprint and chemometric methods publication-title: Spectroc. Acta Pt. A-Molec. BioMolec. Spectr. contributor: fullname: Yu – volume: 111 start-page: 345 year: 2016 end-page: 351 ident: bib36 article-title: Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR) publication-title: Postharvest Biol. Technol. contributor: fullname: Teixeira – volume: 175 year: 2020 ident: bib40 article-title: Peach variety detection using VIS-NIR spectroscopy and deep learning publication-title: Comput. Electron. Agric. contributor: fullname: Zhang – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: bib20 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing contributor: fullname: Siew – year: 2021 ident: bib60 article-title: Detection of abnormal hydroponic lettuce leaves based on image processing and machine learning publication-title: Inf. Process. Agric. contributor: fullname: Cui – volume: 46 start-page: 131 year: 2002 end-page: 159 ident: bib7 article-title: Choosing multiple parameters for support vector machines publication-title: Mach. Learn contributor: fullname: Mukherjee – volume: 174 year: 2022 ident: bib42 article-title: Determination of the geographical origin of hazelnuts (Corylus avellana L.) by Near-Infrared spectroscopy (NIR) and a Low-Level Fusion with nuclear magnetic resonance (NMR) publication-title: Microchem J. contributor: fullname: Hackl – volume: 111 year: 2020 ident: bib30 article-title: Detection of the quality of juicy peach during storage by visible/near infrared spectroscopy publication-title: Vib. Spectrosc. contributor: fullname: Liu – volume: 113 start-page: 281 year: 2012 end-page: 288 ident: bib12 article-title: Grading and color evolution of apples using RGB and hyperspectral imaging vision cameras publication-title: J. Food Eng. contributor: fullname: Garrido-Varo – volume: 193 start-page: 247 year: 2020 end-page: 263 ident: bib64 article-title: Determination of key canopy parameters for mass mechanical apple harvesting using supervised machine learning and principal component analysis (PCA) publication-title: Biosyst. Eng. contributor: fullname: Zhang – volume: 101 year: 2021 ident: bib9 article-title: Geographical origin discriminant analysis of Chia seeds (Salvia hispanica L.) using hyperspectral imaging publication-title: J. Food Compos. Anal. contributor: fullname: Moon – volume: 36 start-page: 177 year: 2006 end-page: 188 ident: bib59 publication-title: Crit. Rev. Anal. Chem. contributor: fullname: Brereton – volume: 114 year: 2020 ident: bib52 article-title: Authentication of the geographical origin of Roselle (Hibiscus sabdariffa L) using various spectroscopies: NIR, low-field NMR and fluorescence publication-title: Food Control contributor: fullname: El-Seedi – volume: 187 year: 2022 ident: bib53 article-title: Firmness measurement of kiwifruit using a self-designed device based on acoustic vibration technology publication-title: Postharvest Biol. Technol. contributor: fullname: Xu – start-page: 242 year: 2017 end-page: 247 ident: bib62 article-title: M-Weighted extreme learning machine for imbalanced learning publication-title: IEEE Int. Conf. Inf. Autom. contributor: fullname: Lin – volume: 123 start-page: 297 year: 2016 end-page: 303 ident: bib17 article-title: Peach variety identification using near-infrared diffuse reflectance spectroscopy publication-title: Comput. Electron. Agric. contributor: fullname: Shang – volume: 146 year: 2021 ident: bib46 article-title: Characterization of volatile profiles of three colored quinoas based on GC-IMS and PCA publication-title: LWT-Food Sci. Technol. contributor: fullname: Guo – volume: 178 start-page: 110 year: 2016 end-page: 116 ident: bib22 article-title: Shelf life prediction of expired vacuum-packed chilled smoked salmon based on a KNN tissue segmentation method using hyperspectral images publication-title: J. Food Eng. contributor: fullname: Grau – volume: 10 start-page: 2646 year: 2017 end-page: 2656 ident: bib8 article-title: Classification of Chinese Vinegars using optimized artificial neural networks by genetic algorithm and other discriminant techniques publication-title: Food Anal. Meth contributor: fullname: Hu – volume: 163 year: 2020 ident: bib33 article-title: Relationships between optical properties of peach flesh with firmness and tissue structure during storage publication-title: Postharvest Biol. Technol. contributor: fullname: Peng – volume: 172 year: 2022 ident: bib2 article-title: Comparison of different processing approaches by SVM and RF on HS-MS eNose and NIR Spectrometry data for the discrimination of gasoline samples publication-title: Microchem J. contributor: fullname: Palma – volume: 171 year: 2021 ident: bib50 article-title: Authentication of the geographic origin of Yangshan region peaches based on hyperspectral imaging publication-title: Postharvest Biol. Technol. contributor: fullname: Wang – volume: 64 start-page: 15 year: 2002 end-page: 25 ident: bib3 article-title: A flexible classification approach with optimal generalisation performance: support vector machines publication-title: Chemom. Intell. Lab. Syst. contributor: fullname: Systems – volume: 61 start-page: 1357 year: 2013 end-page: 1363 ident: bib47 article-title: Physicochemical, Antioxidant and Sensory Properties of Peach Wine Made from Redhaven Cultivar publication-title: J. Agric. Food Chem. contributor: fullname: Chemistry – volume: 72 start-page: 97 year: 2014 end-page: 104 ident: bib41 article-title: Automatic sample rotation for simultaneous determination of geographical origin and quality characteristics of apples based on near infrared spectroscopy (NIRS) publication-title: Vib. Spectrosc. contributor: fullname: Huck – volume: 193 year: 2022 ident: bib54 article-title: Early detection of freezing damage in oranges by online Vis/NIR transmission coupled with diameter correction method and deep 1D-CNN publication-title: Comput. Electron. Agric. contributor: fullname: Xu – volume: 63 start-page: 1711 year: 2020 end-page: 1721 ident: bib5 article-title: Non-destructive identification of internal watercore in apples based on online Vis/NIR spectroscopy publication-title: Trans. ASABE contributor: fullname: Xu – volume: 29 start-page: 183 year: 2013 end-page: 188 ident: bib24 article-title: Research on the Climate Condition and Production Prediction of Fenghua Honey Peach publication-title: Chin. Agric. Sci. Bull. contributor: fullname: Ao – volume: 761 start-page: 46 year: 2013 end-page: 52 ident: bib38 article-title: A spectral transfer procedure for application of a single class-model to spectra recorded by different near-infrared spectrometers for authentication of olives in brine publication-title: Anal. Chim. Acta contributor: fullname: Lanteri – volume: 312 year: 2020 ident: bib27 article-title: Digital image-based tracing of geographic origin, winemaker, and grape type for red wine authentication publication-title: Food Chem. contributor: fullname: Diniz – volume: 111 year: 2020 ident: bib58 article-title: Simultaneous identification of geographical origin and grade of flue-cured tobacco using NIR spectroscopy publication-title: Vib. Spectrosc. contributor: fullname: Bi – volume: 276 year: 2021 ident: bib26 article-title: Development of a 775 SNP array for peach based on whole-genome resequencing data, and assessment of the potential of its application publication-title: Sci. Hortic. contributor: fullname: Qi – volume: 127 start-page: 5186 year: 2016 end-page: 5189 ident: bib56 article-title: Non-invasive assessment of mango ripening using fluorescence spectroscopy publication-title: Optik contributor: fullname: Saleem – volume: 258 year: 2021 ident: bib32 article-title: Fast identification of the geographical origin of Gastrodia elata using excitation-emission matrix fluorescence and chemometric methods publication-title: Spectroc. Acta Pt. A-Molec. BioMolec. Spectr. contributor: fullname: Yu – volume: 114 start-page: 24 year: 2016 end-page: 31 ident: bib4 article-title: Random forest in remote sensing: A review of applications and future directions publication-title: ISPRS-J. Photogramm. Remote Sens contributor: fullname: Drăguţ – volume: 22 year: 2020 ident: bib13 article-title: Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms publication-title: Glob. Ecol. Conserv. contributor: fullname: Hao – volume: 61 start-page: 32 year: 2013 end-page: 48 ident: bib19 article-title: Trends in extreme learning machines: A review publication-title: Neural Netw. contributor: fullname: You – volume: 99 start-page: 137 year: 2019 end-page: 145 ident: bib14 article-title: Determination of the geographical origin of green coffee beans using NIR spectroscopy and multivariate data analysis publication-title: Food Control contributor: fullname: Geobaldo – volume: 9 start-page: 195 year: 2022 end-page: 211 ident: bib55 article-title: Application status and challenges of machine vision in plant factory—A review publication-title: Inf. Process. Agric. contributor: fullname: Duan – volume: 7 start-page: 72 year: 2020 end-page: 82 ident: bib49 article-title: Improving the prediction accuracy of soil nutrient classification by optimizing extreme learning machine parameters publication-title: Inf. Process. Agric. contributor: fullname: Pai – volume: 146 start-page: 102 year: 2008 end-page: 113 ident: bib15 article-title: Soil organic carbon concentrations and stocks on Barro Colorado Island — Digital soil mapping using Random Forests analysis publication-title: Geoderma contributor: fullname: Elsenbeer – volume: 160 year: 2021 ident: bib1 article-title: Food authentication: Determination of the geographical origin of almonds (Prunus dulcis Mill.) via near-infrared spectroscopy publication-title: Microchem J. contributor: fullname: Fischer – volume: 184 start-page: 37 year: 2019 end-page: 44 ident: bib16 article-title: Detection of damaged wheat kernels using an impact acoustic signal processing technique based on Gaussian modelling and an improved extreme learning machine algorithm publication-title: Biosyst. Eng. contributor: fullname: Mankin – volume: 51 start-page: 344 year: 2020 end-page: 350 ident: bib44 article-title: Visual Detection of SSC and Firmness and Maturity Prediction for Feicheng Peach by Using Hyperspectral Imaging publication-title: Trans. Chin. Soc. Agric. Mach. contributor: fullname: Gao – volume: 21 start-page: 101 year: 2021 end-page: 108 ident: bib61 article-title: Analysis on quality changes of postharvest Shenzhou honey peach fruits using electronic nose publication-title: Storage Process contributor: fullname: Guan – volume: 179 start-page: 22 year: 2019 end-page: 34 ident: bib57 article-title: Discrimination of aflatoxin B1 contaminated pistachio kernels using laser induced fluorescence spectroscopy publication-title: Biosyst. Eng. contributor: fullname: Xu – volume: 212 start-page: 115 year: 2021 end-page: 125 ident: bib43 article-title: In-field and non-invasive determination of internal quality and ripeness stages of Feicheng peach using a portable hyperspectral imager publication-title: Biosyst. Eng. contributor: fullname: Xuan – volume: 178 year: 2022 ident: bib25 article-title: Optical quantification of oil emulsions in multi-band coarse-resolution imagery using a lab-derived HSV model publication-title: Mar. Pollut. Bull. contributor: fullname: Liu – volume: 239 start-page: 119 year: 2018 end-page: 125 ident: bib35 article-title: Development of a SBSE-TD method coupled to GC-MS and chemometrics for the differentiation of variety and processing conditions in peach juices publication-title: Food Chem. contributor: fullname: Canela-Garayoa – volume: 151 start-page: 79 year: 2019 end-page: 87 ident: bib11 article-title: Long-term evaluation of soluble solids content of apples with biological variability by using near-infrared spectroscopy and calibration transfer method publication-title: Postharvest Biol. Technol. contributor: fullname: Huang – volume: 165 start-page: 112 year: 2017 end-page: 116 ident: bib34 article-title: Comparing the analytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms publication-title: Talanta contributor: fullname: Casiraghi – year: 2019 ident: bib65 article-title: Study on the Inheritance of Wuxi Yangshan Peach Cultural Heritage contributor: fullname: Zhu – volume: 171 year: 2021 ident: 10.1016/j.jfca.2022.104843_bib50 article-title: Authentication of the geographic origin of Yangshan region peaches based on hyperspectral imaging publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2020.111320 contributor: fullname: Sun – volume: 160 year: 2021 ident: 10.1016/j.jfca.2022.104843_bib1 article-title: Food authentication: Determination of the geographical origin of almonds (Prunus dulcis Mill.) via near-infrared spectroscopy publication-title: Microchem J. doi: 10.1016/j.microc.2020.105702 contributor: fullname: Arndt – volume: 7 start-page: 72 issue: 1 year: 2020 ident: 10.1016/j.jfca.2022.104843_bib49 article-title: Improving the prediction accuracy of soil nutrient classification by optimizing extreme learning machine parameters publication-title: Inf. Process. Agric. contributor: fullname: Suchithra – volume: 151 start-page: 79 year: 2019 ident: 10.1016/j.jfca.2022.104843_bib11 article-title: Long-term evaluation of soluble solids content of apples with biological variability by using near-infrared spectroscopy and calibration transfer method publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2019.02.001 contributor: fullname: Fan – volume: 70 start-page: 489 issue: 1–3 year: 2006 ident: 10.1016/j.jfca.2022.104843_bib20 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 contributor: fullname: Huang – volume: 184 start-page: 37 year: 2019 ident: 10.1016/j.jfca.2022.104843_bib16 article-title: Detection of damaged wheat kernels using an impact acoustic signal processing technique based on Gaussian modelling and an improved extreme learning machine algorithm publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2019.04.022 contributor: fullname: Guo – volume: 258 year: 2021 ident: 10.1016/j.jfca.2022.104843_bib31 article-title: Multi-platform integration based on NIR and UV–Vis spectroscopies for the geographical traceability of the fruits of Amomum tsao-ko publication-title: Spectroc. Acta Pt. A-Molec. BioMolec. Spectr. doi: 10.1016/j.saa.2021.119872 contributor: fullname: Liu – volume: 111 year: 2020 ident: 10.1016/j.jfca.2022.104843_bib30 article-title: Detection of the quality of juicy peach during storage by visible/near infrared spectroscopy publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2020.103152 contributor: fullname: Liu – volume: 56 start-page: 1753 year: 2017 ident: 10.1016/j.jfca.2022.104843_bib37 article-title: Laser-induced fluorescence spectral analysis of papaya fruits at different stages of ripening publication-title: Appl. Opt. doi: 10.1364/AO.56.001753 contributor: fullname: Obledo-Vázquez – volume: 174 year: 2022 ident: 10.1016/j.jfca.2022.104843_bib42 article-title: Determination of the geographical origin of hazelnuts (Corylus avellana L.) by Near-Infrared spectroscopy (NIR) and a Low-Level Fusion with nuclear magnetic resonance (NMR) publication-title: Microchem J. doi: 10.1016/j.microc.2021.107066 contributor: fullname: Shakiba – volume: 29 start-page: 183 issue: 28 year: 2013 ident: 10.1016/j.jfca.2022.104843_bib24 article-title: Research on the Climate Condition and Production Prediction of Fenghua Honey Peach publication-title: Chin. Agric. Sci. Bull. contributor: fullname: Jiang – volume: 98 year: 2021 ident: 10.1016/j.jfca.2022.104843_bib28 article-title: Quantitative determination of sugar profiles in peach fruit during storage by an integrating sphere system publication-title: J. Food Compos. Anal. doi: 10.1016/j.jfca.2021.103843 contributor: fullname: Liu – volume: 179 start-page: 22 year: 2019 ident: 10.1016/j.jfca.2022.104843_bib57 article-title: Discrimination of aflatoxin B1 contaminated pistachio kernels using laser induced fluorescence spectroscopy publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2018.12.009 contributor: fullname: Wu – volume: 276 issue: 27 year: 2021 ident: 10.1016/j.jfca.2022.104843_bib26 article-title: Development of a 775 SNP array for peach based on whole-genome resequencing data, and assessment of the potential of its application publication-title: Sci. Hortic. contributor: fullname: Lga – volume: 163 year: 2020 ident: 10.1016/j.jfca.2022.104843_bib33 article-title: Relationships between optical properties of peach flesh with firmness and tissue structure during storage publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2020.111134 contributor: fullname: Ma – volume: 63 start-page: 1711 issue: 6 year: 2020 ident: 10.1016/j.jfca.2022.104843_bib5 article-title: Non-destructive identification of internal watercore in apples based on online Vis/NIR spectroscopy publication-title: Trans. ASABE doi: 10.13031/trans.13844 contributor: fullname: Chang – volume: 64 start-page: 15 issue: 1 year: 2002 ident: 10.1016/j.jfca.2022.104843_bib3 article-title: A flexible classification approach with optimal generalisation performance: support vector machines publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(02)00046-1 contributor: fullname: Be Lousov – volume: 72 start-page: 97 year: 2014 ident: 10.1016/j.jfca.2022.104843_bib41 article-title: Automatic sample rotation for simultaneous determination of geographical origin and quality characteristics of apples based on near infrared spectroscopy (NIRS) publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2014.02.010 contributor: fullname: Schmutzler – volume: 99 start-page: 137 year: 2019 ident: 10.1016/j.jfca.2022.104843_bib14 article-title: Determination of the geographical origin of green coffee beans using NIR spectroscopy and multivariate data analysis publication-title: Food Control doi: 10.1016/j.foodcont.2018.12.033 contributor: fullname: Giraudo – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.jfca.2022.104843_bib48 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 contributor: fullname: Statistics – volume: 321 year: 2020 ident: 10.1016/j.jfca.2022.104843_bib51 article-title: Assessment of the optical properties of peaches with fungal infection using spatially-resolved diffuse reflectance technique and their relationships with tissue structural and biochemical properties publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.126704 contributor: fullname: Sun – volume: 21 start-page: 101 issue: 8 year: 2021 ident: 10.1016/j.jfca.2022.104843_bib61 article-title: Analysis on quality changes of postharvest Shenzhou honey peach fruits using electronic nose publication-title: Storage Process contributor: fullname: Yue – volume: 114 start-page: 24 year: 2016 ident: 10.1016/j.jfca.2022.104843_bib4 article-title: Random forest in remote sensing: A review of applications and future directions publication-title: ISPRS-J. Photogramm. Remote Sens doi: 10.1016/j.isprsjprs.2016.01.011 contributor: fullname: Belgiu – volume: 146 start-page: 102 issue: 1–2 year: 2008 ident: 10.1016/j.jfca.2022.104843_bib15 article-title: Soil organic carbon concentrations and stocks on Barro Colorado Island — Digital soil mapping using Random Forests analysis publication-title: Geoderma doi: 10.1016/j.geoderma.2008.05.008 contributor: fullname: Grimm – volume: 172 year: 2022 ident: 10.1016/j.jfca.2022.104843_bib2 article-title: Comparison of different processing approaches by SVM and RF on HS-MS eNose and NIR Spectrometry data for the discrimination of gasoline samples publication-title: Microchem J. doi: 10.1016/j.microc.2021.106893 contributor: fullname: Barea-Sepúlveda – volume: 19 issue: 6 year: 2014 ident: 10.1016/j.jfca.2022.104843_bib63 article-title: Studies of tropical fruit ripening using three different spectroscopic techniques publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.19.6.067001 contributor: fullname: Zhang – volume: 205 start-page: 207 year: 2018 ident: 10.1016/j.jfca.2022.104843_bib18 article-title: Comparison and application of fluorescence EEMs and DRIFTS combined with chemometrics for tracing the geographical origin of Radix Astragali publication-title: Spectroc. Acta Pt. A-Molec. BioMolec. Spectr. doi: 10.1016/j.saa.2018.07.033 contributor: fullname: Hu – volume: 111 year: 2020 ident: 10.1016/j.jfca.2022.104843_bib58 article-title: Simultaneous identification of geographical origin and grade of flue-cured tobacco using NIR spectroscopy publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2020.103182 contributor: fullname: Xiang – volume: 9 start-page: 195 issue: 2 year: 2022 ident: 10.1016/j.jfca.2022.104843_bib55 article-title: Application status and challenges of machine vision in plant factory—A review publication-title: Inf. Process. Agric. contributor: fullname: Tian – volume: 36 start-page: 177 issue: 3–4 year: 2006 ident: 10.1016/j.jfca.2022.104843_bib59 publication-title: Crit. Rev. Anal. Chem. doi: 10.1080/10408340600969486 contributor: fullname: Xu – volume: 175 year: 2020 ident: 10.1016/j.jfca.2022.104843_bib40 article-title: Peach variety detection using VIS-NIR spectroscopy and deep learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105553 contributor: fullname: Rong – volume: 61 start-page: 1718 issue: 8 year: 2012 ident: 10.1016/j.jfca.2022.104843_bib10 article-title: Peach fruit: metabolic comparative analysis of two varieties with different resistances to insect attacks by NMR spectroscopy publication-title: J. Agric. Food Chem. doi: 10.1021/jf303248z contributor: fullname: Capitani – volume: 761 start-page: 46 year: 2013 ident: 10.1016/j.jfca.2022.104843_bib38 article-title: A spectral transfer procedure for application of a single class-model to spectra recorded by different near-infrared spectrometers for authentication of olives in brine publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2012.11.020 contributor: fullname: Oliveri – volume: 51 start-page: 344 issue: 8 year: 2020 ident: 10.1016/j.jfca.2022.104843_bib44 article-title: Visual Detection of SSC and Firmness and Maturity Prediction for Feicheng Peach by Using Hyperspectral Imaging publication-title: Trans. Chin. Soc. Agric. Mach. contributor: fullname: Shao – start-page: 242 year: 2017 ident: 10.1016/j.jfca.2022.104843_bib62 article-title: M-Weighted extreme learning machine for imbalanced learning publication-title: IEEE Int. Conf. Inf. Autom. contributor: fullname: Yu – volume: 85 start-page: 64 year: 2012 ident: 10.1016/j.jfca.2022.104843_bib23 article-title: Reflectance Vis/NIR spectroscopy for nondestructive taste characterization of Valencia oranges publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2012.03.008 contributor: fullname: Jamshidi – volume: 114 year: 2020 ident: 10.1016/j.jfca.2022.104843_bib52 article-title: Authentication of the geographical origin of Roselle (Hibiscus sabdariffa L) using various spectroscopies: NIR, low-field NMR and fluorescence publication-title: Food Control doi: 10.1016/j.foodcont.2020.107231 contributor: fullname: Tahir – year: 2021 ident: 10.1016/j.jfca.2022.104843_bib60 article-title: Detection of abnormal hydroponic lettuce leaves based on image processing and machine learning publication-title: Inf. Process. Agric. contributor: fullname: Yang – year: 2019 ident: 10.1016/j.jfca.2022.104843_bib65 contributor: fullname: Zhu – volume: 123 start-page: 297 year: 2016 ident: 10.1016/j.jfca.2022.104843_bib17 article-title: Peach variety identification using near-infrared diffuse reflectance spectroscopy publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.03.005 contributor: fullname: Guo – volume: 371 year: 2022 ident: 10.1016/j.jfca.2022.104843_bib39 article-title: Direct solid sample analysis using synchronous fluorescence spectroscopy coupled with chemometric tools for the geographical discrimination of coffee samples publication-title: Food Chem. doi: 10.1016/j.foodchem.2021.131063 contributor: fullname: Robert – volume: 193 year: 2022 ident: 10.1016/j.jfca.2022.104843_bib54 article-title: Early detection of freezing damage in oranges by online Vis/NIR transmission coupled with diameter correction method and deep 1D-CNN publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106638 contributor: fullname: Tian – volume: 127 start-page: 5186 issue: 13 year: 2016 ident: 10.1016/j.jfca.2022.104843_bib56 article-title: Non-invasive assessment of mango ripening using fluorescence spectroscopy publication-title: Optik doi: 10.1016/j.ijleo.2016.03.049 contributor: fullname: Ullah – volume: 113 start-page: 281 issue: 2 year: 2012 ident: 10.1016/j.jfca.2022.104843_bib12 article-title: Grading and color evolution of apples using RGB and hyperspectral imaging vision cameras publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2012.05.038 contributor: fullname: Garrido-Novell – volume: 193 start-page: 247 year: 2020 ident: 10.1016/j.jfca.2022.104843_bib64 article-title: Determination of key canopy parameters for mass mechanical apple harvesting using supervised machine learning and principal component analysis (PCA) publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2020.03.006 contributor: fullname: Zhang – volume: 187 year: 2022 ident: 10.1016/j.jfca.2022.104843_bib53 article-title: Firmness measurement of kiwifruit using a self-designed device based on acoustic vibration technology publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2022.111851 contributor: fullname: Tian – volume: 178 year: 2022 ident: 10.1016/j.jfca.2022.104843_bib25 article-title: Optical quantification of oil emulsions in multi-band coarse-resolution imagery using a lab-derived HSV model publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2022.113640 contributor: fullname: Jiao – volume: 278 issue: 27 year: 2021 ident: 10.1016/j.jfca.2022.104843_bib21 article-title: Characterization of fruit quality traits for organic acids content and profile in a large peach germplasm collection publication-title: Sci. Hortic. contributor: fullname: Ib – volume: 178 start-page: 110 year: 2016 ident: 10.1016/j.jfca.2022.104843_bib22 article-title: Shelf life prediction of expired vacuum-packed chilled smoked salmon based on a KNN tissue segmentation method using hyperspectral images publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2016.01.008 contributor: fullname: Ivorra – volume: 269 year: 2022 ident: 10.1016/j.jfca.2022.104843_bib6 article-title: Geographical origin traceability of traditional Chinese medicine Atractylodes macrocephala Koidz. by using multi-way fluorescence fingerprint and chemometric methods publication-title: Spectroc. Acta Pt. A-Molec. BioMolec. Spectr. doi: 10.1016/j.saa.2021.120737 contributor: fullname: Chang – volume: 111 start-page: 345 year: 2016 ident: 10.1016/j.jfca.2022.104843_bib36 article-title: Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR) publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2015.08.006 contributor: fullname: Nascimento – volume: 22 year: 2020 ident: 10.1016/j.jfca.2022.104843_bib13 article-title: Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms publication-title: Glob. Ecol. Conserv. contributor: fullname: Ge – volume: 61 start-page: 32 year: 2013 ident: 10.1016/j.jfca.2022.104843_bib19 article-title: Trends in extreme learning machines: A review publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.10.001 contributor: fullname: Huang – volume: 258 year: 2021 ident: 10.1016/j.jfca.2022.104843_bib32 article-title: Fast identification of the geographical origin of Gastrodia elata using excitation-emission matrix fluorescence and chemometric methods publication-title: Spectroc. Acta Pt. A-Molec. BioMolec. Spectr. doi: 10.1016/j.saa.2021.119798 contributor: fullname: Long – volume: 146 year: 2021 ident: 10.1016/j.jfca.2022.104843_bib46 article-title: Characterization of volatile profiles of three colored quinoas based on GC-IMS and PCA publication-title: LWT-Food Sci. Technol. doi: 10.1016/j.lwt.2021.111292 contributor: fullname: Song – volume: 212 start-page: 115 year: 2021 ident: 10.1016/j.jfca.2022.104843_bib43 article-title: In-field and non-invasive determination of internal quality and ripeness stages of Feicheng peach using a portable hyperspectral imager publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2021.10.004 contributor: fullname: Shao – volume: 46 start-page: 131 issue: 1 year: 2002 ident: 10.1016/j.jfca.2022.104843_bib7 article-title: Choosing multiple parameters for support vector machines publication-title: Mach. Learn doi: 10.1023/A:1012450327387 contributor: fullname: Chapelle – volume: 10 start-page: 2646 year: 2017 ident: 10.1016/j.jfca.2022.104843_bib8 article-title: Classification of Chinese Vinegars using optimized artificial neural networks by genetic algorithm and other discriminant techniques publication-title: Food Anal. Meth doi: 10.1007/s12161-017-0829-y contributor: fullname: Chen – volume: 312 year: 2020 ident: 10.1016/j.jfca.2022.104843_bib27 article-title: Digital image-based tracing of geographic origin, winemaker, and grape type for red wine authentication publication-title: Food Chem. doi: 10.1016/j.foodchem.2019.126060 contributor: fullname: Lima – volume: 374 year: 2022 ident: 10.1016/j.jfca.2022.104843_bib45 article-title: Recent techniques for the authentication of the geographical origin of tea leaves from Camellia sinensis: A review publication-title: Food Chem. doi: 10.1016/j.foodchem.2021.131713 contributor: fullname: Shuai – volume: 101 year: 2021 ident: 10.1016/j.jfca.2022.104843_bib9 article-title: Geographical origin discriminant analysis of Chia seeds (Salvia hispanica L.) using hyperspectral imaging publication-title: J. Food Compos. Anal. doi: 10.1016/j.jfca.2021.103916 contributor: fullname: Choi – volume: 61 start-page: 1357 issue: 6 year: 2013 ident: 10.1016/j.jfca.2022.104843_bib47 article-title: Physicochemical, Antioxidant and Sensory Properties of Peach Wine Made from Redhaven Cultivar publication-title: J. Agric. Food Chem. doi: 10.1021/jf3043727 contributor: fullname: Sonja – volume: 165 start-page: 112 year: 2017 ident: 10.1016/j.jfca.2022.104843_bib34 article-title: Comparing the analytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms publication-title: Talanta doi: 10.1016/j.talanta.2016.12.035 contributor: fullname: Malegori – volume: 239 start-page: 119 issue: 15 year: 2018 ident: 10.1016/j.jfca.2022.104843_bib35 article-title: Development of a SBSE-TD method coupled to GC-MS and chemometrics for the differentiation of variety and processing conditions in peach juices publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.06.070 contributor: fullname: Marsol-Vall – volume: 267 year: 2022 ident: 10.1016/j.jfca.2022.104843_bib29 article-title: Rapid identification of the green tea geographical origin and processing month based on near-infrared hyperspectral imaging combined with chemometrics publication-title: Spectroc. Acta Pt. A-Molec. BioMolec. Spectr. doi: 10.1016/j.saa.2021.120537 contributor: fullname: Liu |
SSID | ssj0005248 |
Score | 2.4785328 |
Snippet | Identifying the geographic origin of peaches will not only help producers obtain higher economic benefits, but also enable consumers to buy the most... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 104843 |
SubjectTerms | Classification models Fluorescence spectroscopy Geographic origin identification Image processing technology Peach VIS-NIR spectroscopy |
Title | Identification of the geographic origin of peaches by VIS-NIR spectroscopy, fluorescence spectroscopy and image processing technology |
URI | https://dx.doi.org/10.1016/j.jfca.2022.104843 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4FOMClamkR6SOaA-JSTPxYO_YRpUUJjwiFgrhZ3hc4Co4F5sClt_7vznrXFUhVDz36sZK1M5rH-pvvA9iTRagY85UXJhE1KMrIvCRCeIHUmgumuGh1yM5nyeSKndzENz0Yd7MwBlbpYr-N6W20dneGbjeHdVkOLw1AJ6BqI2ybvCBZgw1KRyG59sbR9HQye4H0aEW0WkCPWeBmZyzMa6GFoR8KQ_O3M2XR3_PTi5xz_BbeuGIRj-z3vIOeqrZhc9xptG1D_1upGtxHx-65xFlHrk_vdTPHj-_hl53H1e6ADlcaqfDDW6uAflcKtAJZ5kHdcjw_In_G6-mlN5vOsR3HNLSXq_r5APXyafXQskAJ9eoRFpXE8p4iFNZ2_oDyIjZ_Du8_wNXx9x_jiecEGDxBnUnjBUokiZ_JRGVJmkktfBVk3B_JgkdSBtQZckUlwigthGmzMp1S-RErJgUP44IX0Q6sV6tK7QKyVAnOpIpSqVnhj3hYmKQpKKLwlIrMPnzttj2vLc9G3gHQFrkxUm6MlFsj9SHuLJO_8pacEsE_1n38z3WfYMtcWRjLZ1hvHp7UFypGGj6AtcOfwYBcbjw_uxg41_sNBfriLQ |
link.rule.ids | 315,783,787,4510,24129,27937,27938,45598,45692 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFH7iGGBBnKKcb0AsEJrDTZMRFVALpQOX2KL4glSljdp0YGHjf-MjQUVCDKyxLVl-1juc730fwBFPfUGIKxw_DFSBIrTMS8iY43EpKSOCMqNDdtsL24_k-rnxPAetqhdGwypL3299uvHW5Zd6eZr1PMvq9xqg46lswzdFnhfOwyLRdOPqUp99zOI8jISWgfPo6WXnjAV59SXT5EO-r_91RiT4PTrNRJyrVVgpU0U8t7tZgzkxXIelVqXQtg61i0wUeIwlt-cAexW1vppXdRxPNuDTduPK8nkORxJV2ocvVv_8NWNo5bH0QG4YnidI3_Gpc-_0OndomjE16eUofz9FOZiOxoYDiokfQ5gOOWZvyj9hbrsPVFTE4vvpfhMery4fWm2nlF9wmKpLCscTLAzdmIciDqOYS-YKL6Zuk6c04NxTdSEVKkFoRinTRVYsI5V8NAThjPqNlKbBFiwMR0OxDUgiwSjhIoi4JKnbpH6qQyZT_oRGKsWswUl17EluWTaSCn7WT7SREm2kxBqpBo3KMsmPu5KoMPDHup1_rjuEpfbDbTfpdno3u7CsRyygZQ8WivFU7Ku0pKAH5tp9AQS_4XE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+the+geographic+origin+of+peaches+by+VIS-NIR+spectroscopy%2C+fluorescence+spectroscopy+and+image+processing+technology&rft.jtitle=Journal+of+food+composition+and+analysis&rft.au=Yang%2C+Qinyi&rft.au=Tian%2C+Shijie&rft.au=Xu%2C+Huirong&rft.date=2022-12-01&rft.pub=Elsevier+Inc&rft.issn=0889-1575&rft.eissn=1096-0481&rft.volume=114&rft_id=info:doi/10.1016%2Fj.jfca.2022.104843&rft.externalDocID=S0889157522004616 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0889-1575&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0889-1575&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0889-1575&client=summon |