Remarks on proper conflict-free colorings of graphs
A vertex coloring of a graph is said to be conflict-free with respect to neighborhoods if for every non-isolated vertex there is a color appearing exactly once in its (open) neighborhood. As defined in [Fabrici et al., Proper Conflict-free and Unique-maximum Colorings of Planar Graphs with Respect t...
Saved in:
Published in | Discrete mathematics Vol. 346; no. 2; p. 113221 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A vertex coloring of a graph is said to be conflict-free with respect to neighborhoods if for every non-isolated vertex there is a color appearing exactly once in its (open) neighborhood. As defined in [Fabrici et al., Proper Conflict-free and Unique-maximum Colorings of Planar Graphs with Respect to Neighborhoods, arXiv preprint], the minimum number of colors in any such proper coloring of graph G is the PCF chromatic number of G, denoted χpcf(G). In this paper, we determine the value of this graph parameter for several basic graph classes including trees, cycles, hypercubes and subdivisions of complete graphs. We also give upper bounds on χpcf(G) in terms of other graph parameters. In particular, we show that χpcf(G)≤5Δ(G)/2 and characterize equality. Several sufficient conditions for PCF k-colorability of graphs are established for 4≤k≤6. The paper concludes with few open problems. |
---|---|
AbstractList | A vertex coloring of a graph is said to be conflict-free with respect to neighborhoods if for every non-isolated vertex there is a color appearing exactly once in its (open) neighborhood. As defined in [Fabrici et al., Proper Conflict-free and Unique-maximum Colorings of Planar Graphs with Respect to Neighborhoods, arXiv preprint], the minimum number of colors in any such proper coloring of graph G is the PCF chromatic number of G, denoted χpcf(G). In this paper, we determine the value of this graph parameter for several basic graph classes including trees, cycles, hypercubes and subdivisions of complete graphs. We also give upper bounds on χpcf(G) in terms of other graph parameters. In particular, we show that χpcf(G)≤5Δ(G)/2 and characterize equality. Several sufficient conditions for PCF k-colorability of graphs are established for 4≤k≤6. The paper concludes with few open problems. |
ArticleNumber | 113221 |
Author | Škrekovski, Riste Caro, Yair Petruševski, Mirko |
Author_xml | – sequence: 1 givenname: Yair surname: Caro fullname: Caro, Yair email: yacaro@kvgeva.org.il organization: University of Haifa-Oranim, Israel – sequence: 2 givenname: Mirko surname: Petruševski fullname: Petruševski, Mirko email: mirko.petrushevski@gmail.com organization: Department of Mathematics and Informatics, Faculty of Mechanical Engineering, Skopje, The Former Yugoslav Republic of Macedonia – sequence: 3 givenname: Riste surname: Škrekovski fullname: Škrekovski, Riste email: skrekovski@gmail.com organization: FMF, University of Ljubljana & Faculty of Information Studies, Novo mesto, Slovenia |
BookMark | eNp9j81KAzEUhYNUsK2-gKt5gRlzkzaTghsp_kFBEIXuQubOTU0dJ0MyCL69KXXloqvLgfsdzjdjkz70xNg18Ao4qJt91fqEleBCVABSCDhjU9C1KJWG7YRNOQdRSrXcXrBZSnues5J6yuQrfdn4mYrQF0MMA8UCQ-86j2PpIlFOXYi-3-UPV-yiHT7SJTt3tkt09Xfn7P3h_m39VG5eHp_Xd5sSheRjCRIXqrEcsG2cpDzK8ZWqlW0ULNqapEaLbc0XvEFQVgmUK64bsdQN1CtHcs7EsRdjSCmSM0P0ee2PAW4O2mZvDtrmoG2O2hnS_yD0ox196MdofXcavT2ilKW-PUWT0FOP1PpIOJo2-FP4LwZydOw |
CitedBy_id | crossref_primary_10_1016_j_disc_2024_114233 crossref_primary_10_1016_j_amc_2025_129405 crossref_primary_10_1016_j_dam_2024_11_016 crossref_primary_10_1016_j_dam_2024_12_009 crossref_primary_10_1137_23M1563281 crossref_primary_10_12677_pm_2025_151024 crossref_primary_10_1016_j_dam_2024_07_011 crossref_primary_10_1016_j_dam_2023_11_039 crossref_primary_10_1007_s00371_023_03240_y crossref_primary_10_2478_jamsi_2024_0006 crossref_primary_10_3390_math12233665 crossref_primary_10_1016_j_disc_2023_113706 crossref_primary_10_1016_j_disc_2023_113668 crossref_primary_10_1016_j_dam_2024_03_021 crossref_primary_10_1016_j_dam_2024_05_048 crossref_primary_10_1007_s00373_024_02842_0 |
Cites_doi | 10.1112/jlms/s1-10.37.26 10.26493/1855-3974.957.97c 10.1016/j.ejc.2020.103225 10.1007/s10878-017-0178-1 10.1017/S0963548312000156 10.26493/1855-3974.576.895 10.1007/s004930070013 10.2307/2306658 10.1007/s00373-018-1970-0 10.1016/S0012-365X(98)00393-8 10.1016/j.ejc.2013.02.008 10.1002/jgt.22168 10.1016/j.disc.2010.07.003 10.1016/j.jda.2011.03.005 10.1137/120880471 10.1016/j.disc.2003.12.003 10.1016/j.disc.2016.11.022 10.1137/S0097539702431840 10.7151/dmgt.1846 10.1017/S0963548313000540 10.1017/S0963548309990290 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.disc.2022.113221 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1872-681X |
ExternalDocumentID | 10_1016_j_disc_2022_113221 S0012365X22004277 |
GroupedDBID | --K --M -DZ -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 41~ 457 4G. 5GY 5VS 6I. 6OB 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 UPT VH1 WH7 WUQ XJT XOL XPP ZCG ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c230t-13c46ba01cdbf3e322f09676ab614d7e38cacd7040bc16a62c3908b258b179fe3 |
IEDL.DBID | .~1 |
ISSN | 0012-365X |
IngestDate | Thu Apr 24 23:13:21 EDT 2025 Tue Jul 01 04:11:15 EDT 2025 Fri Feb 23 02:38:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Proper coloring PCF chromatic number Planar graph Conflict-free coloring Neighborhood |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c230t-13c46ba01cdbf3e322f09676ab614d7e38cacd7040bc16a62c3908b258b179fe3 |
ParticipantIDs | crossref_primary_10_1016_j_disc_2022_113221 crossref_citationtrail_10_1016_j_disc_2022_113221 elsevier_sciencedirect_doi_10_1016_j_disc_2022_113221 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationTitle | Discrete mathematics |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lužar, Petruševski, Škrekovski (br0250) 2015; 9 Montejano, Ochem, Pinlou, Raspaud, Sopena (br0270) 2008 Smorodinsky (br0340) 2013; vol. 24 Cranston, West (br0140) 2017; 340 Glebov, Szabó, Tardos (br0190) 2014; 23 Cho, Choi, Kwon, Park (br0100) Liu, Yu (br0240) 2013; 34 Khanna, Linial, Safra (br0220) 2000; 20 Pach, Tardos (br0290) 2009; 18 Cranston, Kim, Yu (br0130) 2010; 310 Fabrici, Lužar, Rindošová, Soták (br0180) Bunde, Milans, West, Wu (br0030) 2007; 187 Kano, Katona, Varga (br0210) 2018; 34 Lužar, Petruševski, Škrekovski (br0260) 2018; 35 Dujmović, Morin, Odak (br0150) Kostochka, Kumbhat, Łuczak (br0230) 2012; 21 Hall (br0200) 1935; 10 Cranston, Lafferty, Song (br0120) Cheilaris, Tóth (br0090) 2011; 9 Petruševski (br0310) 2015; 4 Petruševski (br0320) 2018; 87 Atanasov, Petruševski, Škrekovski (br0010) 2016; 10 Cranston (br0110) Bose, Smid, Wood (br0050) 2004; 282 Even, Lotker, Ron, Smorodinsky (br0160) 2003; 33 Caro, Petruševski, Škrekovski (br0060) Nordhaus, Gaddum (br0280) 1956; 63 Cheilaris (br0070) 2009 Petr, Portier (br0300) Bondy, Murty (br0020) 2008; vol. 244 Borodin, Kostochka, Nešetřil, Raspaud, Sopena (br0040) 1999; 206 Petruševski, Škrekovski (br0330) 2021; 91 Petruševski, Škrekovski (br0350) Fabrici, Göring (br0170) 2016; 36 Cheilaris, Keszegh, Pálvölgyi (br0080) 2013; 27 Dujmović (10.1016/j.disc.2022.113221_br0150) Smorodinsky (10.1016/j.disc.2022.113221_br0340) 2013; vol. 24 Nordhaus (10.1016/j.disc.2022.113221_br0280) 1956; 63 Liu (10.1016/j.disc.2022.113221_br0240) 2013; 34 Pach (10.1016/j.disc.2022.113221_br0290) 2009; 18 Caro (10.1016/j.disc.2022.113221_br0060) Petruševski (10.1016/j.disc.2022.113221_br0310) 2015; 4 Cheilaris (10.1016/j.disc.2022.113221_br0070) 2009 Even (10.1016/j.disc.2022.113221_br0160) 2003; 33 Hall (10.1016/j.disc.2022.113221_br0200) 1935; 10 Lužar (10.1016/j.disc.2022.113221_br0260) 2018; 35 Cheilaris (10.1016/j.disc.2022.113221_br0080) 2013; 27 Bondy (10.1016/j.disc.2022.113221_br0020) 2008; vol. 244 Kano (10.1016/j.disc.2022.113221_br0210) 2018; 34 Cranston (10.1016/j.disc.2022.113221_br0130) 2010; 310 Petruševski (10.1016/j.disc.2022.113221_br0330) 2021; 91 Fabrici (10.1016/j.disc.2022.113221_br0170) 2016; 36 Cheilaris (10.1016/j.disc.2022.113221_br0090) 2011; 9 Fabrici (10.1016/j.disc.2022.113221_br0180) Glebov (10.1016/j.disc.2022.113221_br0190) 2014; 23 Khanna (10.1016/j.disc.2022.113221_br0220) 2000; 20 Lužar (10.1016/j.disc.2022.113221_br0250) 2015; 9 Cho (10.1016/j.disc.2022.113221_br0100) Petruševski (10.1016/j.disc.2022.113221_br0320) 2018; 87 Montejano (10.1016/j.disc.2022.113221_br0270) 2008 Atanasov (10.1016/j.disc.2022.113221_br0010) 2016; 10 Cranston (10.1016/j.disc.2022.113221_br0140) 2017; 340 Bunde (10.1016/j.disc.2022.113221_br0030) 2007; 187 Borodin (10.1016/j.disc.2022.113221_br0040) 1999; 206 Petr (10.1016/j.disc.2022.113221_br0300) Kostochka (10.1016/j.disc.2022.113221_br0230) 2012; 21 Cranston (10.1016/j.disc.2022.113221_br0120) Cranston (10.1016/j.disc.2022.113221_br0110) Bose (10.1016/j.disc.2022.113221_br0050) 2004; 282 Petruševski (10.1016/j.disc.2022.113221_br0350) |
References_xml | – ident: br0100 article-title: Odd coloring of sparse graphs and planar graphs – volume: 9 start-page: 241 year: 2011 end-page: 251 ident: br0090 article-title: Graph unique-maximum and conflict-free coloring publication-title: J. Discret. Algorithms – volume: 10 start-page: 359 year: 2016 end-page: 370 ident: br0010 article-title: Odd edge-colorability of subcubic graphs publication-title: Ars Math. Contemp. – ident: br0110 article-title: Odd colorings of sparse graphs – volume: 23 start-page: 434 year: 2014 end-page: 448 ident: br0190 article-title: Conflict-free colorings of graphs publication-title: Comb. Probab. Comput. – volume: 9 start-page: 277 year: 2015 end-page: 287 ident: br0250 article-title: Odd edge coloring of graphs publication-title: Ars Math. Contemp. – volume: vol. 244 year: 2008 ident: br0020 article-title: Graph Theory publication-title: Graduate Texts in Mathematics – volume: 91 year: 2021 ident: br0330 article-title: Odd decompositions and coverings of graphs publication-title: Eur. J. Comb. – volume: 187 start-page: 193 year: 2007 end-page: 213 ident: br0030 article-title: Parity and strong parity edge-coloring of graphs publication-title: Congr. Numer. – volume: 33 start-page: 94 year: 2003 end-page: 136 ident: br0160 article-title: Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks publication-title: SIAM J. Comput. – year: 2009 ident: br0070 article-title: Conflict-Free Coloring – ident: br0120 article-title: A note on odd colorings of 1-planar graphs – volume: 10 start-page: 26 year: 1935 end-page: 30 ident: br0200 article-title: On representation on subsets publication-title: J. Lond. Math. Soc. – ident: br0180 article-title: Proper conflict-free and unique-maximum colorings of planar graphs with respect to neighborhoods – volume: vol. 24 year: 2013 ident: br0340 article-title: Conflict-free coloring and its applications publication-title: Geometry-Intuitive, Discrete and Convex – volume: 35 start-page: 373 year: 2018 end-page: 388 ident: br0260 article-title: On vertex-parity edge-colorings publication-title: J. Comb. Optim. – volume: 34 start-page: 1040 year: 2013 end-page: 1050 ident: br0240 article-title: Linear colorings of subcubic graphs publication-title: Eur. J. Comb. – volume: 36 start-page: 95 year: 2016 end-page: 102 ident: br0170 article-title: Unique-maximum coloring of plane graphs publication-title: Discuss. Math., Graph Theory – volume: 310 start-page: 2965 year: 2010 end-page: 2973 ident: br0130 article-title: Injective colorings of sparse graphs publication-title: Discrete Math. – volume: 18 start-page: 819 year: 2009 end-page: 834 ident: br0290 article-title: Conflict-free colorings of graphs and hypergraphs publication-title: Comb. Probab. Comput. – volume: 21 start-page: 611 year: 2012 end-page: 622 ident: br0230 article-title: Conflict-free colorings of uniform hypergraphs with few edges publication-title: Comb. Probab. Comput. – ident: br0300 article-title: The odd chromatic number of a planar graph is at most 8 – volume: 63 start-page: 175 year: 1956 end-page: 177 ident: br0280 article-title: On complementary graphs publication-title: Am. Math. Mon. – volume: 34 start-page: 1581 year: 2018 end-page: 1588 ident: br0210 article-title: Decomposition of a graph into two disjoint odd subgraphs publication-title: Graphs Comb. – start-page: 33 year: 2008 end-page: 38 ident: br0270 article-title: Homomorphisms of 2-edge-colored graphs publication-title: Discrete Appl. Math. – ident: br0150 article-title: Odd colourings of graph products – volume: 20 start-page: 393 year: 2000 end-page: 415 ident: br0220 article-title: On the hardness of approximating the chromatic number publication-title: Combinatorica – volume: 206 start-page: 77 year: 1999 end-page: 89 ident: br0040 article-title: On the maximum average degree and the oriented chromatic number of a graph publication-title: Discrete Math. – volume: 340 start-page: 766 year: 2017 end-page: 793 ident: br0140 article-title: An introduction to the discharging method via graph coloring publication-title: Discrete Math. – volume: 4 start-page: 7 year: 2015 end-page: 10 ident: br0310 article-title: A note on weak odd edge-colorings of graphs publication-title: Adv. Math. Sci. J. – ident: br0060 article-title: Remarks on odd colorings of graphs – ident: br0350 article-title: Colorings with neighborhood parity condition – volume: 282 start-page: 35 year: 2004 end-page: 41 ident: br0050 article-title: Light edges in degree-constrained graphs publication-title: Discrete Math. – volume: 27 start-page: 1775 year: 2013 end-page: 1787 ident: br0080 article-title: Unique-maximum and conflict-free colouring for hypergraphs and tree graphs publication-title: SIAM J. Discrete Math. – volume: 87 start-page: 460 year: 2018 end-page: 474 ident: br0320 article-title: Odd 4-edge-colorability of graphs publication-title: J. Graph Theory – ident: 10.1016/j.disc.2022.113221_br0300 – volume: 10 start-page: 26 year: 1935 ident: 10.1016/j.disc.2022.113221_br0200 article-title: On representation on subsets publication-title: J. Lond. Math. Soc. doi: 10.1112/jlms/s1-10.37.26 – volume: 10 start-page: 359 year: 2016 ident: 10.1016/j.disc.2022.113221_br0010 article-title: Odd edge-colorability of subcubic graphs publication-title: Ars Math. Contemp. doi: 10.26493/1855-3974.957.97c – ident: 10.1016/j.disc.2022.113221_br0120 – volume: 91 year: 2021 ident: 