Remarks on proper conflict-free colorings of graphs

A vertex coloring of a graph is said to be conflict-free with respect to neighborhoods if for every non-isolated vertex there is a color appearing exactly once in its (open) neighborhood. As defined in [Fabrici et al., Proper Conflict-free and Unique-maximum Colorings of Planar Graphs with Respect t...

Full description

Saved in:
Bibliographic Details
Published inDiscrete mathematics Vol. 346; no. 2; p. 113221
Main Authors Caro, Yair, Petruševski, Mirko, Škrekovski, Riste
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A vertex coloring of a graph is said to be conflict-free with respect to neighborhoods if for every non-isolated vertex there is a color appearing exactly once in its (open) neighborhood. As defined in [Fabrici et al., Proper Conflict-free and Unique-maximum Colorings of Planar Graphs with Respect to Neighborhoods, arXiv preprint], the minimum number of colors in any such proper coloring of graph G is the PCF chromatic number of G, denoted χpcf(G). In this paper, we determine the value of this graph parameter for several basic graph classes including trees, cycles, hypercubes and subdivisions of complete graphs. We also give upper bounds on χpcf(G) in terms of other graph parameters. In particular, we show that χpcf(G)≤5Δ(G)/2 and characterize equality. Several sufficient conditions for PCF k-colorability of graphs are established for 4≤k≤6. The paper concludes with few open problems.
AbstractList A vertex coloring of a graph is said to be conflict-free with respect to neighborhoods if for every non-isolated vertex there is a color appearing exactly once in its (open) neighborhood. As defined in [Fabrici et al., Proper Conflict-free and Unique-maximum Colorings of Planar Graphs with Respect to Neighborhoods, arXiv preprint], the minimum number of colors in any such proper coloring of graph G is the PCF chromatic number of G, denoted χpcf(G). In this paper, we determine the value of this graph parameter for several basic graph classes including trees, cycles, hypercubes and subdivisions of complete graphs. We also give upper bounds on χpcf(G) in terms of other graph parameters. In particular, we show that χpcf(G)≤5Δ(G)/2 and characterize equality. Several sufficient conditions for PCF k-colorability of graphs are established for 4≤k≤6. The paper concludes with few open problems.
ArticleNumber 113221
Author Škrekovski, Riste
Caro, Yair
Petruševski, Mirko
Author_xml – sequence: 1
  givenname: Yair
  surname: Caro
  fullname: Caro, Yair
  email: yacaro@kvgeva.org.il
  organization: University of Haifa-Oranim, Israel
– sequence: 2
  givenname: Mirko
  surname: Petruševski
  fullname: Petruševski, Mirko
  email: mirko.petrushevski@gmail.com
  organization: Department of Mathematics and Informatics, Faculty of Mechanical Engineering, Skopje, The Former Yugoslav Republic of Macedonia
– sequence: 3
  givenname: Riste
  surname: Škrekovski
  fullname: Škrekovski, Riste
  email: skrekovski@gmail.com
  organization: FMF, University of Ljubljana & Faculty of Information Studies, Novo mesto, Slovenia
BookMark eNp9j81KAzEUhYNUsK2-gKt5gRlzkzaTghsp_kFBEIXuQubOTU0dJ0MyCL69KXXloqvLgfsdzjdjkz70xNg18Ao4qJt91fqEleBCVABSCDhjU9C1KJWG7YRNOQdRSrXcXrBZSnues5J6yuQrfdn4mYrQF0MMA8UCQ-86j2PpIlFOXYi-3-UPV-yiHT7SJTt3tkt09Xfn7P3h_m39VG5eHp_Xd5sSheRjCRIXqrEcsG2cpDzK8ZWqlW0ULNqapEaLbc0XvEFQVgmUK64bsdQN1CtHcs7EsRdjSCmSM0P0ee2PAW4O2mZvDtrmoG2O2hnS_yD0ox196MdofXcavT2ilKW-PUWT0FOP1PpIOJo2-FP4LwZydOw
CitedBy_id crossref_primary_10_1016_j_disc_2024_114233
crossref_primary_10_1016_j_amc_2025_129405
crossref_primary_10_1016_j_dam_2024_11_016
crossref_primary_10_1016_j_dam_2024_12_009
crossref_primary_10_1137_23M1563281
crossref_primary_10_12677_pm_2025_151024
crossref_primary_10_1016_j_dam_2024_07_011
crossref_primary_10_1016_j_dam_2023_11_039
crossref_primary_10_1007_s00371_023_03240_y
crossref_primary_10_2478_jamsi_2024_0006
crossref_primary_10_3390_math12233665
crossref_primary_10_1016_j_disc_2023_113706
crossref_primary_10_1016_j_disc_2023_113668
crossref_primary_10_1016_j_dam_2024_03_021
crossref_primary_10_1016_j_dam_2024_05_048
crossref_primary_10_1007_s00373_024_02842_0
Cites_doi 10.1112/jlms/s1-10.37.26
10.26493/1855-3974.957.97c
10.1016/j.ejc.2020.103225
10.1007/s10878-017-0178-1
10.1017/S0963548312000156
10.26493/1855-3974.576.895
10.1007/s004930070013
10.2307/2306658
10.1007/s00373-018-1970-0
10.1016/S0012-365X(98)00393-8
10.1016/j.ejc.2013.02.008
10.1002/jgt.22168
10.1016/j.disc.2010.07.003
10.1016/j.jda.2011.03.005
10.1137/120880471
10.1016/j.disc.2003.12.003
10.1016/j.disc.2016.11.022
10.1137/S0097539702431840
10.7151/dmgt.1846
10.1017/S0963548313000540
10.1017/S0963548309990290
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.disc.2022.113221
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-681X
ExternalDocumentID 10_1016_j_disc_2022_113221
S0012365X22004277
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6I.
6OB
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
VH1
WH7
WUQ
XJT
XOL
XPP
ZCG
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c230t-13c46ba01cdbf3e322f09676ab614d7e38cacd7040bc16a62c3908b258b179fe3
IEDL.DBID .~1
ISSN 0012-365X
IngestDate Thu Apr 24 23:13:21 EDT 2025
Tue Jul 01 04:11:15 EDT 2025
Fri Feb 23 02:38:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Proper coloring
PCF chromatic number
Planar graph
Conflict-free coloring
Neighborhood
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c230t-13c46ba01cdbf3e322f09676ab614d7e38cacd7040bc16a62c3908b258b179fe3
ParticipantIDs crossref_primary_10_1016_j_disc_2022_113221
crossref_citationtrail_10_1016_j_disc_2022_113221
elsevier_sciencedirect_doi_10_1016_j_disc_2022_113221
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Discrete mathematics
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lužar, Petruševski, Škrekovski (br0250) 2015; 9
Montejano, Ochem, Pinlou, Raspaud, Sopena (br0270) 2008
Smorodinsky (br0340) 2013; vol. 24
Cranston, West (br0140) 2017; 340
Glebov, Szabó, Tardos (br0190) 2014; 23
Cho, Choi, Kwon, Park (br0100)
Liu, Yu (br0240) 2013; 34
Khanna, Linial, Safra (br0220) 2000; 20
Pach, Tardos (br0290) 2009; 18
Cranston, Kim, Yu (br0130) 2010; 310
Fabrici, Lužar, Rindošová, Soták (br0180)
Bunde, Milans, West, Wu (br0030) 2007; 187
Kano, Katona, Varga (br0210) 2018; 34
Lužar, Petruševski, Škrekovski (br0260) 2018; 35
Dujmović, Morin, Odak (br0150)
Kostochka, Kumbhat, Łuczak (br0230) 2012; 21
Hall (br0200) 1935; 10
Cranston, Lafferty, Song (br0120)
Cheilaris, Tóth (br0090) 2011; 9
Petruševski (br0310) 2015; 4
Petruševski (br0320) 2018; 87
Atanasov, Petruševski, Škrekovski (br0010) 2016; 10
Cranston (br0110)
Bose, Smid, Wood (br0050) 2004; 282
Even, Lotker, Ron, Smorodinsky (br0160) 2003; 33
Caro, Petruševski, Škrekovski (br0060)
Nordhaus, Gaddum (br0280) 1956; 63
Cheilaris (br0070) 2009
Petr, Portier (br0300)
Bondy, Murty (br0020) 2008; vol. 244
Borodin, Kostochka, Nešetřil, Raspaud, Sopena (br0040) 1999; 206
Petruševski, Škrekovski (br0330) 2021; 91
Petruševski, Škrekovski (br0350)
Fabrici, Göring (br0170) 2016; 36
Cheilaris, Keszegh, Pálvölgyi (br0080) 2013; 27
Dujmović (10.1016/j.disc.2022.113221_br0150)
Smorodinsky (10.1016/j.disc.2022.113221_br0340) 2013; vol. 24
Nordhaus (10.1016/j.disc.2022.113221_br0280) 1956; 63
Liu (10.1016/j.disc.2022.113221_br0240) 2013; 34
Pach (10.1016/j.disc.2022.113221_br0290) 2009; 18
Caro (10.1016/j.disc.2022.113221_br0060)
Petruševski (10.1016/j.disc.2022.113221_br0310) 2015; 4
Cheilaris (10.1016/j.disc.2022.113221_br0070) 2009
Even (10.1016/j.disc.2022.113221_br0160) 2003; 33
Hall (10.1016/j.disc.2022.113221_br0200) 1935; 10
Lužar (10.1016/j.disc.2022.113221_br0260) 2018; 35
Cheilaris (10.1016/j.disc.2022.113221_br0080) 2013; 27
Bondy (10.1016/j.disc.2022.113221_br0020) 2008; vol. 244
Kano (10.1016/j.disc.2022.113221_br0210) 2018; 34
Cranston (10.1016/j.disc.2022.113221_br0130) 2010; 310
Petruševski (10.1016/j.disc.2022.113221_br0330) 2021; 91
Fabrici (10.1016/j.disc.2022.113221_br0170) 2016; 36
Cheilaris (10.1016/j.disc.2022.113221_br0090) 2011; 9
Fabrici (10.1016/j.disc.2022.113221_br0180)
Glebov (10.1016/j.disc.2022.113221_br0190) 2014; 23
Khanna (10.1016/j.disc.2022.113221_br0220) 2000; 20
Lužar (10.1016/j.disc.2022.113221_br0250) 2015; 9
Cho (10.1016/j.disc.2022.113221_br0100)
Petruševski (10.1016/j.disc.2022.113221_br0320) 2018; 87
Montejano (10.1016/j.disc.2022.113221_br0270) 2008
Atanasov (10.1016/j.disc.2022.113221_br0010) 2016; 10
Cranston (10.1016/j.disc.2022.113221_br0140) 2017; 340
Bunde (10.1016/j.disc.2022.113221_br0030) 2007; 187
Borodin (10.1016/j.disc.2022.113221_br0040) 1999; 206
Petr (10.1016/j.disc.2022.113221_br0300)
Kostochka (10.1016/j.disc.2022.113221_br0230) 2012; 21
Cranston (10.1016/j.disc.2022.113221_br0120)
Cranston (10.1016/j.disc.2022.113221_br0110)
Bose (10.1016/j.disc.2022.113221_br0050) 2004; 282
Petruševski (10.1016/j.disc.2022.113221_br0350)
References_xml – ident: br0100
  article-title: Odd coloring of sparse graphs and planar graphs
– volume: 9
  start-page: 241
  year: 2011
  end-page: 251
  ident: br0090
  article-title: Graph unique-maximum and conflict-free coloring
  publication-title: J. Discret. Algorithms
– volume: 10
  start-page: 359
  year: 2016
  end-page: 370
  ident: br0010
  article-title: Odd edge-colorability of subcubic graphs
  publication-title: Ars Math. Contemp.
– ident: br0110
  article-title: Odd colorings of sparse graphs
– volume: 23
  start-page: 434
  year: 2014
  end-page: 448
  ident: br0190
  article-title: Conflict-free colorings of graphs
  publication-title: Comb. Probab. Comput.
– volume: 9
  start-page: 277
  year: 2015
  end-page: 287
  ident: br0250
  article-title: Odd edge coloring of graphs
  publication-title: Ars Math. Contemp.
– volume: vol. 244
  year: 2008
  ident: br0020
  article-title: Graph Theory
  publication-title: Graduate Texts in Mathematics
– volume: 91
  year: 2021
  ident: br0330
  article-title: Odd decompositions and coverings of graphs
  publication-title: Eur. J. Comb.
– volume: 187
  start-page: 193
  year: 2007
  end-page: 213
  ident: br0030
  article-title: Parity and strong parity edge-coloring of graphs
  publication-title: Congr. Numer.
– volume: 33
  start-page: 94
  year: 2003
  end-page: 136
  ident: br0160
  article-title: Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks
  publication-title: SIAM J. Comput.
– year: 2009
  ident: br0070
  article-title: Conflict-Free Coloring
– ident: br0120
  article-title: A note on odd colorings of 1-planar graphs
– volume: 10
  start-page: 26
  year: 1935
  end-page: 30
  ident: br0200
  article-title: On representation on subsets
  publication-title: J. Lond. Math. Soc.
– ident: br0180
  article-title: Proper conflict-free and unique-maximum colorings of planar graphs with respect to neighborhoods
– volume: vol. 24
  year: 2013
  ident: br0340
  article-title: Conflict-free coloring and its applications
  publication-title: Geometry-Intuitive, Discrete and Convex
– volume: 35
  start-page: 373
  year: 2018
  end-page: 388
  ident: br0260
  article-title: On vertex-parity edge-colorings
  publication-title: J. Comb. Optim.
– volume: 34
  start-page: 1040
  year: 2013
  end-page: 1050
  ident: br0240
  article-title: Linear colorings of subcubic graphs
  publication-title: Eur. J. Comb.
– volume: 36
  start-page: 95
  year: 2016
  end-page: 102
  ident: br0170
  article-title: Unique-maximum coloring of plane graphs
  publication-title: Discuss. Math., Graph Theory
– volume: 310
  start-page: 2965
  year: 2010
  end-page: 2973
  ident: br0130
  article-title: Injective colorings of sparse graphs
  publication-title: Discrete Math.
– volume: 18
  start-page: 819
  year: 2009
  end-page: 834
  ident: br0290
  article-title: Conflict-free colorings of graphs and hypergraphs
  publication-title: Comb. Probab. Comput.
– volume: 21
  start-page: 611
  year: 2012
  end-page: 622
  ident: br0230
  article-title: Conflict-free colorings of uniform hypergraphs with few edges
  publication-title: Comb. Probab. Comput.
– ident: br0300
  article-title: The odd chromatic number of a planar graph is at most 8
– volume: 63
  start-page: 175
  year: 1956
  end-page: 177
  ident: br0280
  article-title: On complementary graphs
  publication-title: Am. Math. Mon.
– volume: 34
  start-page: 1581
  year: 2018
  end-page: 1588
  ident: br0210
  article-title: Decomposition of a graph into two disjoint odd subgraphs
  publication-title: Graphs Comb.
– start-page: 33
  year: 2008
  end-page: 38
  ident: br0270
  article-title: Homomorphisms of 2-edge-colored graphs
  publication-title: Discrete Appl. Math.
– ident: br0150
  article-title: Odd colourings of graph products
– volume: 20
  start-page: 393
  year: 2000
  end-page: 415
  ident: br0220
  article-title: On the hardness of approximating the chromatic number
  publication-title: Combinatorica
– volume: 206
  start-page: 77
  year: 1999
  end-page: 89
  ident: br0040
  article-title: On the maximum average degree and the oriented chromatic number of a graph
  publication-title: Discrete Math.
– volume: 340
  start-page: 766
  year: 2017
  end-page: 793
  ident: br0140
  article-title: An introduction to the discharging method via graph coloring
  publication-title: Discrete Math.
– volume: 4
  start-page: 7
  year: 2015
  end-page: 10
  ident: br0310
  article-title: A note on weak odd edge-colorings of graphs
  publication-title: Adv. Math. Sci. J.
– ident: br0060
  article-title: Remarks on odd colorings of graphs
– ident: br0350
  article-title: Colorings with neighborhood parity condition
– volume: 282
  start-page: 35
  year: 2004
  end-page: 41
  ident: br0050
  article-title: Light edges in degree-constrained graphs
  publication-title: Discrete Math.
– volume: 27
  start-page: 1775
  year: 2013
  end-page: 1787
  ident: br0080
  article-title: Unique-maximum and conflict-free colouring for hypergraphs and tree graphs
  publication-title: SIAM J. Discrete Math.
– volume: 87
  start-page: 460
  year: 2018
  end-page: 474
  ident: br0320
  article-title: Odd 4-edge-colorability of graphs
  publication-title: J. Graph Theory
– ident: 10.1016/j.disc.2022.113221_br0300
– volume: 10
  start-page: 26
  year: 1935
  ident: 10.1016/j.disc.2022.113221_br0200
  article-title: On representation on subsets
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/s1-10.37.26
– volume: 10
  start-page: 359
  year: 2016
  ident: 10.1016/j.disc.2022.113221_br0010
  article-title: Odd edge-colorability of subcubic graphs
  publication-title: Ars Math. Contemp.
  doi: 10.26493/1855-3974.957.97c
– ident: 10.1016/j.disc.2022.113221_br0120
– volume: 91
  year: 2021
  ident: 10.1016/j.disc.2022.113221_br0330
  article-title: Odd decompositions and coverings of graphs
  publication-title: Eur. J. Comb.
  doi: 10.1016/j.ejc.2020.103225
– year: 2009
  ident: 10.1016/j.disc.2022.113221_br0070
– volume: 35
  start-page: 373
  issue: 2
  year: 2018
  ident: 10.1016/j.disc.2022.113221_br0260
  article-title: On vertex-parity edge-colorings
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-017-0178-1
– volume: 4
  start-page: 7
  issue: 1
  year: 2015
  ident: 10.1016/j.disc.2022.113221_br0310
  article-title: A note on weak odd edge-colorings of graphs
  publication-title: Adv. Math. Sci. J.
– volume: 21
  start-page: 611
  year: 2012
  ident: 10.1016/j.disc.2022.113221_br0230
  article-title: Conflict-free colorings of uniform hypergraphs with few edges
  publication-title: Comb. Probab. Comput.
  doi: 10.1017/S0963548312000156
– volume: 9
  start-page: 277
  year: 2015
  ident: 10.1016/j.disc.2022.113221_br0250
  article-title: Odd edge coloring of graphs
  publication-title: Ars Math. Contemp.
  doi: 10.26493/1855-3974.576.895
– volume: 20
  start-page: 393
  issue: 3
  year: 2000
  ident: 10.1016/j.disc.2022.113221_br0220
  article-title: On the hardness of approximating the chromatic number
  publication-title: Combinatorica
  doi: 10.1007/s004930070013
– ident: 10.1016/j.disc.2022.113221_br0150
– volume: vol. 244
  year: 2008
  ident: 10.1016/j.disc.2022.113221_br0020
  article-title: Graph Theory
– volume: 63
  start-page: 175
  year: 1956
  ident: 10.1016/j.disc.2022.113221_br0280
  article-title: On complementary graphs
  publication-title: Am. Math. Mon.
  doi: 10.2307/2306658
– volume: 34
  start-page: 1581
  issue: 6
  year: 2018
  ident: 10.1016/j.disc.2022.113221_br0210
  article-title: Decomposition of a graph into two disjoint odd subgraphs
  publication-title: Graphs Comb.
  doi: 10.1007/s00373-018-1970-0
– volume: 206
  start-page: 77
  year: 1999
  ident: 10.1016/j.disc.2022.113221_br0040
  article-title: On the maximum average degree and the oriented chromatic number of a graph
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(98)00393-8
– ident: 10.1016/j.disc.2022.113221_br0350
– volume: 34
  start-page: 1040
  year: 2013
  ident: 10.1016/j.disc.2022.113221_br0240
  article-title: Linear colorings of subcubic graphs
  publication-title: Eur. J. Comb.
  doi: 10.1016/j.ejc.2013.02.008
– volume: 187
  start-page: 193
  year: 2007
  ident: 10.1016/j.disc.2022.113221_br0030
  article-title: Parity and strong parity edge-coloring of graphs
  publication-title: Congr. Numer.
– start-page: 33
  year: 2008
  ident: 10.1016/j.disc.2022.113221_br0270
  article-title: Homomorphisms of 2-edge-colored graphs
  publication-title: Discrete Appl. Math.
– ident: 10.1016/j.disc.2022.113221_br0060
– volume: 87
  start-page: 460
  issue: 4
  year: 2018
  ident: 10.1016/j.disc.2022.113221_br0320
  article-title: Odd 4-edge-colorability of graphs
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.22168
– volume: 310
  start-page: 2965
  year: 2010
  ident: 10.1016/j.disc.2022.113221_br0130
  article-title: Injective colorings of sparse graphs
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2010.07.003
– volume: 9
  start-page: 241
  year: 2011
  ident: 10.1016/j.disc.2022.113221_br0090
  article-title: Graph unique-maximum and conflict-free coloring
  publication-title: J. Discret. Algorithms
  doi: 10.1016/j.jda.2011.03.005
– volume: vol. 24
  year: 2013
  ident: 10.1016/j.disc.2022.113221_br0340
  article-title: Conflict-free coloring and its applications
– volume: 27
  start-page: 1775
  year: 2013
  ident: 10.1016/j.disc.2022.113221_br0080
  article-title: Unique-maximum and conflict-free colouring for hypergraphs and tree graphs
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/120880471
– ident: 10.1016/j.disc.2022.113221_br0110
– ident: 10.1016/j.disc.2022.113221_br0100
– volume: 282
  start-page: 35
  year: 2004
  ident: 10.1016/j.disc.2022.113221_br0050
  article-title: Light edges in degree-constrained graphs
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2003.12.003
– volume: 340
  start-page: 766
  year: 2017
  ident: 10.1016/j.disc.2022.113221_br0140
  article-title: An introduction to the discharging method via graph coloring
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2016.11.022
– volume: 33
  start-page: 94
  year: 2003
  ident: 10.1016/j.disc.2022.113221_br0160
  article-title: Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539702431840
– volume: 36
  start-page: 95
  year: 2016
  ident: 10.1016/j.disc.2022.113221_br0170
  article-title: Unique-maximum coloring of plane graphs
  publication-title: Discuss. Math., Graph Theory
  doi: 10.7151/dmgt.1846
– ident: 10.1016/j.disc.2022.113221_br0180
– volume: 23
  start-page: 434
  issue: 3
  year: 2014
  ident: 10.1016/j.disc.2022.113221_br0190
  article-title: Conflict-free colorings of graphs
  publication-title: Comb. Probab. Comput.
  doi: 10.1017/S0963548313000540
– volume: 18
  start-page: 819
  year: 2009
  ident: 10.1016/j.disc.2022.113221_br0290
  article-title: Conflict-free colorings of graphs and hypergraphs
  publication-title: Comb. Probab. Comput.
  doi: 10.1017/S0963548309990290
SSID ssj0001638
Score 2.4504402
Snippet A vertex coloring of a graph is said to be conflict-free with respect to neighborhoods if for every non-isolated vertex there is a color appearing exactly once...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113221
SubjectTerms Conflict-free coloring
Neighborhood
PCF chromatic number
Planar graph
Proper coloring
Title Remarks on proper conflict-free colorings of graphs
URI https://dx.doi.org/10.1016/j.disc.2022.113221
Volume 346
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLamcYED4ik2YOqBGwpr01d6nCamAdoOiEm7VU2aSAPUTd248tux23SAhHbgVkWxlDqJ7S_yZwPcRDoUseI5CwMdMvTQPpMYVTNEDsILtXC1IDbyZBqNZ8HjPJy3YNhwYSit0tr-2qZX1tqO9K02-6vFgji-VDkEwRavGkYQozwIYjrld5_faR4Ub9TWmDOabYkzdY4XMV8RI3JOrU049_52Tj8czugIDm2k6AzqxRxDSxcncDDZllldn4L_jJ_l29pZFs6KXtVLR1maBzOl1g6VpKaHO5xhnKo29foMZqP7l-GY2S4ITCE8oF7xKohk5noql8bXuEyDsCOOMomeNY-1L1Sm8hgvo1RelEVc-YkrJA-FxMtmtH8O7WJZ6AtwcMP8JHdzxVUSSB4nCC4SExjXNXkihNcBr_n9VNkS4dSp4j1tcsFeU1JZSipLa5V14HYrs6oLZOycHTZaTX9tc4oWfIdc959yl7BP_eHrNOsraG_KD32NUcRG9qpj0oO9wcPTePoFjbzEQA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwED7SZGg7lD5p-vTQrZjY8kseQ2hwmsdQEsgmLFmGtMUJTvr_exfLoYWSoZswOpBO1j3E3fcBPIU64JFimR34OrDRQ3u2xKjaxsyBu4HmjubUjTyehMnMf50H8wb06l4YKqs0tr-y6Vtrbb50jDY7q8WCenwJOQSTLbYljIgOoEXoVEETWt3BMJnsDDKFHJVBZjYJmN6ZqsyLml8xTWSM2E0Yc__2Tz98Tv8UTkywaHWr9ZxBQxfncDzeIa2uL8B7w2H5sbaWhbWih_XSUqbTw85LrS1Cpaa3O5yRW1t46vUlzPov015iGyIEW2GGQHTxyg9l6rgqk7mncZk5Zh5RmEp0rlmkPa5SlUV4H6VywzRkyosdLlnAJd63XHtX0CyWhb4GC8_MizMnU0zFvmRRjPlFnPu54-RZzLnbBrfevlAGJZzIKj5FXQ72LkhlglQmKpW14Xkns6owMvbODmqtil8nLdCI75G7-afcIxwm0_FIjAaT4S0cEV18VXV9B81N-aXvMajYyAfz03wDYk3G8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remarks+on+proper+conflict-free+colorings+of+graphs&rft.jtitle=Discrete+mathematics&rft.au=Caro%2C+Yair&rft.au=Petru%C5%A1evski%2C+Mirko&rft.au=%C5%A0krekovski%2C+Riste&rft.date=2023-02-01&rft.issn=0012-365X&rft.volume=346&rft.issue=2&rft.spage=113221&rft_id=info:doi/10.1016%2Fj.disc.2022.113221&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_disc_2022_113221
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon