Identification of the geographic origin of peaches by VIS-NIR spectroscopy, fluorescence spectroscopy and image processing technology

Identifying the geographic origin of peaches will not only help producers obtain higher economic benefits, but also enable consumers to buy the most satisfactory fruits. In this study, the feasibility of distinguishing the geographic origin of four traditional famous peaches in China by visible-near...

Full description

Saved in:
Bibliographic Details
Published inJournal of food composition and analysis Vol. 114; p. 104843
Main Authors Yang, Qinyi, Tian, Shijie, Xu, Huirong
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Identifying the geographic origin of peaches will not only help producers obtain higher economic benefits, but also enable consumers to buy the most satisfactory fruits. In this study, the feasibility of distinguishing the geographic origin of four traditional famous peaches in China by visible-near infrared spectroscopy, fluorescence spectroscopy and image processing technology was explored. Visible-near infrared spectra and fluorescence spectra of 397–1175 nm and color characteristics extracted from images were used to establish the support vector machine, k-nearest neighbor, random forest and extreme learning machine classification models. The factors most related to the geographic origin were found by decision tree analysis. The results showed that the support vector machine models had the highest classification accuracy, some reaching 100%. In order to improve the calculation speed, the spectral principal components were used, resulting in the accuracy of support vector machine, k-nearest neighbor and random forest models more than 95%. The decision tree showed that R value, the first principal component of fluorescence spectra and H value played a decisive role in identifying the geographic origin, leading to the accuracy of support vector machine, k-nearest neighbor and random forest models more than 95%. This study compared the advantages and disadvantages of visible-near infrared spectroscopy, fluorescence spectroscopy and image processing technology in identifying geographic origin, and found that the combination of these three methods could effectively distinguished the geographic origin of peaches. •The quality attributes of peaches from different geographic origins were compared.•Three non-destructive methods were compared in identifying the geographic origins.•The SVM models based on spectral and image data had the highest accuracy.•Three factors most related to geographic origin of peaches were found.
AbstractList Identifying the geographic origin of peaches will not only help producers obtain higher economic benefits, but also enable consumers to buy the most satisfactory fruits. In this study, the feasibility of distinguishing the geographic origin of four traditional famous peaches in China by visible-near infrared spectroscopy, fluorescence spectroscopy and image processing technology was explored. Visible-near infrared spectra and fluorescence spectra of 397–1175 nm and color characteristics extracted from images were used to establish the support vector machine, k-nearest neighbor, random forest and extreme learning machine classification models. The factors most related to the geographic origin were found by decision tree analysis. The results showed that the support vector machine models had the highest classification accuracy, some reaching 100%. In order to improve the calculation speed, the spectral principal components were used, resulting in the accuracy of support vector machine, k-nearest neighbor and random forest models more than 95%. The decision tree showed that R value, the first principal component of fluorescence spectra and H value played a decisive role in identifying the geographic origin, leading to the accuracy of support vector machine, k-nearest neighbor and random forest models more than 95%. This study compared the advantages and disadvantages of visible-near infrared spectroscopy, fluorescence spectroscopy and image processing technology in identifying geographic origin, and found that the combination of these three methods could effectively distinguished the geographic origin of peaches. •The quality attributes of peaches from different geographic origins were compared.•Three non-destructive methods were compared in identifying the geographic origins.•The SVM models based on spectral and image data had the highest accuracy.•Three factors most related to geographic origin of peaches were found.
ArticleNumber 104843
Author Xu, Huirong
Tian, Shijie
Yang, Qinyi
Author_xml – sequence: 1
  givenname: Qinyi
  surname: Yang
  fullname: Yang, Qinyi
  organization: College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
– sequence: 2
  givenname: Shijie
  surname: Tian
  fullname: Tian, Shijie
  organization: College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
– sequence: 3
  givenname: Huirong
  surname: Xu
  fullname: Xu, Huirong
  email: hrxu@zju.edu.cn
  organization: College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
BookMark eNp9kMtOwzAQRS1UJNrCD7DyB5Bi51VHYoMqHpEqkHhtLWc8SVyVOLIDUj6A_8ahbNiwGs3jju49CzLrbIeEnHO24oznl7vVrga1ilkch0Eq0uSIzDkr8ig0fEbmTIgi4tk6OyEL73eMsSxOxZx8lRq7wdQG1GBsR21NhxZpg7Zxqm8NUOtMY34WPSpo0dNqpG_lc_RQPlHfIwzOerD9eEHr_Yd16AE7wD8rqjpNzbtqkPbOAnpvuoYOCG1n97YZT8lxrfYez37rkrze3rxs7qPt4125ud5GECdsiDhCnrNC51jkotA1MORFxdZaVYnWIW5aYczFWigosnBYi4wVGaYaqjhTlUqWJD78hWDMO6xl74ItN0rO5ARS7uQEUk4g5QFkEF0dRBicfRp00oOZImrjQkSprflP_g18A4FR
CitedBy_id crossref_primary_10_3390_w15010100
crossref_primary_10_3389_fnut_2023_1224955
crossref_primary_10_1007_s12161_024_02625_6
crossref_primary_10_1016_j_saa_2023_122343
crossref_primary_10_1016_j_saa_2023_123037
crossref_primary_10_1016_j_jfca_2024_106378
crossref_primary_10_1016_j_microc_2024_111037
crossref_primary_10_3389_fpls_2023_1180203
crossref_primary_10_3390_app14114527
crossref_primary_10_1139_cjfas_2022_0292
crossref_primary_10_1111_1541_4337_13196
Cites_doi 10.1016/j.postharvbio.2020.111320
10.1016/j.microc.2020.105702
10.1016/j.postharvbio.2019.02.001
10.1016/j.neucom.2005.12.126
10.1016/j.biosystemseng.2019.04.022
10.1016/j.saa.2021.119872
10.1016/j.vibspec.2020.103152
10.1364/AO.56.001753
10.1016/j.microc.2021.107066
10.1016/j.jfca.2021.103843
10.1016/j.biosystemseng.2018.12.009
10.1016/j.postharvbio.2020.111134
10.13031/trans.13844
10.1016/S0169-7439(02)00046-1
10.1016/j.vibspec.2014.02.010
10.1016/j.foodcont.2018.12.033
10.1023/A:1010933404324
10.1016/j.foodchem.2020.126704
10.1016/j.isprsjprs.2016.01.011
10.1016/j.geoderma.2008.05.008
10.1016/j.microc.2021.106893
10.1117/1.JBO.19.6.067001
10.1016/j.saa.2018.07.033
10.1016/j.vibspec.2020.103182
10.1080/10408340600969486
10.1016/j.compag.2020.105553
10.1021/jf303248z
10.1016/j.aca.2012.11.020
10.1016/j.compag.2012.03.008
10.1016/j.foodcont.2020.107231
10.1016/j.compag.2016.03.005
10.1016/j.foodchem.2021.131063
10.1016/j.compag.2021.106638
10.1016/j.ijleo.2016.03.049
10.1016/j.jfoodeng.2012.05.038
10.1016/j.biosystemseng.2020.03.006
10.1016/j.postharvbio.2022.111851
10.1016/j.marpolbul.2022.113640
10.1016/j.jfoodeng.2016.01.008
10.1016/j.saa.2021.120737
10.1016/j.postharvbio.2015.08.006
10.1016/j.neunet.2014.10.001
10.1016/j.saa.2021.119798
10.1016/j.lwt.2021.111292
10.1016/j.biosystemseng.2021.10.004
10.1023/A:1012450327387
10.1007/s12161-017-0829-y
10.1016/j.foodchem.2019.126060
10.1016/j.foodchem.2021.131713
10.1016/j.jfca.2021.103916
10.1021/jf3043727
10.1016/j.talanta.2016.12.035
10.1016/j.foodchem.2017.06.070
10.1016/j.saa.2021.120537
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jfca.2022.104843
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Chemistry
Diet & Clinical Nutrition
EISSN 1096-0481
ExternalDocumentID 10_1016_j_jfca_2022_104843
S0889157522004616
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADFGL
ADHUB
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CBWCG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
G8K
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
KOM
LG5
LW8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAB
SCB
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSA
SSK
SSZ
T5K
UHS
UNMZH
WUQ
XPP
ZMT
ZU3
~G-
~KM
AAHBH
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c230t-1ec6609d6e9689dfc0e19b07dab3dd1094be21878ac95609f85095e4dcb25aba3
IEDL.DBID AIKHN
ISSN 0889-1575
IngestDate Thu Sep 26 17:24:03 EDT 2024
Fri Feb 23 02:37:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fluorescence spectroscopy
Image processing technology
VIS-NIR spectroscopy
Classification models
Geographic origin identification
Peach
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c230t-1ec6609d6e9689dfc0e19b07dab3dd1094be21878ac95609f85095e4dcb25aba3
ParticipantIDs crossref_primary_10_1016_j_jfca_2022_104843
elsevier_sciencedirect_doi_10_1016_j_jfca_2022_104843
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Journal of food composition and analysis
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Guo, Gu, Liu, Shang (bib17) 2016; 123
Xu, Zomer, Brereton (bib59) 2006; 36
Arndt, Rurik, Drees, Ahlers, Feldmann, Kohlbacher, Fischer (bib1) 2021; 160
Chang, Wu, Wang, Chen, Yang, Fu, Yang, Li, Zhang, Yu (bib6) 2022; 269
Zhang, Huang, Li, Wu, Svanberg, Svanberg (bib63) 2014; 19
Barea-Sepúlveda, Ferreiro-González, Calle, Barbero, Ayuso, Palma (bib2) 2022; 172
Marsol-Vall, Balcells, Eras, Canela-Garayoa (bib35) 2018; 239
Chapelle, Vapnik, Bousquet, Mukherjee (bib7) 2002; 46
Liu, Huang, Li, Chen, Cui, Lu, Wang, Li, Xu, Zhong, Ning (bib29) 2022; 267
Guo, Ma, Yang, Mankin (bib16) 2019; 184
Ivorra, Sánchez, Verdú, Barat, Grau (bib22) 2016; 178
Giraudo, Grassi, Savorani, Gavoci, Casiraghi, Geobaldo (bib14) 2019; 99
Nascimento, Carvalho, Júnior, Pereira, Teixeira (bib36) 2016; 111
Ullah, Khan, Bilal, Nurjis, Saleem (bib56) 2016; 127
Xiang, Cheng, Xia, Tang, Mu, Bi (bib58) 2020; 111
Wu, Xu, Xu (bib57) 2019; 179
Long, Wu, Wang, Dong, Chen, Yu (bib32) 2021; 258
Choi, Kim, Moon (bib9) 2021; 101
Grimm, Behrens, Mrker, Elsenbeer (bib15) 2008; 146
Malegori, Nascimento Marques, de Freitas, Pimentel, Pasquini, Casiraghi (bib34) 2017; 165
Suchithra, Pai (bib49) 2020; 7
Yang, Wu, Fang, Zhang, Wang, Fu, Majeed, Li, Cui (bib60) 2021
Zhu (bib65) 2019
Jamshidi, Minaei, Mohajerani, Ghassemian (bib23) 2012; 85
Shao, Wang, Xuan (bib43) 2021; 212
Ma, Feng, Pan, Wei, Liu, Tu, Zhao, Peng (bib33) 2020; 163
Sun, Li, Pan, Abbas, Jiang, Wang (bib50) 2021; 171
Liu, Zhang, Jiang, Liu (bib30) 2020; 111
Huang, Huang, Song, You (bib19) 2013; 61
Robert, de Gois, Rocha, Luna (bib39) 2022; 371
Song, Shao, Yan, Li, Peng, Guo (bib46) 2021; 146
Lga, Qiang, Ke, Yong, Gz, Wf, Xw, Cc, Jian, Qi (bib26) 2021; 276
Shao, Wang, Xuan, Gao, Wang, Gao (bib44) 2020; 51
Chen, Bai, Xu, Zhou, Li, Wang, Hu (bib8) 2017; 10
Fan, Li, Xia, Tian, Guo, Huang (bib11) 2019; 151
Tian, Wang, Xu (bib53) 2022; 187
Ib, Rc, Db, Cg, Mc, As (bib21) 2021; 278
Obledo-Vázquez, Optics (bib37) 2017; 56
Liu, Ma, Wei, Tu, Pan (bib28) 2021; 98
Statistics, Breiman (bib48) 2001; 45
Zhang, He, Zhang, Whiting, Karkee, Zhang (bib64) 2020; 193
Sonja, Davidovic, Mile, Veljovic, Milica, Agricultural, Chemistry (bib47) 2013; 61
Ge, Shi, Zhu, Yang, Hao (bib13) 2020; 22
Hu, Yin, Ma, Liu (bib18) 2018; 205
Jiang, Cao, Zhu, Wu, Du, Ao (bib24) 2013; 29
Shuai, Peng, Niu, Shao, Hou, Cai (bib45) 2022; 374
Yu, Lin (bib62) 2017
Belgiu, Drăguţ (bib4) 2016; 114
Rong, Wang, Ying, Zhang, Zhang (bib40) 2020; 175
Tahir, Arslan, Mahunu, Mariod, Wen, Xiaobo, Xiaowei, Jiyong, El-Seedi (bib52) 2020; 114
Lima, Fernandes, Pereira, Gomes, Araújo, Diniz (bib27) 2020; 312
Liu, Yang, Wang, Zhang (bib31) 2021; 258
Oliveri, Casolino, Casale, Medini, Mare, Lanteri (bib38) 2013; 761
Jiao, Lu, Liu (bib25) 2022; 178
Schmutzler, Huck (bib41) 2014; 72
Be Lousov, Verzakov, Frese, Systems (bib3) 2002; 64
Tian, Wang, Xu (bib54) 2022; 193
Huang, Zhu, Siew (bib20) 2006; 70
Sun, Lu, Pan, Wang, Tu (bib51) 2020; 321
Capitani, Sobolev, Tomassini, Sciubba, Salvador, Mannina, Delfini (bib10) 2012; 61
Garrido-Novell, Pérez-Marin, Amigo, Fernández-Novales, Guerrero, Garrido-Varo (bib12) 2012; 113
Tian, Ma, Yang, Duan (bib55) 2022; 9
Shakiba, Gerdes, Holz, Wenck, Bachmann, Schneider, Seifert, Fischer, Hackl (bib42) 2022; 174
Chang, Wu, Tian, Yan, Xu (bib5) 2020; 63
Yue, Yan, Zhao, Cheng, Wang, Guan (bib61) 2021; 21
Choi (10.1016/j.jfca.2022.104843_bib9) 2021; 101
Ib (10.1016/j.jfca.2022.104843_bib21) 2021; 278
Zhu (10.1016/j.jfca.2022.104843_bib65) 2019
Fan (10.1016/j.jfca.2022.104843_bib11) 2019; 151
Ma (10.1016/j.jfca.2022.104843_bib33) 2020; 163
Grimm (10.1016/j.jfca.2022.104843_bib15) 2008; 146
Marsol-Vall (10.1016/j.jfca.2022.104843_bib35) 2018; 239
Chen (10.1016/j.jfca.2022.104843_bib8) 2017; 10
Arndt (10.1016/j.jfca.2022.104843_bib1) 2021; 160
Statistics (10.1016/j.jfca.2022.104843_bib48) 2001; 45
Wu (10.1016/j.jfca.2022.104843_bib57) 2019; 179
Garrido-Novell (10.1016/j.jfca.2022.104843_bib12) 2012; 113
Shuai (10.1016/j.jfca.2022.104843_bib45) 2022; 374
Liu (10.1016/j.jfca.2022.104843_bib29) 2022; 267
Tian (10.1016/j.jfca.2022.104843_bib55) 2022; 9
Tahir (10.1016/j.jfca.2022.104843_bib52) 2020; 114
Nascimento (10.1016/j.jfca.2022.104843_bib36) 2016; 111
Suchithra (10.1016/j.jfca.2022.104843_bib49) 2020; 7
Chang (10.1016/j.jfca.2022.104843_bib5) 2020; 63
Huang (10.1016/j.jfca.2022.104843_bib19) 2013; 61
Jamshidi (10.1016/j.jfca.2022.104843_bib23) 2012; 85
Jiao (10.1016/j.jfca.2022.104843_bib25) 2022; 178
Chapelle (10.1016/j.jfca.2022.104843_bib7) 2002; 46
Zhang (10.1016/j.jfca.2022.104843_bib63) 2014; 19
Hu (10.1016/j.jfca.2022.104843_bib18) 2018; 205
Liu (10.1016/j.jfca.2022.104843_bib28) 2021; 98
Tian (10.1016/j.jfca.2022.104843_bib54) 2022; 193
Be Lousov (10.1016/j.jfca.2022.104843_bib3) 2002; 64
Liu (10.1016/j.jfca.2022.104843_bib31) 2021; 258
Song (10.1016/j.jfca.2022.104843_bib46) 2021; 146
Jiang (10.1016/j.jfca.2022.104843_bib24) 2013; 29
Ullah (10.1016/j.jfca.2022.104843_bib56) 2016; 127
Shao (10.1016/j.jfca.2022.104843_bib44) 2020; 51
Xiang (10.1016/j.jfca.2022.104843_bib58) 2020; 111
Chang (10.1016/j.jfca.2022.104843_bib6) 2022; 269
Shakiba (10.1016/j.jfca.2022.104843_bib42) 2022; 174
Lima (10.1016/j.jfca.2022.104843_bib27) 2020; 312
Guo (10.1016/j.jfca.2022.104843_bib17) 2016; 123
Shao (10.1016/j.jfca.2022.104843_bib43) 2021; 212
Liu (10.1016/j.jfca.2022.104843_bib30) 2020; 111
Yang (10.1016/j.jfca.2022.104843_bib60) 2021
Giraudo (10.1016/j.jfca.2022.104843_bib14) 2019; 99
Rong (10.1016/j.jfca.2022.104843_bib40) 2020; 175
Sun (10.1016/j.jfca.2022.104843_bib51) 2020; 321
Ge (10.1016/j.jfca.2022.104843_bib13) 2020; 22
Malegori (10.1016/j.jfca.2022.104843_bib34) 2017; 165
Ivorra (10.1016/j.jfca.2022.104843_bib22) 2016; 178
Obledo-Vázquez (10.1016/j.jfca.2022.104843_bib37) 2017; 56
Yue (10.1016/j.jfca.2022.104843_bib61) 2021; 21
Tian (10.1016/j.jfca.2022.104843_bib53) 2022; 187
Oliveri (10.1016/j.jfca.2022.104843_bib38) 2013; 761
Belgiu (10.1016/j.jfca.2022.104843_bib4) 2016; 114
Sun (10.1016/j.jfca.2022.104843_bib50) 2021; 171
Barea-Sepúlveda (10.1016/j.jfca.2022.104843_bib2) 2022; 172
Huang (10.1016/j.jfca.2022.104843_bib20) 2006; 70
Capitani (10.1016/j.jfca.2022.104843_bib10) 2012; 61
Robert (10.1016/j.jfca.2022.104843_bib39) 2022; 371
Schmutzler (10.1016/j.jfca.2022.104843_bib41) 2014; 72
Xu (10.1016/j.jfca.2022.104843_bib59) 2006; 36
Lga (10.1016/j.jfca.2022.104843_bib26) 2021; 276
Sonja (10.1016/j.jfca.2022.104843_bib47) 2013; 61
Long (10.1016/j.jfca.2022.104843_bib32) 2021; 258
Yu (10.1016/j.jfca.2022.104843_bib62) 2017
Guo (10.1016/j.jfca.2022.104843_bib16) 2019; 184
Zhang (10.1016/j.jfca.2022.104843_bib64) 2020; 193
References_xml – volume: 61
  start-page: 1718
  year: 2012
  end-page: 1726
  ident: bib10
  article-title: Peach fruit: metabolic comparative analysis of two varieties with different resistances to insect attacks by NMR spectroscopy
  publication-title: J. Agric. Food Chem.
  contributor:
    fullname: Delfini
– volume: 267
  year: 2022
  ident: bib29
  article-title: Rapid identification of the green tea geographical origin and processing month based on near-infrared hyperspectral imaging combined with chemometrics
  publication-title: Spectroc. Acta Pt. A-Molec. BioMolec. Spectr.
  contributor:
    fullname: Ning
– volume: 374
  year: 2022
  ident: bib45
  article-title: Recent techniques for the authentication of the geographical origin of tea leaves from Camellia sinensis: A review
  publication-title: Food Chem.
  contributor:
    fullname: Cai
– volume: 205
  start-page: 207
  year: 2018
  end-page: 213
  ident: bib18
  article-title: Comparison and application of fluorescence EEMs and DRIFTS combined with chemometrics for tracing the geographical origin of Radix Astragali
  publication-title: Spectroc. Acta Pt. A-Molec. BioMolec. Spectr.
  contributor:
    fullname: Liu
– volume: 278
  year: 2021
  ident: bib21
  article-title: Characterization of fruit quality traits for organic acids content and profile in a large peach germplasm collection
  publication-title: Sci. Hortic.
  contributor:
    fullname: As
– volume: 321
  year: 2020
  ident: bib51
  article-title: Assessment of the optical properties of peaches with fungal infection using spatially-resolved diffuse reflectance technique and their relationships with tissue structural and biochemical properties
  publication-title: Food Chem.
  contributor:
    fullname: Tu
– volume: 19
  year: 2014
  ident: bib63
  article-title: Studies of tropical fruit ripening using three different spectroscopic techniques
  publication-title: J. Biomed. Opt.
  contributor:
    fullname: Svanberg
– volume: 258
  year: 2021
  ident: bib31
  article-title: Multi-platform integration based on NIR and UV–Vis spectroscopies for the geographical traceability of the fruits of Amomum tsao-ko
  publication-title: Spectroc. Acta Pt. A-Molec. BioMolec. Spectr.
  contributor:
    fullname: Zhang
– volume: 98
  year: 2021
  ident: bib28
  article-title: Quantitative determination of sugar profiles in peach fruit during storage by an integrating sphere system
  publication-title: J. Food Compos. Anal.
  contributor:
    fullname: Pan
– volume: 56
  start-page: 1753
  year: 2017
  end-page: 1756
  ident: bib37
  article-title: Laser-induced fluorescence spectral analysis of papaya fruits at different stages of ripening
  publication-title: Appl. Opt.
  contributor:
    fullname: Optics
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib48
  article-title: Random forests
  publication-title: Mach. Learn.
  contributor:
    fullname: Breiman
– volume: 85
  start-page: 64
  year: 2012
  end-page: 69
  ident: bib23
  article-title: Reflectance Vis/NIR spectroscopy for nondestructive taste characterization of Valencia oranges
  publication-title: Comput. Electron. Agric.
  contributor:
    fullname: Ghassemian
– volume: 371
  year: 2022
  ident: bib39
  article-title: Direct solid sample analysis using synchronous fluorescence spectroscopy coupled with chemometric tools for the geographical discrimination of coffee samples
  publication-title: Food Chem.
  contributor:
    fullname: Luna
– volume: 269
  year: 2022
  ident: bib6
  article-title: Geographical origin traceability of traditional Chinese medicine Atractylodes macrocephala Koidz. by using multi-way fluorescence fingerprint and chemometric methods
  publication-title: Spectroc. Acta Pt. A-Molec. BioMolec. Spectr.
  contributor:
    fullname: Yu
– volume: 111
  start-page: 345
  year: 2016
  end-page: 351
  ident: bib36
  article-title: Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR)
  publication-title: Postharvest Biol. Technol.
  contributor:
    fullname: Teixeira
– volume: 175
  year: 2020
  ident: bib40
  article-title: Peach variety detection using VIS-NIR spectroscopy and deep learning
  publication-title: Comput. Electron. Agric.
  contributor:
    fullname: Zhang
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: bib20
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
  contributor:
    fullname: Siew
– year: 2021
  ident: bib60
  article-title: Detection of abnormal hydroponic lettuce leaves based on image processing and machine learning
  publication-title: Inf. Process. Agric.
  contributor:
    fullname: Cui
– volume: 46
  start-page: 131
  year: 2002
  end-page: 159
  ident: bib7
  article-title: Choosing multiple parameters for support vector machines
  publication-title: Mach. Learn
  contributor:
    fullname: Mukherjee
– volume: 174
  year: 2022
  ident: bib42
  article-title: Determination of the geographical origin of hazelnuts (Corylus avellana L.) by Near-Infrared spectroscopy (NIR) and a Low-Level Fusion with nuclear magnetic resonance (NMR)
  publication-title: Microchem J.
  contributor:
    fullname: Hackl
– volume: 111
  year: 2020
  ident: bib30
  article-title: Detection of the quality of juicy peach during storage by visible/near infrared spectroscopy
  publication-title: Vib. Spectrosc.
  contributor:
    fullname: Liu
– volume: 113
  start-page: 281
  year: 2012
  end-page: 288
  ident: bib12
  article-title: Grading and color evolution of apples using RGB and hyperspectral imaging vision cameras
  publication-title: J. Food Eng.
  contributor:
    fullname: Garrido-Varo
– volume: 193
  start-page: 247
  year: 2020
  end-page: 263
  ident: bib64
  article-title: Determination of key canopy parameters for mass mechanical apple harvesting using supervised machine learning and principal component analysis (PCA)
  publication-title: Biosyst. Eng.
  contributor:
    fullname: Zhang
– volume: 101
  year: 2021
  ident: bib9
  article-title: Geographical origin discriminant analysis of Chia seeds (Salvia hispanica L.) using hyperspectral imaging
  publication-title: J. Food Compos. Anal.
  contributor:
    fullname: Moon
– volume: 36
  start-page: 177
  year: 2006
  end-page: 188
  ident: bib59
  publication-title: Crit. Rev. Anal. Chem.
  contributor:
    fullname: Brereton
– volume: 114
  year: 2020
  ident: bib52
  article-title: Authentication of the geographical origin of Roselle (Hibiscus sabdariffa L) using various spectroscopies: NIR, low-field NMR and fluorescence
  publication-title: Food Control
  contributor:
    fullname: El-Seedi
– volume: 187
  year: 2022
  ident: bib53
  article-title: Firmness measurement of kiwifruit using a self-designed device based on acoustic vibration technology
  publication-title: Postharvest Biol. Technol.
  contributor:
    fullname: Xu
– start-page: 242
  year: 2017
  end-page: 247
  ident: bib62
  article-title: M-Weighted extreme learning machine for imbalanced learning
  publication-title: IEEE Int. Conf. Inf. Autom.
  contributor:
    fullname: Lin
– volume: 123
  start-page: 297
  year: 2016
  end-page: 303
  ident: bib17
  article-title: Peach variety identification using near-infrared diffuse reflectance spectroscopy
  publication-title: Comput. Electron. Agric.
  contributor:
    fullname: Shang
– volume: 146
  year: 2021
  ident: bib46
  article-title: Characterization of volatile profiles of three colored quinoas based on GC-IMS and PCA
  publication-title: LWT-Food Sci. Technol.
  contributor:
    fullname: Guo
– volume: 178
  start-page: 110
  year: 2016
  end-page: 116
  ident: bib22
  article-title: Shelf life prediction of expired vacuum-packed chilled smoked salmon based on a KNN tissue segmentation method using hyperspectral images
  publication-title: J. Food Eng.
  contributor:
    fullname: Grau
– volume: 10
  start-page: 2646
  year: 2017
  end-page: 2656
  ident: bib8
  article-title: Classification of Chinese Vinegars using optimized artificial neural networks by genetic algorithm and other discriminant techniques
  publication-title: Food Anal. Meth
  contributor:
    fullname: Hu
– volume: 163
  year: 2020
  ident: bib33
  article-title: Relationships between optical properties of peach flesh with firmness and tissue structure during storage
  publication-title: Postharvest Biol. Technol.
  contributor:
    fullname: Peng
– volume: 172
  year: 2022
  ident: bib2
  article-title: Comparison of different processing approaches by SVM and RF on HS-MS eNose and NIR Spectrometry data for the discrimination of gasoline samples
  publication-title: Microchem J.
  contributor:
    fullname: Palma
– volume: 171
  year: 2021
  ident: bib50
  article-title: Authentication of the geographic origin of Yangshan region peaches based on hyperspectral imaging
  publication-title: Postharvest Biol. Technol.
  contributor:
    fullname: Wang
– volume: 64
  start-page: 15
  year: 2002
  end-page: 25
  ident: bib3
  article-title: A flexible classification approach with optimal generalisation performance: support vector machines
  publication-title: Chemom. Intell. Lab. Syst.
  contributor:
    fullname: Systems
– volume: 61
  start-page: 1357
  year: 2013
  end-page: 1363
  ident: bib47
  article-title: Physicochemical, Antioxidant and Sensory Properties of Peach Wine Made from Redhaven Cultivar
  publication-title: J. Agric. Food Chem.
  contributor:
    fullname: Chemistry
– volume: 72
  start-page: 97
  year: 2014
  end-page: 104
  ident: bib41
  article-title: Automatic sample rotation for simultaneous determination of geographical origin and quality characteristics of apples based on near infrared spectroscopy (NIRS)
  publication-title: Vib. Spectrosc.
  contributor:
    fullname: Huck
– volume: 193
  year: 2022
  ident: bib54
  article-title: Early detection of freezing damage in oranges by online Vis/NIR transmission coupled with diameter correction method and deep 1D-CNN
  publication-title: Comput. Electron. Agric.
  contributor:
    fullname: Xu
– volume: 63
  start-page: 1711
  year: 2020
  end-page: 1721
  ident: bib5
  article-title: Non-destructive identification of internal watercore in apples based on online Vis/NIR spectroscopy
  publication-title: Trans. ASABE
  contributor:
    fullname: Xu
– volume: 29
  start-page: 183
  year: 2013
  end-page: 188
  ident: bib24
  article-title: Research on the Climate Condition and Production Prediction of Fenghua Honey Peach
  publication-title: Chin. Agric. Sci. Bull.
  contributor:
    fullname: Ao
– volume: 761
  start-page: 46
  year: 2013
  end-page: 52
  ident: bib38
  article-title: A spectral transfer procedure for application of a single class-model to spectra recorded by different near-infrared spectrometers for authentication of olives in brine
  publication-title: Anal. Chim. Acta
  contributor:
    fullname: Lanteri
– volume: 312
  year: 2020
  ident: bib27
  article-title: Digital image-based tracing of geographic origin, winemaker, and grape type for red wine authentication
  publication-title: Food Chem.
  contributor:
    fullname: Diniz
– volume: 111
  year: 2020
  ident: bib58
  article-title: Simultaneous identification of geographical origin and grade of flue-cured tobacco using NIR spectroscopy
  publication-title: Vib. Spectrosc.
  contributor:
    fullname: Bi
– volume: 276
  year: 2021
  ident: bib26
  article-title: Development of a 775 SNP array for peach based on whole-genome resequencing data, and assessment of the potential of its application
  publication-title: Sci. Hortic.
  contributor:
    fullname: Qi
– volume: 127
  start-page: 5186
  year: 2016
  end-page: 5189
  ident: bib56
  article-title: Non-invasive assessment of mango ripening using fluorescence spectroscopy
  publication-title: Optik
  contributor:
    fullname: Saleem
– volume: 258
  year: 2021
  ident: bib32
  article-title: Fast identification of the geographical origin of Gastrodia elata using excitation-emission matrix fluorescence and chemometric methods
  publication-title: Spectroc. Acta Pt. A-Molec. BioMolec. Spectr.
  contributor:
    fullname: Yu
– volume: 114
  start-page: 24
  year: 2016
  end-page: 31
  ident: bib4
  article-title: Random forest in remote sensing: A review of applications and future directions
  publication-title: ISPRS-J. Photogramm. Remote Sens
  contributor:
    fullname: Drăguţ
– volume: 22
  year: 2020
  ident: bib13
  article-title: Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms
  publication-title: Glob. Ecol. Conserv.
  contributor:
    fullname: Hao
– volume: 61
  start-page: 32
  year: 2013
  end-page: 48
  ident: bib19
  article-title: Trends in extreme learning machines: A review
  publication-title: Neural Netw.
  contributor:
    fullname: You
– volume: 99
  start-page: 137
  year: 2019
  end-page: 145
  ident: bib14
  article-title: Determination of the geographical origin of green coffee beans using NIR spectroscopy and multivariate data analysis
  publication-title: Food Control
  contributor:
    fullname: Geobaldo
– volume: 9
  start-page: 195
  year: 2022
  end-page: 211
  ident: bib55
  article-title: Application status and challenges of machine vision in plant factory—A review
  publication-title: Inf. Process. Agric.
  contributor:
    fullname: Duan
– volume: 7
  start-page: 72
  year: 2020
  end-page: 82
  ident: bib49
  article-title: Improving the prediction accuracy of soil nutrient classification by optimizing extreme learning machine parameters
  publication-title: Inf. Process. Agric.
  contributor:
    fullname: Pai
– volume: 146
  start-page: 102
  year: 2008
  end-page: 113
  ident: bib15
  article-title: Soil organic carbon concentrations and stocks on Barro Colorado Island — Digital soil mapping using Random Forests analysis
  publication-title: Geoderma
  contributor:
    fullname: Elsenbeer
– volume: 160
  year: 2021
  ident: bib1
  article-title: Food authentication: Determination of the geographical origin of almonds (Prunus dulcis Mill.) via near-infrared spectroscopy
  publication-title: Microchem J.
  contributor:
    fullname: Fischer
– volume: 184
  start-page: 37
  year: 2019
  end-page: 44
  ident: bib16
  article-title: Detection of damaged wheat kernels using an impact acoustic signal processing technique based on Gaussian modelling and an improved extreme learning machine algorithm
  publication-title: Biosyst. Eng.
  contributor:
    fullname: Mankin
– volume: 51
  start-page: 344
  year: 2020
  end-page: 350
  ident: bib44
  article-title: Visual Detection of SSC and Firmness and Maturity Prediction for Feicheng Peach by Using Hyperspectral Imaging
  publication-title: Trans. Chin. Soc. Agric. Mach.
  contributor:
    fullname: Gao
– volume: 21
  start-page: 101
  year: 2021
  end-page: 108
  ident: bib61
  article-title: Analysis on quality changes of postharvest Shenzhou honey peach fruits using electronic nose
  publication-title: Storage Process
  contributor:
    fullname: Guan
– volume: 179
  start-page: 22
  year: 2019
  end-page: 34
  ident: bib57
  article-title: Discrimination of aflatoxin B1 contaminated pistachio kernels using laser induced fluorescence spectroscopy
  publication-title: Biosyst. Eng.
  contributor:
    fullname: Xu
– volume: 212
  start-page: 115
  year: 2021
  end-page: 125
  ident: bib43
  article-title: In-field and non-invasive determination of internal quality and ripeness stages of Feicheng peach using a portable hyperspectral imager
  publication-title: Biosyst. Eng.
  contributor:
    fullname: Xuan
– volume: 178
  year: 2022
  ident: bib25
  article-title: Optical quantification of oil emulsions in multi-band coarse-resolution imagery using a lab-derived HSV model
  publication-title: Mar. Pollut. Bull.
  contributor:
    fullname: Liu
– volume: 239
  start-page: 119
  year: 2018
  end-page: 125
  ident: bib35
  article-title: Development of a SBSE-TD method coupled to GC-MS and chemometrics for the differentiation of variety and processing conditions in peach juices
  publication-title: Food Chem.
  contributor:
    fullname: Canela-Garayoa
– volume: 151
  start-page: 79
  year: 2019
  end-page: 87
  ident: bib11
  article-title: Long-term evaluation of soluble solids content of apples with biological variability by using near-infrared spectroscopy and calibration transfer method
  publication-title: Postharvest Biol. Technol.
  contributor:
    fullname: Huang
– volume: 165
  start-page: 112
  year: 2017
  end-page: 116
  ident: bib34
  article-title: Comparing the analytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms
  publication-title: Talanta
  contributor:
    fullname: Casiraghi
– year: 2019
  ident: bib65
  article-title: Study on the Inheritance of Wuxi Yangshan Peach Cultural Heritage
  contributor:
    fullname: Zhu
– volume: 171
  year: 2021
  ident: 10.1016/j.jfca.2022.104843_bib50
  article-title: Authentication of the geographic origin of Yangshan region peaches based on hyperspectral imaging
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2020.111320
  contributor:
    fullname: Sun
– volume: 160
  year: 2021
  ident: 10.1016/j.jfca.2022.104843_bib1
  article-title: Food authentication: Determination of the geographical origin of almonds (Prunus dulcis Mill.) via near-infrared spectroscopy
  publication-title: Microchem J.
  doi: 10.1016/j.microc.2020.105702
  contributor:
    fullname: Arndt
– volume: 7
  start-page: 72
  issue: 1
  year: 2020
  ident: 10.1016/j.jfca.2022.104843_bib49
  article-title: Improving the prediction accuracy of soil nutrient classification by optimizing extreme learning machine parameters
  publication-title: Inf. Process. Agric.
  contributor:
    fullname: Suchithra
– volume: 151
  start-page: 79
  year: 2019
  ident: 10.1016/j.jfca.2022.104843_bib11
  article-title: Long-term evaluation of soluble solids content of apples with biological variability by using near-infrared spectroscopy and calibration transfer method
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2019.02.001
  contributor:
    fullname: Fan
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 10.1016/j.jfca.2022.104843_bib20
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
  contributor:
    fullname: Huang
– volume: 184
  start-page: 37
  year: 2019
  ident: 10.1016/j.jfca.2022.104843_bib16
  article-title: Detection of damaged wheat kernels using an impact acoustic signal processing technique based on Gaussian modelling and an improved extreme learning machine algorithm
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2019.04.022
  contributor:
    fullname: Guo
– volume: 258
  year: 2021
  ident: 10.1016/j.jfca.2022.104843_bib31
  article-title: Multi-platform integration based on NIR and UV–Vis spectroscopies for the geographical traceability of the fruits of Amomum tsao-ko
  publication-title: Spectroc. Acta Pt. A-Molec. BioMolec. Spectr.
  doi: 10.1016/j.saa.2021.119872
  contributor:
    fullname: Liu
– volume: 111
  year: 2020
  ident: 10.1016/j.jfca.2022.104843_bib30
  article-title: Detection of the quality of juicy peach during storage by visible/near infrared spectroscopy
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2020.103152
  contributor:
    fullname: Liu
– volume: 56
  start-page: 1753
  year: 2017
  ident: 10.1016/j.jfca.2022.104843_bib37
  article-title: Laser-induced fluorescence spectral analysis of papaya fruits at different stages of ripening
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.001753
  contributor:
    fullname: Obledo-Vázquez
– volume: 174
  year: 2022
  ident: 10.1016/j.jfca.2022.104843_bib42
  article-title: Determination of the geographical origin of hazelnuts (Corylus avellana L.) by Near-Infrared spectroscopy (NIR) and a Low-Level Fusion with nuclear magnetic resonance (NMR)
  publication-title: Microchem J.
  doi: 10.1016/j.microc.2021.107066
  contributor:
    fullname: Shakiba
– volume: 29
  start-page: 183
  issue: 28
  year: 2013
  ident: 10.1016/j.jfca.2022.104843_bib24
  article-title: Research on the Climate Condition and Production Prediction of Fenghua Honey Peach
  publication-title: Chin. Agric. Sci. Bull.
  contributor:
    fullname: Jiang
– volume: 98
  year: 2021
  ident: 10.1016/j.jfca.2022.104843_bib28
  article-title: Quantitative determination of sugar profiles in peach fruit during storage by an integrating sphere system
  publication-title: J. Food Compos. Anal.
  doi: 10.1016/j.jfca.2021.103843
  contributor:
    fullname: Liu
– volume: 179
  start-page: 22
  year: 2019
  ident: 10.1016/j.jfca.2022.104843_bib57
  article-title: Discrimination of aflatoxin B1 contaminated pistachio kernels using laser induced fluorescence spectroscopy
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2018.12.009
  contributor:
    fullname: Wu
– volume: 276
  issue: 27
  year: 2021
  ident: 10.1016/j.jfca.2022.104843_bib26
  article-title: Development of a 775 SNP array for peach based on whole-genome resequencing data, and assessment of the potential of its application
  publication-title: Sci. Hortic.
  contributor:
    fullname: Lga
– volume: 163
  year: 2020
  ident: 10.1016/j.jfca.2022.104843_bib33
  article-title: Relationships between optical properties of peach flesh with firmness and tissue structure during storage
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2020.111134
  contributor:
    fullname: Ma
– volume: 63
  start-page: 1711
  issue: 6
  year: 2020
  ident: 10.1016/j.jfca.2022.104843_bib5
  article-title: Non-destructive identification of internal watercore in apples based on online Vis/NIR spectroscopy
  publication-title: Trans. ASABE
  doi: 10.13031/trans.13844
  contributor:
    fullname: Chang
– volume: 64
  start-page: 15
  issue: 1
  year: 2002
  ident: 10.1016/j.jfca.2022.104843_bib3
  article-title: A flexible classification approach with optimal generalisation performance: support vector machines
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(02)00046-1
  contributor:
    fullname: Be Lousov
– volume: 72
  start-page: 97
  year: 2014
  ident: 10.1016/j.jfca.2022.104843_bib41
  article-title: Automatic sample rotation for simultaneous determination of geographical origin and quality characteristics of apples based on near infrared spectroscopy (NIRS)
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2014.02.010
  contributor:
    fullname: Schmutzler
– volume: 99
  start-page: 137
  year: 2019
  ident: 10.1016/j.jfca.2022.104843_bib14
  article-title: Determination of the geographical origin of green coffee beans using NIR spectroscopy and multivariate data analysis
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2018.12.033
  contributor:
    fullname: Giraudo
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.jfca.2022.104843_bib48
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: Statistics
– volume: 321
  year: 2020
  ident: 10.1016/j.jfca.2022.104843_bib51
  article-title: Assessment of the optical properties of peaches with fungal infection using spatially-resolved diffuse reflectance technique and their relationships with tissue structural and biochemical properties
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.126704
  contributor:
    fullname: Sun
– volume: 21
  start-page: 101
  issue: 8
  year: 2021
  ident: 10.1016/j.jfca.2022.104843_bib61
  article-title: Analysis on quality changes of postharvest Shenzhou honey peach fruits using electronic nose
  publication-title: Storage Process
  contributor:
    fullname: Yue
– volume: 114
  start-page: 24
  year: 2016
  ident: 10.1016/j.jfca.2022.104843_bib4
  article-title: Random forest in remote sensing: A review of applications and future directions
  publication-title: ISPRS-J. Photogramm. Remote Sens
  doi: 10.1016/j.isprsjprs.2016.01.011
  contributor:
    fullname: Belgiu
– volume: 146
  start-page: 102
  issue: 1–2
  year: 2008
  ident: 10.1016/j.jfca.2022.104843_bib15
  article-title: Soil organic carbon concentrations and stocks on Barro Colorado Island — Digital soil mapping using Random Forests analysis
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.05.008
  contributor:
    fullname: Grimm
– volume: 172
  year: 2022
  ident: 10.1016/j.jfca.2022.104843_bib2
  article-title: Comparison of different processing approaches by SVM and RF on HS-MS eNose and NIR Spectrometry data for the discrimination of gasoline samples
  publication-title: Microchem J.
  doi: 10.1016/j.microc.2021.106893
  contributor:
    fullname: Barea-Sepúlveda
– volume: 19
  issue: 6
  year: 2014
  ident: 10.1016/j.jfca.2022.104843_bib63
  article-title: Studies of tropical fruit ripening using three different spectroscopic techniques
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.19.6.067001
  contributor:
    fullname: Zhang
– volume: 205
  start-page: 207
  year: 2018
  ident: 10.1016/j.jfca.2022.104843_bib18
  article-title: Comparison and application of fluorescence EEMs and DRIFTS combined with chemometrics for tracing the geographical origin of Radix Astragali
  publication-title: Spectroc. Acta Pt. A-Molec. BioMolec. Spectr.
  doi: 10.1016/j.saa.2018.07.033
  contributor:
    fullname: Hu
– volume: 111
  year: 2020
  ident: 10.1016/j.jfca.2022.104843_bib58
  article-title: Simultaneous identification of geographical origin and grade of flue-cured tobacco using NIR spectroscopy
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2020.103182
  contributor:
    fullname: Xiang
– volume: 9
  start-page: 195
  issue: 2
  year: 2022
  ident: 10.1016/j.jfca.2022.104843_bib55
  article-title: Application status and challenges of machine vision in plant factory—A review
  publication-title: Inf. Process. Agric.
  contributor:
    fullname: Tian
– volume: 36
  start-page: 177
  issue: 3–4
  year: 2006
  ident: 10.1016/j.jfca.2022.104843_bib59
  publication-title: Crit. Rev. Anal. Chem.
  doi: 10.1080/10408340600969486
  contributor:
    fullname: Xu
– volume: 175
  year: 2020
  ident: 10.1016/j.jfca.2022.104843_bib40
  article-title: Peach variety detection using VIS-NIR spectroscopy and deep learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105553
  contributor:
    fullname: Rong
– volume: 61
  start-page: 1718
  issue: 8
  year: 2012
  ident: 10.1016/j.jfca.2022.104843_bib10
  article-title: Peach fruit: metabolic comparative analysis of two varieties with different resistances to insect attacks by NMR spectroscopy
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf303248z
  contributor:
    fullname: Capitani
– volume: 761
  start-page: 46
  year: 2013
  ident: 10.1016/j.jfca.2022.104843_bib38
  article-title: A spectral transfer procedure for application of a single class-model to spectra recorded by different near-infrared spectrometers for authentication of olives in brine
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2012.11.020
  contributor:
    fullname: Oliveri
– volume: 51
  start-page: 344
  issue: 8
  year: 2020
  ident: 10.1016/j.jfca.2022.104843_bib44
  article-title: Visual Detection of SSC and Firmness and Maturity Prediction for Feicheng Peach by Using Hyperspectral Imaging
  publication-title: Trans. Chin. Soc. Agric. Mach.
  contributor:
    fullname: Shao
– start-page: 242
  year: 2017
  ident: 10.1016/j.jfca.2022.104843_bib62
  article-title: M-Weighted extreme learning machine for imbalanced learning
  publication-title: IEEE Int. Conf. Inf. Autom.
  contributor:
    fullname: Yu
– volume: 85
  start-page: 64
  year: 2012
  ident: 10.1016/j.jfca.2022.104843_bib23
  article-title: Reflectance Vis/NIR spectroscopy for nondestructive taste characterization of Valencia oranges
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2012.03.008
  contributor:
    fullname: Jamshidi
– volume: 114
  year: 2020
  ident: 10.1016/j.jfca.2022.104843_bib52
  article-title: Authentication of the geographical origin of Roselle (Hibiscus sabdariffa L) using various spectroscopies: NIR, low-field NMR and fluorescence
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2020.107231
  contributor:
    fullname: Tahir
– year: 2021
  ident: 10.1016/j.jfca.2022.104843_bib60
  article-title: Detection of abnormal hydroponic lettuce leaves based on image processing and machine learning
  publication-title: Inf. Process. Agric.
  contributor:
    fullname: Yang
– year: 2019
  ident: 10.1016/j.jfca.2022.104843_bib65
  contributor:
    fullname: Zhu
– volume: 123
  start-page: 297
  year: 2016
  ident: 10.1016/j.jfca.2022.104843_bib17
  article-title: Peach variety identification using near-infrared diffuse reflectance spectroscopy
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.03.005
  contributor:
    fullname: Guo
– volume: 371
  year: 2022
  ident: 10.1016/j.jfca.2022.104843_bib39
  article-title: Direct solid sample analysis using synchronous fluorescence spectroscopy coupled with chemometric tools for the geographical discrimination of coffee samples
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2021.131063
  contributor:
    fullname: Robert
– volume: 193
  year: 2022
  ident: 10.1016/j.jfca.2022.104843_bib54
  article-title: Early detection of freezing damage in oranges by online Vis/NIR transmission coupled with diameter correction method and deep 1D-CNN
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106638
  contributor:
    fullname: Tian
– volume: 127
  start-page: 5186
  issue: 13
  year: 2016
  ident: 10.1016/j.jfca.2022.104843_bib56
  article-title: Non-invasive assessment of mango ripening using fluorescence spectroscopy
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.03.049
  contributor:
    fullname: Ullah
– volume: 113
  start-page: 281
  issue: 2
  year: 2012
  ident: 10.1016/j.jfca.2022.104843_bib12
  article-title: Grading and color evolution of apples using RGB and hyperspectral imaging vision cameras
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2012.05.038
  contributor:
    fullname: Garrido-Novell
– volume: 193
  start-page: 247
  year: 2020
  ident: 10.1016/j.jfca.2022.104843_bib64
  article-title: Determination of key canopy parameters for mass mechanical apple harvesting using supervised machine learning and principal component analysis (PCA)
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2020.03.006
  contributor:
    fullname: Zhang
– volume: 187
  year: 2022
  ident: 10.1016/j.jfca.2022.104843_bib53
  article-title: Firmness measurement of kiwifruit using a self-designed device based on acoustic vibration technology
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2022.111851
  contributor:
    fullname: Tian
– volume: 178
  year: 2022
  ident: 10.1016/j.jfca.2022.104843_bib25
  article-title: Optical quantification of oil emulsions in multi-band coarse-resolution imagery using a lab-derived HSV model
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2022.113640
  contributor:
    fullname: Jiao
– volume: 278
  issue: 27
  year: 2021
  ident: 10.1016/j.jfca.2022.104843_bib21
  article-title: Characterization of fruit quality traits for organic acids content and profile in a large peach germplasm collection
  publication-title: Sci. Hortic.
  contributor:
    fullname: Ib
– volume: 178
  start-page: 110
  year: 2016
  ident: 10.1016/j.jfca.2022.104843_bib22
  article-title: Shelf life prediction of expired vacuum-packed chilled smoked salmon based on a KNN tissue segmentation method using hyperspectral images
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2016.01.008
  contributor:
    fullname: Ivorra
– volume: 269
  year: 2022
  ident: 10.1016/j.jfca.2022.104843_bib6
  article-title: Geographical origin traceability of traditional Chinese medicine Atractylodes macrocephala Koidz. by using multi-way fluorescence fingerprint and chemometric methods
  publication-title: Spectroc. Acta Pt. A-Molec. BioMolec. Spectr.
  doi: 10.1016/j.saa.2021.120737
  contributor:
    fullname: Chang
– volume: 111
  start-page: 345
  year: 2016
  ident: 10.1016/j.jfca.2022.104843_bib36
  article-title: Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR)
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2015.08.006
  contributor:
    fullname: Nascimento
– volume: 22
  year: 2020
  ident: 10.1016/j.jfca.2022.104843_bib13
  article-title: Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms
  publication-title: Glob. Ecol. Conserv.
  contributor:
    fullname: Ge
– volume: 61
  start-page: 32
  year: 2013
  ident: 10.1016/j.jfca.2022.104843_bib19
  article-title: Trends in extreme learning machines: A review
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.10.001
  contributor:
    fullname: Huang
– volume: 258
  year: 2021
  ident: 10.1016/j.jfca.2022.104843_bib32
  article-title: Fast identification of the geographical origin of Gastrodia elata using excitation-emission matrix fluorescence and chemometric methods
  publication-title: Spectroc. Acta Pt. A-Molec. BioMolec. Spectr.
  doi: 10.1016/j.saa.2021.119798
  contributor:
    fullname: Long
– volume: 146
  year: 2021
  ident: 10.1016/j.jfca.2022.104843_bib46
  article-title: Characterization of volatile profiles of three colored quinoas based on GC-IMS and PCA
  publication-title: LWT-Food Sci. Technol.
  doi: 10.1016/j.lwt.2021.111292
  contributor:
    fullname: Song
– volume: 212
  start-page: 115
  year: 2021
  ident: 10.1016/j.jfca.2022.104843_bib43
  article-title: In-field and non-invasive determination of internal quality and ripeness stages of Feicheng peach using a portable hyperspectral imager
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2021.10.004
  contributor:
    fullname: Shao
– volume: 46
  start-page: 131
  issue: 1
  year: 2002
  ident: 10.1016/j.jfca.2022.104843_bib7
  article-title: Choosing multiple parameters for support vector machines
  publication-title: Mach. Learn
  doi: 10.1023/A:1012450327387
  contributor:
    fullname: Chapelle
– volume: 10
  start-page: 2646
  year: 2017
  ident: 10.1016/j.jfca.2022.104843_bib8
  article-title: Classification of Chinese Vinegars using optimized artificial neural networks by genetic algorithm and other discriminant techniques
  publication-title: Food Anal. Meth
  doi: 10.1007/s12161-017-0829-y
  contributor:
    fullname: Chen
– volume: 312
  year: 2020
  ident: 10.1016/j.jfca.2022.104843_bib27
  article-title: Digital image-based tracing of geographic origin, winemaker, and grape type for red wine authentication
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2019.126060
  contributor:
    fullname: Lima
– volume: 374
  year: 2022
  ident: 10.1016/j.jfca.2022.104843_bib45
  article-title: Recent techniques for the authentication of the geographical origin of tea leaves from Camellia sinensis: A review
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2021.131713
  contributor:
    fullname: Shuai
– volume: 101
  year: 2021
  ident: 10.1016/j.jfca.2022.104843_bib9
  article-title: Geographical origin discriminant analysis of Chia seeds (Salvia hispanica L.) using hyperspectral imaging
  publication-title: J. Food Compos. Anal.
  doi: 10.1016/j.jfca.2021.103916
  contributor:
    fullname: Choi
– volume: 61
  start-page: 1357
  issue: 6
  year: 2013
  ident: 10.1016/j.jfca.2022.104843_bib47
  article-title: Physicochemical, Antioxidant and Sensory Properties of Peach Wine Made from Redhaven Cultivar
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf3043727
  contributor:
    fullname: Sonja
– volume: 165
  start-page: 112
  year: 2017
  ident: 10.1016/j.jfca.2022.104843_bib34
  article-title: Comparing the analytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms
  publication-title: Talanta
  doi: 10.1016/j.talanta.2016.12.035
  contributor:
    fullname: Malegori
– volume: 239
  start-page: 119
  issue: 15
  year: 2018
  ident: 10.1016/j.jfca.2022.104843_bib35
  article-title: Development of a SBSE-TD method coupled to GC-MS and chemometrics for the differentiation of variety and processing conditions in peach juices
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2017.06.070
  contributor:
    fullname: Marsol-Vall
– volume: 267
  year: 2022
  ident: 10.1016/j.jfca.2022.104843_bib29
  article-title: Rapid identification of the green tea geographical origin and processing month based on near-infrared hyperspectral imaging combined with chemometrics
  publication-title: Spectroc. Acta Pt. A-Molec. BioMolec. Spectr.
  doi: 10.1016/j.saa.2021.120537
  contributor:
    fullname: Liu
SSID ssj0005248
Score 2.4785328
Snippet Identifying the geographic origin of peaches will not only help producers obtain higher economic benefits, but also enable consumers to buy the most...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 104843
SubjectTerms Classification models
Fluorescence spectroscopy
Geographic origin identification
Image processing technology
Peach
VIS-NIR spectroscopy
Title Identification of the geographic origin of peaches by VIS-NIR spectroscopy, fluorescence spectroscopy and image processing technology
URI https://dx.doi.org/10.1016/j.jfca.2022.104843
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4FOMClamkR6SOaA-JSTPxYO_YRpUUJjwiFgrhZ3hc4Co4F5sClt_7vznrXFUhVDz36sZK1M5rH-pvvA9iTRagY85UXJhE1KMrIvCRCeIHUmgumuGh1yM5nyeSKndzENz0Yd7MwBlbpYr-N6W20dneGbjeHdVkOLw1AJ6BqI2ybvCBZgw1KRyG59sbR9HQye4H0aEW0WkCPWeBmZyzMa6GFoR8KQ_O3M2XR3_PTi5xz_BbeuGIRj-z3vIOeqrZhc9xptG1D_1upGtxHx-65xFlHrk_vdTPHj-_hl53H1e6ADlcaqfDDW6uAflcKtAJZ5kHdcjw_In_G6-mlN5vOsR3HNLSXq_r5APXyafXQskAJ9eoRFpXE8p4iFNZ2_oDyIjZ_Du8_wNXx9x_jiecEGDxBnUnjBUokiZ_JRGVJmkktfBVk3B_JgkdSBtQZckUlwigthGmzMp1S-RErJgUP44IX0Q6sV6tK7QKyVAnOpIpSqVnhj3hYmKQpKKLwlIrMPnzttj2vLc9G3gHQFrkxUm6MlFsj9SHuLJO_8pacEsE_1n38z3WfYMtcWRjLZ1hvHp7UFypGGj6AtcOfwYBcbjw_uxg41_sNBfriLQ
link.rule.ids 315,783,787,4510,24129,27937,27938,45598,45692
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFH7iGGBBnKKcb0AsEJrDTZMRFVALpQOX2KL4glSljdp0YGHjf-MjQUVCDKyxLVl-1juc730fwBFPfUGIKxw_DFSBIrTMS8iY43EpKSOCMqNDdtsL24_k-rnxPAetqhdGwypL3299uvHW5Zd6eZr1PMvq9xqg46lswzdFnhfOwyLRdOPqUp99zOI8jISWgfPo6WXnjAV59SXT5EO-r_91RiT4PTrNRJyrVVgpU0U8t7tZgzkxXIelVqXQtg61i0wUeIwlt-cAexW1vppXdRxPNuDTduPK8nkORxJV2ocvVv_8NWNo5bH0QG4YnidI3_Gpc-_0OndomjE16eUofz9FOZiOxoYDiokfQ5gOOWZvyj9hbrsPVFTE4vvpfhMery4fWm2nlF9wmKpLCscTLAzdmIciDqOYS-YKL6Zuk6c04NxTdSEVKkFoRinTRVYsI5V8NAThjPqNlKbBFiwMR0OxDUgiwSjhIoi4JKnbpH6qQyZT_oRGKsWswUl17EluWTaSCn7WT7SREm2kxBqpBo3KMsmPu5KoMPDHup1_rjuEpfbDbTfpdno3u7CsRyygZQ8WivFU7Ku0pKAH5tp9AQS_4XE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+the+geographic+origin+of+peaches+by+VIS-NIR+spectroscopy%2C+fluorescence+spectroscopy+and+image+processing+technology&rft.jtitle=Journal+of+food+composition+and+analysis&rft.au=Yang%2C+Qinyi&rft.au=Tian%2C+Shijie&rft.au=Xu%2C+Huirong&rft.date=2022-12-01&rft.pub=Elsevier+Inc&rft.issn=0889-1575&rft.eissn=1096-0481&rft.volume=114&rft_id=info:doi/10.1016%2Fj.jfca.2022.104843&rft.externalDocID=S0889157522004616
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0889-1575&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0889-1575&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0889-1575&client=summon