10.1016/j.disc.2022.113221_br0330 article-title: Odd decompositions and coverings of graphs publication-title: Eur. J. Comb. doi: 10.1016/j.ejc.2020.103225 – year: 2009 ident: 10.1016/j.disc.2022.113221_br0070 – volume: 35 start-page: 373 issue: 2 year: 2018 ident: 10.1016/j.disc.2022.113221_br0260 article-title: On vertex-parity edge-colorings publication-title: J. Comb. Optim. doi: 10.1007/s10878-017-0178-1 – volume: 4 start-page: 7 issue: 1 year: 2015 ident: 10.1016/j.disc.2022.113221_br0310 article-title: A note on weak odd edge-colorings of graphs publication-title: Adv. Math. Sci. J. – volume: 21 start-page: 611 year: 2012 ident: 10.1016/j.disc.2022.113221_br0230 article-title: Conflict-free colorings of uniform hypergraphs with few edges publication-title: Comb. Probab. Comput. doi: 10.1017/S0963548312000156 – volume: 9 start-page: 277 year: 2015 ident: 10.1016/j.disc.2022.113221_br0250 article-title: Odd edge coloring of graphs publication-title: Ars Math. Contemp. doi: 10.26493/1855-3974.576.895 – volume: 20 start-page: 393 issue: 3 year: 2000 ident: 10.1016/j.disc.2022.113221_br0220 article-title: On the hardness of approximating the chromatic number publication-title: Combinatorica doi: 10.1007/s004930070013 – ident: 10.1016/j.disc.2022.113221_br0150 – volume: vol. 244 year: 2008 ident: 10.1016/j.disc.2022.113221_br0020 article-title: Graph Theory – volume: 63 start-page: 175 year: 1956 ident: 10.1016/j.disc.2022.113221_br0280 article-title: On complementary graphs publication-title: Am. Math. Mon. doi: 10.2307/2306658 – volume: 34 start-page: 1581 issue: 6 year: 2018 ident: 10.1016/j.disc.2022.113221_br0210 article-title: Decomposition of a graph into two disjoint odd subgraphs publication-title: Graphs Comb. doi: 10.1007/s00373-018-1970-0 – volume: 206 start-page: 77 year: 1999 ident: 10.1016/j.disc.2022.113221_br0040 article-title: On the maximum average degree and the oriented chromatic number of a graph publication-title: Discrete Math. doi: 10.1016/S0012-365X(98)00393-8 – ident: 10.1016/j.disc.2022.113221_br0350 – volume: 34 start-page: 1040 year: 2013 ident: 10.1016/j.disc.2022.113221_br0240 article-title: Linear colorings of subcubic graphs publication-title: Eur. J. Comb. doi: 10.1016/j.ejc.2013.02.008 – volume: 187 start-page: 193 year: 2007 ident: 10.1016/j.disc.2022.113221_br0030 article-title: Parity and strong parity edge-coloring of graphs publication-title: Congr. Numer. – start-page: 33 year: 2008 ident: 10.1016/j.disc.2022.113221_br0270 article-title: Homomorphisms of 2-edge-colored graphs publication-title: Discrete Appl. Math. – ident: 10.1016/j.disc.2022.113221_br0060 – volume: 87 start-page: 460 issue: 4 year: 2018 ident: 10.1016/j.disc.2022.113221_br0320 article-title: Odd 4-edge-colorability of graphs publication-title: J. Graph Theory doi: 10.1002/jgt.22168 – volume: 310 start-page: 2965 year: 2010 ident: 10.1016/j.disc.2022.113221_br0130 article-title: Injective colorings of sparse graphs publication-title: Discrete Math. doi: 10.1016/j.disc.2010.07.003 – volume: 9 start-page: 241 year: 2011 ident: 10.1016/j.disc.2022.113221_br0090 article-title: Graph unique-maximum and conflict-free coloring publication-title: J. Discret. Algorithms doi: 10.1016/j.jda.2011.03.005 – volume: vol. 24 year: 2013 ident: 10.1016/j.disc.2022.113221_br0340 article-title: Conflict-free coloring and its applications – volume: 27 start-page: 1775 year: 2013 ident: 10.1016/j.disc.2022.113221_br0080 article-title: Unique-maximum and conflict-free colouring for hypergraphs and tree graphs publication-title: SIAM J. Discrete Math. doi: 10.1137/120880471 – ident: 10.1016/j.disc.2022.113221_br0110 – ident: 10.1016/j.disc.2022.113221_br0100 – volume: 282 start-page: 35 year: 2004 ident: 10.1016/j.disc.2022.113221_br0050 article-title: Light edges in degree-constrained graphs publication-title: Discrete Math. doi: 10.1016/j.disc.2003.12.003 – volume: 340 start-page: 766 year: 2017 ident: 10.1016/j.disc.2022.113221_br0140 article-title: An introduction to the discharging method via graph coloring publication-title: Discrete Math. doi: 10.1016/j.disc.2016.11.022 – volume: 33 start-page: 94 year: 2003 ident: 10.1016/j.disc.2022.113221_br0160 article-title: Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks publication-title: SIAM J. Comput. doi: 10.1137/S0097539702431840 – volume: 36 start-page: 95 year: 2016 ident: 10.1016/j.disc.2022.113221_br0170 article-title: Unique-maximum coloring of plane graphs publication-title: Discuss. Math., Graph Theory doi: 10.7151/dmgt.1846 – ident: 10.1016/j.disc.2022.113221_br0180 – volume: 23 start-page: 434 issue: 3 year: 2014 ident: 10.1016/j.disc.2022.113221_br0190 article-title: Conflict-free colorings of graphs publication-title: Comb. Probab. Comput. doi: 10.1017/S0963548313000540 – volume: 18 start-page: 819 year: 2009 ident: 10.1016/j.disc.2022.113221_br0290 article-title: Conflict-free colorings of graphs and hypergraphs publication-title: Comb. Probab. Comput. doi: 10.1017/S0963548309990290 |
SSID | ssj0001638 |
Score | 2.4504402 |
Snippet | A vertex coloring of a graph is said to be conflict-free with respect to neighborhoods if for every non-isolated vertex there is a color appearing exactly once... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 113221 |
SubjectTerms | Conflict-free coloring Neighborhood PCF chromatic number Planar graph Proper coloring |
Title | Remarks on proper conflict-free colorings of graphs |
URI | https://dx.doi.org/10.1016/j.disc.2022.113221 |
Volume | 346 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLamcYED4ik2YOqBGwpr01d6nCamAdoOiEm7VU2aSAPUTd248tux23SAhHbgVkWxlDqJ7S_yZwPcRDoUseI5CwMdMvTQPpMYVTNEDsILtXC1IDbyZBqNZ8HjPJy3YNhwYSit0tr-2qZX1tqO9K02-6vFgji-VDkEwRavGkYQozwIYjrld5_faR4Ub9TWmDOabYkzdY4XMV8RI3JOrU049_52Tj8czugIDm2k6AzqxRxDSxcncDDZllldn4L_jJ_l29pZFs6KXtVLR1maBzOl1g6VpKaHO5xhnKo29foMZqP7l-GY2S4ITCE8oF7xKohk5noql8bXuEyDsCOOMomeNY-1L1Sm8hgvo1RelEVc-YkrJA-FxMtmtH8O7WJZ6AtwcMP8JHdzxVUSSB4nCC4SExjXNXkihNcBr_n9VNkS4dSp4j1tcsFeU1JZSipLa5V14HYrs6oLZOycHTZaTX9tc4oWfIdc959yl7BP_eHrNOsraG_KD32NUcRG9qpj0oO9wcPTePoFjbzEQA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwED7SZGg7lD5p-vTQrZjY8kseQ2hwmsdQEsgmLFmGtMUJTvr_exfLoYWSoZswOpBO1j3E3fcBPIU64JFimR34OrDRQ3u2xKjaxsyBu4HmjubUjTyehMnMf50H8wb06l4YKqs0tr-y6Vtrbb50jDY7q8WCenwJOQSTLbYljIgOoEXoVEETWt3BMJnsDDKFHJVBZjYJmN6ZqsyLml8xTWSM2E0Yc__2Tz98Tv8UTkywaHWr9ZxBQxfncDzeIa2uL8B7w2H5sbaWhbWih_XSUqbTw85LrS1Cpaa3O5yRW1t46vUlzPov015iGyIEW2GGQHTxyg9l6rgqk7mncZk5Zh5RmEp0rlmkPa5SlUV4H6VywzRkyosdLlnAJd63XHtX0CyWhb4GC8_MizMnU0zFvmRRjPlFnPu54-RZzLnbBrfevlAGJZzIKj5FXQ72LkhlglQmKpW14Xkns6owMvbODmqtil8nLdCI75G7-afcIxwm0_FIjAaT4S0cEV18VXV9B81N-aXvMajYyAfz03wDYk3G8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remarks+on+proper+conflict-free+colorings+of+graphs&rft.jtitle=Discrete+mathematics&rft.au=Caro%2C+Yair&rft.au=Petru%C5%A1evski%2C+Mirko&rft.au=%C5%A0krekovski%2C+Riste&rft.date=2023-02-01&rft.issn=0012-365X&rft.volume=346&rft.issue=2&rft.spage=113221&rft_id=info:doi/10.1016%2Fj.disc.2022.113221&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_disc_2022_113221 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon |