Microorganisms Promote Soil Phosphorus Bioavailability at the Beginning of Pedogenesis
ABSTRACT The rapid accumulation of bioavailable phosphorus (Bio‐P) promotes ecosystem development at the beginning of pedogenesis in the Hailuogou Glacier foreland. However, the role of microorganisms in Bio‐P accumulation during early pedogenesis remains unclear. Using the Hailuogou Glacier forelan...
Saved in:
Published in | Global change biology Vol. 31; no. 8; pp. e70419 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
The rapid accumulation of bioavailable phosphorus (Bio‐P) promotes ecosystem development at the beginning of pedogenesis in the Hailuogou Glacier foreland. However, the role of microorganisms in Bio‐P accumulation during early pedogenesis remains unclear. Using the Hailuogou Glacier foreland on Gongga Mountain as a natural laboratory, microbial community assembly, co‐occurrence networks, and phosphorus cycling genes (PCGs) were examined across four successional stages, from bare land to moss crust. The results showed that bacteria were dominant at all stages. Microbial diversity and evenness increased gradually, whereas the topological properties of the microbial network initially increased and then decreased. Community assembly is mainly driven by deterministic processes under environmental pressures. At the beginning of pedogenesis, microorganisms adapt to scarce Bio‐P conditions by enhancing the functional potential of key PCGs (e.g., pqqE, gcd, phoD, and 3‐Phytase), which mediate mineral phosphorus solubilization and organic phosphorus mineralization. Tight cooperative network structures within microbial communities and dominant microbial taxa were the major factors accelerating Bio‐P. Thus, it can be concluded that microorganisms promote Bio‐P accumulation at the beginning of pedogenesis by regulating PCGs and typical microbial community construction. These findings provide new insights into the mechanisms by which microbial communities regulate phosphorus dynamics during pedogenesis, particularly on newly exposed land resulting from global change in alpine and polar regions.
At the beginning of pedogenesis, microorganisms promote the enhancement of phosphorus bioavailability. Microbial community assembly is closely associated with phosphorus‐cycling genes and phosphorus bioavailability. Microorganisms adapt to scarce Bio‐P conditions by enhancing the functional potential of key PCGs (e.g., pqqE, gcd, phoD, and 3‐Phytase), which mediate mineral phosphorus solubilization and organic phosphorus mineralization. |
---|---|
AbstractList | The rapid accumulation of bioavailable phosphorus (Bio‐P) promotes ecosystem development at the beginning of pedogenesis in the Hailuogou Glacier foreland. However, the role of microorganisms in Bio‐P accumulation during early pedogenesis remains unclear. Using the Hailuogou Glacier foreland on Gongga Mountain as a natural laboratory, microbial community assembly, co‐occurrence networks, and phosphorus cycling genes (PCGs) were examined across four successional stages, from bare land to moss crust. The results showed that bacteria were dominant at all stages. Microbial diversity and evenness increased gradually, whereas the topological properties of the microbial network initially increased and then decreased. Community assembly is mainly driven by deterministic processes under environmental pressures. At the beginning of pedogenesis, microorganisms adapt to scarce Bio‐P conditions by enhancing the functional potential of key PCGs (e.g., pqqE , gcd , phoD , and 3‐Phytase ), which mediate mineral phosphorus solubilization and organic phosphorus mineralization. Tight cooperative network structures within microbial communities and dominant microbial taxa were the major factors accelerating Bio‐P. Thus, it can be concluded that microorganisms promote Bio‐P accumulation at the beginning of pedogenesis by regulating PCGs and typical microbial community construction. These findings provide new insights into the mechanisms by which microbial communities regulate phosphorus dynamics during pedogenesis, particularly on newly exposed land resulting from global change in alpine and polar regions. ABSTRACT The rapid accumulation of bioavailable phosphorus (Bio‐P) promotes ecosystem development at the beginning of pedogenesis in the Hailuogou Glacier foreland. However, the role of microorganisms in Bio‐P accumulation during early pedogenesis remains unclear. Using the Hailuogou Glacier foreland on Gongga Mountain as a natural laboratory, microbial community assembly, co‐occurrence networks, and phosphorus cycling genes (PCGs) were examined across four successional stages, from bare land to moss crust. The results showed that bacteria were dominant at all stages. Microbial diversity and evenness increased gradually, whereas the topological properties of the microbial network initially increased and then decreased. Community assembly is mainly driven by deterministic processes under environmental pressures. At the beginning of pedogenesis, microorganisms adapt to scarce Bio‐P conditions by enhancing the functional potential of key PCGs (e.g., pqqE, gcd, phoD, and 3‐Phytase), which mediate mineral phosphorus solubilization and organic phosphorus mineralization. Tight cooperative network structures within microbial communities and dominant microbial taxa were the major factors accelerating Bio‐P. Thus, it can be concluded that microorganisms promote Bio‐P accumulation at the beginning of pedogenesis by regulating PCGs and typical microbial community construction. These findings provide new insights into the mechanisms by which microbial communities regulate phosphorus dynamics during pedogenesis, particularly on newly exposed land resulting from global change in alpine and polar regions. At the beginning of pedogenesis, microorganisms promote the enhancement of phosphorus bioavailability. Microbial community assembly is closely associated with phosphorus‐cycling genes and phosphorus bioavailability. Microorganisms adapt to scarce Bio‐P conditions by enhancing the functional potential of key PCGs (e.g., pqqE, gcd, phoD, and 3‐Phytase), which mediate mineral phosphorus solubilization and organic phosphorus mineralization. The rapid accumulation of bioavailable phosphorus (Bio-P) promotes ecosystem development at the beginning of pedogenesis in the Hailuogou Glacier foreland. However, the role of microorganisms in Bio-P accumulation during early pedogenesis remains unclear. Using the Hailuogou Glacier foreland on Gongga Mountain as a natural laboratory, microbial community assembly, co-occurrence networks, and phosphorus cycling genes (PCGs) were examined across four successional stages, from bare land to moss crust. The results showed that bacteria were dominant at all stages. Microbial diversity and evenness increased gradually, whereas the topological properties of the microbial network initially increased and then decreased. Community assembly is mainly driven by deterministic processes under environmental pressures. At the beginning of pedogenesis, microorganisms adapt to scarce Bio-P conditions by enhancing the functional potential of key PCGs (e.g., pqqE, gcd, phoD, and 3-Phytase), which mediate mineral phosphorus solubilization and organic phosphorus mineralization. Tight cooperative network structures within microbial communities and dominant microbial taxa were the major factors accelerating Bio-P. Thus, it can be concluded that microorganisms promote Bio-P accumulation at the beginning of pedogenesis by regulating PCGs and typical microbial community construction. These findings provide new insights into the mechanisms by which microbial communities regulate phosphorus dynamics during pedogenesis, particularly on newly exposed land resulting from global change in alpine and polar regions.The rapid accumulation of bioavailable phosphorus (Bio-P) promotes ecosystem development at the beginning of pedogenesis in the Hailuogou Glacier foreland. However, the role of microorganisms in Bio-P accumulation during early pedogenesis remains unclear. Using the Hailuogou Glacier foreland on Gongga Mountain as a natural laboratory, microbial community assembly, co-occurrence networks, and phosphorus cycling genes (PCGs) were examined across four successional stages, from bare land to moss crust. The results showed that bacteria were dominant at all stages. Microbial diversity and evenness increased gradually, whereas the topological properties of the microbial network initially increased and then decreased. Community assembly is mainly driven by deterministic processes under environmental pressures. At the beginning of pedogenesis, microorganisms adapt to scarce Bio-P conditions by enhancing the functional potential of key PCGs (e.g., pqqE, gcd, phoD, and 3-Phytase), which mediate mineral phosphorus solubilization and organic phosphorus mineralization. Tight cooperative network structures within microbial communities and dominant microbial taxa were the major factors accelerating Bio-P. Thus, it can be concluded that microorganisms promote Bio-P accumulation at the beginning of pedogenesis by regulating PCGs and typical microbial community construction. These findings provide new insights into the mechanisms by which microbial communities regulate phosphorus dynamics during pedogenesis, particularly on newly exposed land resulting from global change in alpine and polar regions. |
Author | Xu, Mingyang Bing, Haijan He, Junbo Luo, Chaoyi Wu, Yanhong Zhu, He |
Author_xml | – sequence: 1 givenname: Mingyang orcidid: 0009-0001-9253-5162 surname: Xu fullname: Xu, Mingyang organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Yanhong orcidid: 0000-0002-9803-0544 surname: Wu fullname: Wu, Yanhong email: yhwu@imde.ac.cn organization: Institute of Mountain Hazards and Environment, Chinese Academy of Sciences – sequence: 3 givenname: Haijan orcidid: 0000-0002-9813-6939 surname: Bing fullname: Bing, Haijan organization: Institute of Mountain Hazards and Environment, Chinese Academy of Sciences – sequence: 4 givenname: Chaoyi orcidid: 0000-0002-0745-1678 surname: Luo fullname: Luo, Chaoyi organization: University of Chinese Academy of Sciences – sequence: 5 givenname: He surname: Zhu fullname: Zhu, He organization: Institute of Mountain Hazards and Environment, Chinese Academy of Sciences – sequence: 6 givenname: Junbo surname: He fullname: He, Junbo organization: Sichuan Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40792352$$D View this record in MEDLINE/PubMed |
BookMark | eNp10TtPwzAQB3ALFfEe-ALIEgsMKX6nHmkFBQlEJR5r5CROapTYxU5A_fa4BBiQ8HIefnc63X8fjKyzGoBjjMY4vou6yMcpYlhugT1MBU8Im4jR5s9ZghGmu2A_hFeEECVI7IBdhlJJKCd74OXeFN45XytrQhvgwrvWdRo-OtPAxdKF1dL5PsCpcepdmUblpjHdGqoOdksNp7o21hpbQ1fBhS5dra0OJhyC7Uo1QR991wPwfH31NLtJ7h7mt7PLu6QgFMkk5bwUVNGcMaZKxEpa8QkXBSFFXmEllcw5FpWSZcqo4pM0zzVDUjCZKqTKih6As2Huyru3Xocua00odNMoq10fMkroJCUICxrp6R_66npv43ZRMYZFKvFGnXyrPm91ma28aZVfZz8Xi-B8APFsIXhd_RKMsk0aWUwj-0oj2ovBfphGr_-H2Xw2HTo-AfE1idE |
Cites_doi | 10.1890/08‐0127.1 10.1093/bioinformatics/bts429 10.7717/peerj‐cs.104 10.1016/S0038‐0717(99)00140‐6 10.1038/s41396‐019‐0567‐9 10.1023/A:1010933404324 10.1098/rstb.2001.0837 10.1016/0016‐7061(76)90066‐5 10.1093/bioinformatics/bts565 10.1007/s10533‐014‐0025‐8 10.1186/1471‐2105‐9‐559 10.1104/pp.107.112748 10.1186/s40168‐017‐0369‐0 10.1038/nrmicro1341 10.1111/j.1462‐2920.2005.00956.x 10.1126/science.1098778 10.1016/j.scitotenv.2019.135151 10.1002/9780470253489.ch13 10.1007/s00374‐017‐1183‐3 10.1126/sciadv.aaq0942 10.1007/s13237‐021‐00371‐2 10.1002/ece3.5670 10.1111/1758‐2229.13017 10.1038/s41396‐020‐0632‐4 10.1016/j.scitotenv.2016.08.150 10.1093/femsec/fiaa255 10.1016/j.atmosenv.2014.10.014 10.1093/femsec/fiaa165 10.3389/fmicb.2012.00019 10.1029/2024GB008174 10.1093/bioinformatics/btu170 10.1007/s00253‐014‐5610‐1 10.1007/s00248‐011‐9991‐8 10.1038/ismej.2009.71 10.1111/1462‐2920.13778 10.1038/ismej.2011.119 10.1128/msystems.00162‐20 10.1016/j.apsoil.2017.06.019 10.1079/9781845931520.0061 10.1111/gcb.16213 10.1104/pp.111.175448 10.1111/mec.12589 10.1016/j.soilbio.2005.08.012 10.3390/f14081665 10.1007/s12010‐019‐03161‐4 10.1021/es300311h 10.1098/rspb.2014.0882 10.1111/j.1758‐2229.2009.00105.x 10.3389/fmicb.2023.1127249 10.1007/978-1-4684-8601-8_15 10.1016/j.soilbio.2022.108826 10.1016/j.geoderma.2022.116303 10.1007/s00300‐017‐2110‐7 10.1016/j.soilbio.2011.03.006 10.18637/jss.v028.i05 10.1016/j.soilbio.2022.108929 10.1016/S1002‐0160(17)60456‐9 10.1038/s41559‐017‐0463‐5 10.1016/j.geoderma.2012.06.033 10.1111/j.1365‐294X.2012.05602.x 10.1016/j.geoderma.2019.04.039 10.1146/annurev.micro.61.080706.093357 10.1111/1462‐2920.13188 10.1038/s41467‐024‐45895‐8 10.1186/s13059‐019‐1891‐0 10.2136/sssabookser5.2.c37 10.1111/j.1365‐2389.2008.01052_5.x 10.1890/05‐1839 10.1111/j.2517‐6161.1995.tb02031.x 10.1016/j.geoderma.2018.04.015 10.3389/fmicb.2017.00971 10.1016/j.micres.2022.127024 10.1016/j.isci.2022.105170 10.1021/cr400475g 10.1016/j.soilbio.2019.107632 10.1128/msystems.01107‐21 10.1371/journal.pone.0204408 10.1007/s11368‐024‐03783‐0 10.1111/2041‐210X.12628 10.1186/gb‐2011‐12‐6‐r60 10.1002/ldr.3734 10.1016/j.soilbio.2017.12.019 10.1007/s11629‐013‐2328‐y 10.1128/AEM.05434‐11 10.1128/aem.61.11.3856‐3864.1995 10.1016/j.scitotenv.2018.02.035 10.1016/j.geoderma.2015.12.024 10.1128/mbio.01718‐20 10.1007/978-3-319-24277-4_1 10.1007/s00374‐012‐0755‐5 10.1038/s41592‐021‐01101‐x 10.1007/s003740000284 10.1111/j.1442‐9993.1993.tb00438.x 10.2136/sssabookser9.c14 10.1007/s00374‐016‐1123‐7 10.1016/j.geoderma.2019.05.038 10.1146/annurev.biochem.78.091707.100215 10.1016/S0169‐7439(01)00155‐1 10.3389/fagro.2021.667339 10.1007/s00374‐016‐1137‐1 10.1609/icwsm.v3i1.13937 10.1093/femsec/fiw213 10.1007/s12275‐009‐0194‐7 10.1186/2193‐1801‐2‐587 10.31665/JFB.2018.1126 10.1038/s41522‐017‐0019‐0 10.1007/s11104‐006‐9056‐9 10.1007/s12010‐013‐0305‐0 10.1111/ejss.12536 10.1007/s00248‐016‐0748‐2 10.1186/s12866‐017‐1126‐z 10.1016/j.scitotenv.2020.139295 10.3390/plants4020253 10.1038/nature10622 10.1046/j.1351‐0754.2003.0570.x 10.1038/nchembio.2007.52 |
ContentType | Journal Article |
Copyright | 2025 John Wiley & Sons Ltd. Copyright © 2025 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. – notice: Copyright © 2025 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 |
DOI | 10.1111/gcb.70419 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | n/a |
ExternalDocumentID | 40792352 10_1111_gcb_70419 GCB70419 |
Genre | researchArticle Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: International Partnership Program of the Chinese Academy of Sciences funderid: 131551KYSB20190028 – fundername: Science and Technology Research Program of the institute of Mountain Hazards and Environment, Chinese Academy of Sciences funderid: IMHE‐ZDRW‐06 – fundername: Central Government‐Guided Local Science and Technology Development Project funderid: 2024ZYD0038 – fundername: National Natural Science Foundation of China funderid: 42271064; 42107281 – fundername: International Partnership Program of the Chinese Academy of Sciences grantid: 131551KYSB20190028 – fundername: Central Government Guided Local Science and Technology Development Project grantid: 2024ZYD0038 – fundername: Science and Technology Research Program of the Institute of Mountain Hazards and Environment, Chinese Academy of Sciences grantid: IMHE-ZDRW-06 – fundername: National Natural Science Foundation of China grantid: 42107281 – fundername: National Natural Science Foundation of China grantid: 42271064 |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 |
ID | FETCH-LOGICAL-c2309-755d63a3b444ad04d3f5856c22cbf1a9a9b516fa9d743a587bbe4096497a0adf3 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 1365-2486 |
IngestDate | Tue Aug 12 17:00:50 EDT 2025 Sat Aug 30 01:50:11 EDT 2025 Wed Aug 13 02:04:25 EDT 2025 Wed Aug 20 23:58:45 EDT 2025 Thu Aug 28 10:10:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | phosphorus cycling genes (PCGs) beginning of pedogenesis microbial communities glacier foreland nutrient cycling phosphorus bioavailability |
Language | English |
License | 2025 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2309-755d63a3b444ad04d3f5856c22cbf1a9a9b516fa9d743a587bbe4096497a0adf3 |
Notes | Funding This study was supported by the National Natural Science Foundation of China (Nos, 42271064 and 42107281), the Central Government‐Guided Local Science and Technology Development Project (2024ZYD0038), the International Partnership Program of the Chinese Academy of Sciences (131551KYSB20190028) and the Science and Technology Research Program of the institute of Mountain Hazards and Environment, Chinese Academy of Sciences (IMHE‐ZDRW‐06). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0745-1678 0000-0002-9813-6939 0009-0001-9253-5162 0000-0002-9803-0544 |
PMID | 40792352 |
PQID | 3244167913 |
PQPubID | 30327 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_3238720163 proquest_journals_3244167913 pubmed_primary_40792352 crossref_primary_10_1111_gcb_70419 wiley_primary_10_1111_gcb_70419_GCB70419 |
PublicationCentury | 2000 |
PublicationDate | August 2025 2025-08-00 2025-Aug 20250801 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: August 2025 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Chang Biol |
PublicationYear | 2025 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2022; 174 2013; 2 2018; 326 2006; 38 2016; 267 2022; 25 2020; 14 2020; 11 2024 2001; 45 2024; 38 2014; 23 2022; 28 2003; 54 2010; 20 2018; 2 2018; 4 2019; 20 2020; 96 2018; 1 2023; 177 2008; 28 2020; 732 2012; 28 2007; 61 2024; 24 2014; 121 2010; 2 2011; 480 2001; 58 2012; 21 2014; 99 2006; 287 2014; 98 2012; 189‐190 2019; 9 1995; 57 1999; 28 2008; 59 2011; 77 1996 1994 2019; 349 2016; 18 2024; 15 2004; 305 2011; 9 2009; 78 2017; 53 2018; 18 2020; 30 2018; 118 2022; 7 2023; 430 2022; 14 2016; 573 2013; 170 2014; 30 2012; 46 2020; 717 2007; 88 2018; 13 2017; 119 2017; 40 2017; 5 2009; 47 2017; 8 2017; 3 2018; 628‐629 2008; 9 2008; 305 2002; 357 2016; 72 2011; 12 2022; 65 2008; 146 2008; 4 2011; 156 2020; 5 1995; 61 2021; 32 2013; 10 2014; 281 2012; 63 2019; 352 2023; 14 2021; 3 2015; 4 2013; 49 2006; 8 2007 2016; 52 2006; 4 2014; 114 2005; 1695 2018; 69 2020; 190 1993; 18 2021; 97 2012; 3 2017; 93 2022; 260 2022 2021; 18 2000; 32 2011; 43 2017; 19 2016 2019; 139 2013 2012; 6 2009; 3 1976; 15 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_111_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 Csardi G. (e_1_2_9_21_1) 2005; 1695 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_118_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_117_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 Zhong X. (e_1_2_9_120_1) 1999; 28 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_116_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 38 start-page: 991 issue: 5 year: 2006 end-page: 999 article-title: Experimental Evaluation of Methods to Quantify Dissolved Organic Nitrogen (DON) and Dissolved Organic Carbon (DOC) in Soil publication-title: Soil Biology and Biochemistry – volume: 32 start-page: 500 issue: 6 year: 2000 end-page: 507 article-title: Quantifying Microbial Biomass Phosphorus in Acid Soils publication-title: Biology and Fertility of Soils – volume: 9 start-page: 12000 issue: 20 year: 2019 end-page: 12016 article-title: Microbial Functional Diversity: From Concepts to Applications publication-title: Ecology and Evolution – volume: 573 start-page: 817 year: 2016 end-page: 825 article-title: Network Analysis Reveals Seasonal Variation of Co‐Occurrence Correlations Between Cyanobacteria and Other Bacterioplankton publication-title: Science of the Total Environment – volume: 18 start-page: 366 issue: 4 year: 2021 end-page: 368 article-title: Sensitive Protein Alignments at Tree‐Of‐Life Scale Using DIAMOND publication-title: Nature Methods – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random Forests publication-title: Machine Learning – volume: 8 start-page: 732 issue: 4 year: 2006 end-page: 740 article-title: Quantifying the Roles of Immigration and Chance in Shaping Prokaryote Community Structure publication-title: Environmental Microbiology – volume: 4 issue: 5 year: 2018 article-title: Phosphorus, Not Nitrogen, Limits Plants and Microbial Primary Producers Following Glacial Retreat publication-title: Science Advances – volume: 28 start-page: 2223 issue: 17 year: 2012 end-page: 2230 article-title: Gene and Translation Initiation Site Prediction in Metagenomic Sequences publication-title: Bioinformatics – volume: 119 start-page: 197 year: 2017 end-page: 204 article-title: Response of Soil phoD Phosphatase Gene to Long‐Term Combined Applications of Chemical Fertilizers and Organic Materials publication-title: Applied Soil Ecology – volume: 97 issue: 2 year: 2021 article-title: Microeco: An R Package for Data Mining in Microbial Community Ecology publication-title: FEMS Microbiology Ecology – volume: 30 start-page: 272 issue: 2 year: 2020 end-page: 284 article-title: Air‐Drying Changes the Distribution of Hedley Phosphorus Pools in Forest Soils publication-title: Pedosphere – volume: 98 start-page: 5117 issue: 11 year: 2014 end-page: 5129 article-title: Heterologous Expression of Pyrroloquinoline Quinone (Pqq) Gene Cluster Confers Mineral Phosphate Solubilization Ability to Z67 publication-title: Applied Microbiology and Biotechnology – volume: 18 start-page: 1988 issue: 6 year: 2016 end-page: 2000 article-title: Phosphorus Depletion in Forest Soils Shapes Bacterial Communities Towards Phosphorus Recycling Systems publication-title: Environmental Microbiology – volume: 23 start-page: 254 issue: 2 year: 2014 end-page: 258 article-title: Do Bacterial and Fungal Communities Assemble Differently During Primary Succession? publication-title: Molecular Ecology – volume: 38 issue: 10 year: 2024 article-title: Bacterial Community Structure Modulates Soil Phosphorus Turnover at Early Stages of Primary Succession publication-title: Global Biogeochemical Cycles – volume: 2 start-page: 403 issue: 3 year: 2010 end-page: 411 article-title: Biochemical and Genomic Comparison of Inorganic Phosphate Solubilization in Pseudomonas Species publication-title: Environmental Microbiology Reports – volume: 11 start-page: 10 issue: 5 year: 2020 end-page: 1128 article-title: The Role of Phosphorus Limitation in Shaping Soil Bacterial Communities and Their Metabolic Capabilities publication-title: MBio – volume: 59 start-page: 1010 issue: 5 year: 2008 end-page: 1011 article-title: Soil Sampling and Methods of Analysis—Edited by M.R. Carter & E.G. Gregorich publication-title: European Journal of Soil Science – volume: 5 issue: 1 year: 2017 article-title: Catalogue of Antibiotic Resistome and Host‐Tracking in Drinking Water Deciphered by a Large Scale Survey publication-title: Microbiome – volume: 20 start-page: 5 issue: 1 year: 2010 end-page: 15 article-title: Terrestrial Phosphorus Limitation: Mechanisms, Implications, and Nitrogen–Phosphorus Interactions publication-title: Ecological Applications – volume: 352 start-page: 414 year: 2019 end-page: 421 article-title: Transformation of Soil Organic Phosphorus Along the Hailuogou Post‐Glacial Chronosequence, Southeastern Edge of the Tibetan Plateau publication-title: Geoderma – volume: 30 start-page: 2114 issue: 15 year: 2014 end-page: 2120 article-title: Trimmomatic: A Flexible Trimmer for Illumina Sequence Data publication-title: Bioinformatics – volume: 2 start-page: 499 issue: 3 year: 2018 end-page: 509 article-title: Community Proteogenomics Reveals the Systemic Impact of Phosphorus Availability on Microbial Functions in Tropical Soil publication-title: Nature Ecology & Evolution – volume: 9 start-page: 311 year: 2011 end-page: 318 article-title: Microplate Fluorimetric Assay of Soil Enzymes publication-title: Methods of Soil Enzymology – volume: 14 issue: 8 year: 2023 article-title: Distribution of Genes and Microbial Taxa Related to Soil Phosphorus Cycling Across Soil Depths in Subtropical Forests publication-title: Forests – volume: 14 start-page: 757 issue: 3 year: 2020 end-page: 770 article-title: Long‐Term Nutrient Inputs Shift Soil Microbial Functional Profiles of Phosphorus Cycling in Diverse Agroecosystems publication-title: ISME Journal – volume: 52 start-page: 825 issue: 6 year: 2016 end-page: 839 article-title: Carbon Demand Drives Microbial Mineralization of Organic Phosphorus During the Early Stage of Soil Development publication-title: Biology and Fertility of Soils – volume: 305 start-page: 333 year: 2008 article-title: Analysis of Biological Networks publication-title: Correlation Networks – volume: 305 start-page: 509 issue: 5683 year: 2004 end-page: 513 article-title: Ecosystem Properties and Forest Decline in Contrasting Long‐Term Chronosequences publication-title: Science – volume: 281 issue: 1795 year: 2014 article-title: Microbial Community Dynamics in the Forefield of Glaciers publication-title: Proceedings of the Royal Society B: Biological Sciences – year: 2022 – volume: 717 year: 2020 article-title: Organic Carbon Accumulation in the Glacier Forelands With Regard to Variability of Environmental Conditions in Different Ecogenesis Stages of High Arctic Ecosystems publication-title: Science of the Total Environment – volume: 19 start-page: 2740 issue: 7 year: 2017 end-page: 2753 article-title: Land‐Use Influences Phosphatase Gene Microdiversity in Soils publication-title: Environmental Microbiology – volume: 61 start-page: 3856 issue: 11 year: 1995 end-page: 3864 article-title: Tn5‐Directed Cloning of Pqq Genes From CHA0: Mutational Inactivation of the Genes Results in Overproduction of the Antibiotic Pyoluteorin publication-title: Applied and Environmental Microbiology – volume: 8 start-page: 28 issue: 1 year: 2017 end-page: 36 article-title: Ggtree: An r Package for Visualization and Annotation of Phylogenetic Trees With Their Covariates and Other Associated Data publication-title: Methods in Ecology and Evolution – volume: 4 start-page: 25 issue: 1 year: 2008 end-page: 32 article-title: Molecular Basis of Cyclin‐CDK‐CKI Regulation by Reversible Binding of an Inositol Pyrophosphate publication-title: Nature Chemical Biology – volume: 20 start-page: 257 issue: 1 year: 2019 article-title: Improved Metagenomic Analysis With Kraken 2 publication-title: Genome Biology – volume: 69 start-page: 450 issue: 3 year: 2018 end-page: 461 article-title: Weathering of Primary Mineral Phosphate in the Early Stages of Ecosystem Development in the Hailuogou Glacier Foreland Chronosequence publication-title: European Journal of Soil Science – start-page: 61 year: 2007 end-page: 77 – volume: 21 start-page: 4160 issue: 17 year: 2012 end-page: 4170 article-title: Towards Global Patterns in the Diversity and Community Structure of Ectomycorrhizal Fungi publication-title: Molecular Ecology – volume: 156 start-page: 989 issue: 3 year: 2011 end-page: 996 article-title: Soil Microorganisms Mediating Phosphorus Availability Update on Microbial Phosphorus publication-title: Plant Physiology – volume: 99 start-page: 425 year: 2014 end-page: 435 article-title: Atmospheric Deposition of Lead in Remote High Mountain of Eastern Tibetan Plateau, China publication-title: Atmospheric Environment – volume: 15 start-page: 1438 issue: 1 year: 2024 article-title: A Genome and Gene Catalog of the Aquatic Microbiomes of the Tibetan Plateau publication-title: Nature Communications – volume: 189‐190 start-page: 215 year: 2012 end-page: 226 article-title: Rapid Transformation of Inorganic to Organic and Plant‐Available Phosphorous in Soils of a Glacier Forefield publication-title: Geoderma – volume: 14 start-page: 1600 issue: 6 year: 2020 end-page: 1613 article-title: Novel Phosphate‐Solubilizing Bacteria Enhance Soil Phosphorus Cycling Following Ecological Restoration of Land Degraded by Mining publication-title: ISME Journal – volume: 3 start-page: 10 issue: 1 year: 2017 article-title: The Microbiome of Glaciers and Ice Sheets publication-title: NPJ Biofilms and Microbiomes – volume: 170 start-page: 1738 issue: 7 year: 2013 end-page: 1750 article-title: Coexpression of the Pyrroloquinoline Quinone and Glucose Dehydrogenase Genes From CTM 50650 Conferred High Mineral Phosphate‐Solubilizing Ability to publication-title: Applied Biochemistry and Biotechnology – volume: 72 start-page: 207 issue: 1 year: 2016 end-page: 220 article-title: Abundance and Diversity of Bacterial, Archaeal, and Fungal Communities Along an Altitudinal Gradient in Alpine Forest Soils: What Are the Driving Factors? publication-title: Microbial Ecology – volume: 28 start-page: 4459 issue: 14 year: 2022 end-page: 4471 article-title: Remarkable Effects of Microbial Factors on Soil Phosphorus Bioavailability: A Country‐Scale Study publication-title: Global Change Biology – year: 2016 – volume: 114 start-page: 4343 issue: 8 year: 2014 end-page: 4365 article-title: Intrigues and Intricacies of the Biosynthetic Pathways for the Enzymatic Quinocofactors: PQQ, TTQ, CTQ, TPQ, and LTQ publication-title: Chemical Reviews – volume: 3 start-page: 361 issue: 1 year: 2009 end-page: 362 article-title: Gephi: An Open Source Software for Exploring and Manipulating Networks publication-title: Proceedings of the International AAAI Conference on Web and Social Media – volume: 190 start-page: 1525 issue: 4 year: 2020 end-page: 1552 article-title: Carbon‐Phosphorus Lyase—The State of the Art publication-title: Applied Biochemistry and Biotechnology – volume: 267 start-page: 78 year: 2016 end-page: 91 article-title: Rapid Weathering Processes of a 120‐Year‐Old Chronosequence in the Hailuogou Glacier Foreland, mt. Gongga, SW China publication-title: Geoderma – volume: 14 start-page: 443 issue: 3 year: 2022 end-page: 452 article-title: Microbial Diversity and Associated Metabolic Potential in the Supraglacial Habitat of a Fast‐Retreating Glacier: A Case Study of Patsio Glacier, North‐Western Himalaya publication-title: Environmental Microbiology Reports – volume: 28 start-page: 648 issue: 8 year: 1999 end-page: 654 article-title: Mountain Ecosystems and Environmental Characteristics in the Gongga Mountain Region publication-title: Ambio: A Journal of the Human Environment – volume: 32 start-page: 766 issue: 2 year: 2021 end-page: 776 article-title: Spatial Differences in Soil Microbial Diversity Caused by pH‐Driven Organic Phosphorus Mineralization publication-title: Land Degradation & Development – volume: 287 start-page: 15 issue: 1–2 year: 2006 end-page: 21 article-title: Genetics of Phosphate Solubilization and Its Potential Applications for Improving Plant Growth‐Promoting Bacteria publication-title: Plant and Soil – volume: 40 start-page: 1939 issue: 10 year: 2017 end-page: 1957 article-title: Microbial Succession Dynamics Along Glacier Forefield Chronosequences in Tierra del Fuego (Chile) publication-title: Polar Biology – volume: 2 issue: 1 year: 2013 article-title: Phosphate Solubilizing Microbes: Sustainable Approach for Managing Phosphorus Deficiency in Agricultural Soils publication-title: Springerplus – start-page: 775 year: 1994 end-page: 833 – volume: 63 start-page: 552 issue: 3 year: 2012 end-page: 564 article-title: Bacterial, Archaeal and Fungal Succession in the Forefield of a Receding Glacier publication-title: Microbial Ecology – volume: 32 start-page: 179 issue: 2 year: 2000 end-page: 188 article-title: Acid and Alkaline Phosphatase Dynamics and Their Relationship to Soil Microclimate in a Semiarid Woodland publication-title: Soil Biology and Biochemistry – volume: 4 start-page: 102 issue: 2 year: 2006 end-page: 112 article-title: Microbial Biogeography: Putting Microorganisms on the Map publication-title: Nature Reviews Microbiology – volume: 3 year: 2012 article-title: The Genes and Enzymes of Phosphonate Metabolism by Bacteria, and Their Distribution in the Marine Environment publication-title: Frontiers in Microbiology – volume: 121 start-page: 595 issue: 3 year: 2014 end-page: 611 article-title: Soil Organic Phosphorus Transformations Along a Coastal Dune Chronosequence Under New Zealand Temperate Rain Forest publication-title: Biogeochemistry – volume: 52 start-page: 1007 issue: 7 year: 2016 end-page: 1019 article-title: Effect of Phosphorus Addition on Total and Alkaline Phosphomonoesterase‐Harboring Bacterial Populations in Ryegrass Rhizosphere Microsites publication-title: Biology and Fertility of Soils – year: 2013 – volume: 49 start-page: 661 issue: 6 year: 2013 end-page: 672 article-title: Long‐Term Phosphorus Fertilisation Increased the Diversity of the Total Bacterial Community and the phoD Phosphorus Mineraliser Group in Pasture Soils publication-title: Biology and Fertility of Soils – volume: 260 year: 2022 article-title: iTRAQ‐Based Proteomic Analysis of Strain NCD‐2 Regulated by PhoPR Two‐Component System: A Comparative Analysis With Transcriptomics Revealed the Regulation for Fengycin Production by Branched Chain Amino Acids publication-title: Microbiological Research – volume: 18 start-page: 117 issue: 1 year: 1993 end-page: 143 article-title: Non‐Parametric Multivariate Analyses of Changes in Community Structure publication-title: Australian Journal of Ecology – volume: 46 start-page: 5956 issue: 11 year: 2012 end-page: 5962 article-title: Oxygen Isotopes Unravel the Role of Microorganisms in Phosphate Cycling in Soils publication-title: Environmental Science & Technology – volume: 53 start-page: 375 issue: 4 year: 2017 end-page: 388 article-title: Long‐Term Fertilisation Regimes Affect the Composition of the Alkaline Phosphomonoesterase Encoding Microbial Community of a Vertisol and Its Derivative Soil Fractions publication-title: Biology and Fertility of Soils – volume: 3 year: 2021 article-title: Study of Pyrroloquinoline Quinine From Phosphate‐Solubilizing Microbes Responsible for Plant Growth: In Silico Approach publication-title: Frontiers in Agronomy – volume: 349 start-page: 36 year: 2019 end-page: 44 article-title: Soil Alkaline Phosphatase Activity and Bacterial phoD Gene Abundance and Diversity Under Long‐Term Nitrogen and Manure Inputs publication-title: Geoderma – year: 2024 – volume: 96 issue: 10 year: 2020 article-title: Early Ecological Succession Patterns of Bacterial, Fungal and Plant Communities Along a Chronosequence in a Recently Deglaciated Area of the Italian Alps publication-title: FEMS Microbiology Ecology – volume: 10 start-page: 370 issue: 3 year: 2013 end-page: 377 article-title: Temperature and Precipitation Variations at Two Meteorological Stations on Eastern Slope of Gongga Mountain, SW China in the Past Two Decades publication-title: Journal of Mountain Science – volume: 3 start-page: 1258 issue: 11 year: 2009 end-page: 1268 article-title: Bacterial Succession in a Glacier Foreland of the High Arctic publication-title: ISME Journal – volume: 4 start-page: 253 issue: 2 year: 2015 end-page: 266 article-title: Phytate (Inositol Hexakisphosphate) in Soil and Phosphate Acquisition From Inositol Phosphates by Higher Plants. A Review publication-title: Plants – volume: 146 start-page: 323 issue: 2 year: 2008 end-page: 324 article-title: Pyrroloquinoline Quinone Is a Plant Growth Promotion Factor Produced by B16 publication-title: Plant Physiology – volume: 480 start-page: 570 issue: 7378 year: 2011 end-page: 573 article-title: Intermediates in the Transformation of Phosphonates to Phosphate by Bacteria publication-title: Nature – volume: 43 start-page: 1333 issue: 6 year: 2011 end-page: 1340 article-title: Soil Bacterial Growth and Nutrient Limitation Along a Chronosequence From a Glacier Forefield publication-title: Soil Biology and Biochemistry – volume: 1 start-page: 41 year: 2018 end-page: 55 article-title: Inositol Phosphates: Health Implications, Methods of Analysis, and Occurrence in Plant Foods publication-title: Journal of Food Bioactives – volume: 18 start-page: 8 issue: 1 year: 2018 article-title: Phosphate Signaling Through Alternate Conformations of the PstSCAB Phosphate Transporter publication-title: BMC Microbiology – volume: 6 start-page: 343 issue: 2 year: 2012 end-page: 351 article-title: Using Network Analysis to Explore Co‐Occurrence Patterns in Soil Microbial Communities publication-title: ISME Journal – volume: 9 issue: 1 year: 2008 article-title: WGCNA: An R Package for Weighted Correlation Network Analysis publication-title: BMC Bioinformatics – volume: 61 start-page: 379 year: 2007 end-page: 400 article-title: Microbial Metabolism of Reduced Phosphorus Compounds publication-title: Annual Review of Microbiology – volume: 118 start-page: 207 year: 2018 end-page: 216 article-title: Divergent Assemblage Patterns and Driving Forces for Bacterial and Fungal Communities Along a Glacier Forefield Chronosequence publication-title: Soil Biology and Biochemistry – volume: 77 start-page: 7345 issue: 20 year: 2011 end-page: 7354 article-title: Pyrroloquinoline Quinone Biosynthesis Gene pqqC, a Novel Molecular Marker for Studying the Phylogeny and Diversity of Phosphate‐Solubilizing Pseudomonads publication-title: Applied and Environmental Microbiology – volume: 1695 start-page: 1 year: 2005 end-page: 9 article-title: The Igraph Software Package for Complex Network Research publication-title: InterJournal, Complex Systems – volume: 326 start-page: 144 year: 2018 end-page: 155 article-title: Leaching Disturbed the Altitudinal Distribution of Soil Organic Phosphorus in Subalpine Coniferous Forests on mt. Gongga, SW China publication-title: Geoderma – volume: 93 issue: 1 year: 2017 article-title: Shifts in Bacterial Community Structure During Succession in a Glacier Foreland of the High Arctic publication-title: FEMS Microbiology Ecology – volume: 28 start-page: 3150 issue: 23 year: 2012 end-page: 3152 article-title: CD‐HIT: Accelerated for Clustering the Next‐Generation Sequencing Data publication-title: Bioinformatics – volume: 177 year: 2023 article-title: Close Relationship Between the Gene Abundance and Activity of Soil Extracellular Enzyme: Evidence From a Vegetation Restoration Chronosequence publication-title: Soil Biology and Biochemistry – volume: 13 issue: 9 year: 2018 article-title: Phosphate Solubilizing Bacteria With Glucose Dehydrogenase Gene for Phosphorus Uptake and Beneficial Effects on Wheat publication-title: PLoS One – volume: 58 start-page: 109 issue: 2 year: 2001 end-page: 130 article-title: PLS‐Regression: A Basic Tool of Chemometrics publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 14 year: 2023 article-title: Insight Into Phytase‐Producing Microorganisms for Phytate Solubilization and Soil Sustainability publication-title: Frontiers in Microbiology – volume: 47 start-page: 673 issue: 6 year: 2009 end-page: 681 article-title: Functional Shifts in Unvegetated, Perhumid, Recently‐Deglaciated Soils Do Not Correlate With Shifts in Soil Bacterial Community Composition publication-title: Journal of Microbiology – volume: 139 year: 2019 article-title: Understanding How Long‐Term Organic Amendments Increase Soil Phosphatase Activities: Insight Into phoD‐ and phoC‐Harboring Functional Microbial Populations publication-title: Soil Biology and Biochemistry – start-page: 297 year: 1996 end-page: 315 – volume: 357 start-page: 449 issue: 1420 year: 2002 end-page: 469 article-title: Inositol Phosphates in the Environment publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences – volume: 8 year: 2017 article-title: Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture publication-title: Frontiers in Microbiology – volume: 57 start-page: 289 issue: 1 year: 1995 end-page: 300 article-title: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing publication-title: Journal of the Royal Statistical Society: Series B: Methodological – volume: 25 issue: 10 year: 2022 article-title: Different Mechanisms Driving Increasing Abundance of Microbial Phosphorus Cycling Gene Groups Along an Elevational Gradient publication-title: iScience – volume: 54 start-page: 685 issue: 4 year: 2003 end-page: 696 article-title: Functional Diversity of the Soil Microflora in Primary Succession Across Two Glacier Forelands in the Central Alps publication-title: European Journal of Soil Science – volume: 12 start-page: R60 issue: 6 year: 2011 article-title: Metagenomic Biomarker Discovery and Explanation publication-title: Genome Biology – volume: 7 start-page: e1107 issue: 1 year: 2022 end-page: e1121 article-title: Genome‐Resolved Metagenomics Reveals Distinct Phosphorus Acquisition Strategies Between Soil Microbiomes publication-title: MSystems – volume: 24 start-page: 2268 issue: 6 year: 2024 end-page: 2279 article-title: Evolution and Controls of Organic Phosphorus Based on 31P Nuclear Magnetic Resonance Spectroscopy Along a 2‐Million‐Year Tropical Soil Chronosequence in Northern Hainan Island, China publication-title: Journal of Soils and Sediments – volume: 78 start-page: 65 year: 2009 end-page: 94 article-title: Biosynthesis of Phosphonic and Phosphinic Acid Natural Products publication-title: Annual Review of Biochemistry – volume: 628‐629 start-page: 687 year: 2018 end-page: 696 article-title: Barrier Effects of Remote High Mountain on Atmospheric Metal Transport in the Eastern Tibetan Plateau publication-title: Science of the Total Environment – volume: 28 start-page: 1 issue: 5 year: 2008 end-page: 26 article-title: Building Predictive Models in R Using the Caret Package publication-title: Journal of Statistical Software – volume: 3 year: 2017 article-title: Bracken: Estimating Species Abundance in Metagenomics Data publication-title: PeerJ Computer Science – volume: 430 year: 2023 article-title: Grazing Promotes Soil Phosphorus Cycling by Enhancing Soil Microbial Functional Genes for Phosphorus Transformation in Plant Rhizosphere in a Semi‐Arid Natural Grassland publication-title: Geoderma – volume: 5 start-page: 10 issue: 3 year: 2020 end-page: 1128 article-title: Soil Carbon, Nitrogen, and Phosphorus Cycling Microbial Populations and Their Resistance to Global Change Depend on Soil C:N:P Stoichiometry publication-title: MSystems – volume: 174 year: 2022 article-title: Distribution of Phosphorus Cycling Genes Across Land Uses and Microbial Taxonomic Groups Based on Metagenome and Genome Mining publication-title: Soil Biology and Biochemistry – volume: 15 start-page: 1 issue: 1 year: 1976 end-page: 19 article-title: The Fate of Phosphorus During Pedogenesis publication-title: Geoderma – volume: 65 start-page: 255 issue: 2 year: 2022 end-page: 267 article-title: An Insight Into Phytic Acid Biosynthesis and Its Reduction Strategies to Improve Mineral Bioavailability publication-title: Nucleus – volume: 88 start-page: 1354 issue: 6 year: 2007 end-page: 1364 article-title: Toward an Ecological Classification of Soil Bacteria publication-title: Ecology – volume: 732 year: 2020 article-title: Drought Promotes Soil Phosphorus Transformation and Reduces Phosphorus Bioavailability in a Temperate Forest publication-title: Science of the Total Environment – volume: 1695 start-page: 1 year: 2005 ident: e_1_2_9_21_1 article-title: The Igraph Software Package for Complex Network Research publication-title: InterJournal, Complex Systems – ident: e_1_2_9_96_1 doi: 10.1890/08‐0127.1 – ident: e_1_2_9_37_1 doi: 10.1093/bioinformatics/bts429 – ident: e_1_2_9_54_1 doi: 10.7717/peerj‐cs.104 – ident: e_1_2_9_44_1 doi: 10.1016/S0038‐0717(99)00140‐6 – ident: e_1_2_9_22_1 doi: 10.1038/s41396‐019‐0567‐9 – ident: e_1_2_9_14_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_9_93_1 doi: 10.1098/rstb.2001.0837 – ident: e_1_2_9_99_1 doi: 10.1016/0016‐7061(76)90066‐5 – ident: e_1_2_9_31_1 doi: 10.1093/bioinformatics/bts565 – ident: e_1_2_9_94_1 doi: 10.1007/s10533‐014‐0025‐8 – ident: e_1_2_9_47_1 doi: 10.1186/1471‐2105‐9‐559 – ident: e_1_2_9_19_1 doi: 10.1104/pp.107.112748 – ident: e_1_2_9_49_1 – ident: e_1_2_9_61_1 doi: 10.1186/s40168‐017‐0369‐0 – ident: e_1_2_9_62_1 doi: 10.1038/nrmicro1341 – ident: e_1_2_9_83_1 doi: 10.1111/j.1462‐2920.2005.00956.x – ident: e_1_2_9_106_1 doi: 10.1126/science.1098778 – ident: e_1_2_9_110_1 doi: 10.1016/j.scitotenv.2019.135151 – ident: e_1_2_9_84_1 doi: 10.1002/9780470253489.ch13 – ident: e_1_2_9_56_1 doi: 10.1007/s00374‐017‐1183‐3 – ident: e_1_2_9_23_1 doi: 10.1126/sciadv.aaq0942 – ident: e_1_2_9_79_1 doi: 10.1007/s13237‐021‐00371‐2 – ident: e_1_2_9_27_1 doi: 10.1002/ece3.5670 – ident: e_1_2_9_70_1 doi: 10.1111/1758‐2229.13017 – ident: e_1_2_9_51_1 doi: 10.1038/s41396‐020‐0632‐4 – ident: e_1_2_9_119_1 doi: 10.1016/j.scitotenv.2016.08.150 – ident: e_1_2_9_52_1 doi: 10.1093/femsec/fiaa255 – ident: e_1_2_9_10_1 doi: 10.1016/j.atmosenv.2014.10.014 – ident: e_1_2_9_30_1 doi: 10.1093/femsec/fiaa165 – ident: e_1_2_9_95_1 doi: 10.3389/fmicb.2012.00019 – ident: e_1_2_9_104_1 doi: 10.1029/2024GB008174 – ident: e_1_2_9_12_1 doi: 10.1093/bioinformatics/btu170 – ident: e_1_2_9_98_1 doi: 10.1007/s00253‐014‐5610‐1 – ident: e_1_2_9_124_1 doi: 10.1007/s00248‐011‐9991‐8 – ident: e_1_2_9_77_1 doi: 10.1038/ismej.2009.71 – ident: e_1_2_9_66_1 doi: 10.1111/1462‐2920.13778 – ident: e_1_2_9_4_1 doi: 10.1038/ismej.2011.119 – ident: e_1_2_9_58_1 doi: 10.1128/msystems.00162‐20 – ident: e_1_2_9_16_1 doi: 10.1016/j.apsoil.2017.06.019 – ident: e_1_2_9_36_1 doi: 10.1079/9781845931520.0061 – ident: e_1_2_9_55_1 doi: 10.1111/gcb.16213 – ident: e_1_2_9_71_1 doi: 10.1104/pp.111.175448 – ident: e_1_2_9_75_1 doi: 10.1111/mec.12589 – ident: e_1_2_9_39_1 doi: 10.1016/j.soilbio.2005.08.012 – ident: e_1_2_9_60_1 doi: 10.3390/f14081665 – ident: e_1_2_9_85_1 doi: 10.1007/s12010‐019‐03161‐4 – ident: e_1_2_9_88_1 doi: 10.1021/es300311h – ident: e_1_2_9_13_1 doi: 10.1098/rspb.2014.0882 – ident: e_1_2_9_65_1 doi: 10.1111/j.1758‐2229.2009.00105.x – ident: e_1_2_9_72_1 doi: 10.3389/fmicb.2023.1127249 – ident: e_1_2_9_105_1 doi: 10.1007/978-1-4684-8601-8_15 – ident: e_1_2_9_82_1 doi: 10.1016/j.soilbio.2022.108826 – ident: e_1_2_9_53_1 doi: 10.1016/j.geoderma.2022.116303 – ident: e_1_2_9_28_1 doi: 10.1007/s00300‐017‐2110‐7 – ident: e_1_2_9_34_1 doi: 10.1016/j.soilbio.2011.03.006 – ident: e_1_2_9_45_1 doi: 10.18637/jss.v028.i05 – ident: e_1_2_9_101_1 doi: 10.1016/j.soilbio.2022.108929 – ident: e_1_2_9_103_1 doi: 10.1016/S1002‐0160(17)60456‐9 – ident: e_1_2_9_116_1 doi: 10.1038/s41559‐017‐0463‐5 – ident: e_1_2_9_26_1 doi: 10.1016/j.geoderma.2012.06.033 – ident: e_1_2_9_91_1 doi: 10.1111/j.1365‐294X.2012.05602.x – ident: e_1_2_9_17_1 doi: 10.1016/j.geoderma.2019.04.039 – ident: e_1_2_9_108_1 doi: 10.1146/annurev.micro.61.080706.093357 – ident: e_1_2_9_8_1 doi: 10.1111/1462‐2920.13188 – ident: e_1_2_9_18_1 doi: 10.1038/s41467‐024‐45895‐8 – ident: e_1_2_9_112_1 doi: 10.1186/s13059‐019‐1891‐0 – ident: e_1_2_9_87_1 doi: 10.2136/sssabookser5.2.c37 – ident: e_1_2_9_107_1 doi: 10.1111/j.1365‐2389.2008.01052_5.x – ident: e_1_2_9_29_1 doi: 10.1890/05‐1839 – ident: e_1_2_9_7_1 doi: 10.1111/j.2517‐6161.1995.tb02031.x – ident: e_1_2_9_35_1 doi: 10.1016/j.geoderma.2018.04.015 – ident: e_1_2_9_2_1 doi: 10.3389/fmicb.2017.00971 – ident: e_1_2_9_32_1 doi: 10.1016/j.micres.2022.127024 – ident: e_1_2_9_50_1 doi: 10.1016/j.isci.2022.105170 – ident: e_1_2_9_43_1 – ident: e_1_2_9_42_1 doi: 10.1021/cr400475g – ident: e_1_2_9_57_1 doi: 10.1016/j.soilbio.2019.107632 – ident: e_1_2_9_114_1 doi: 10.1128/msystems.01107‐21 – ident: e_1_2_9_86_1 doi: 10.1371/journal.pone.0204408 – ident: e_1_2_9_69_1 – ident: e_1_2_9_90_1 – ident: e_1_2_9_59_1 doi: 10.1007/s11368‐024‐03783‐0 – ident: e_1_2_9_117_1 doi: 10.1111/2041‐210X.12628 – ident: e_1_2_9_78_1 doi: 10.1186/gb‐2011‐12‐6‐r60 – ident: e_1_2_9_100_1 doi: 10.1002/ldr.3734 – ident: e_1_2_9_38_1 doi: 10.1016/j.soilbio.2017.12.019 – ident: e_1_2_9_115_1 doi: 10.1007/s11629‐013‐2328‐y – ident: e_1_2_9_64_1 doi: 10.1128/AEM.05434‐11 – ident: e_1_2_9_76_1 doi: 10.1128/aem.61.11.3856‐3864.1995 – ident: e_1_2_9_11_1 doi: 10.1016/j.scitotenv.2018.02.035 – ident: e_1_2_9_121_1 doi: 10.1016/j.geoderma.2015.12.024 – ident: e_1_2_9_68_1 doi: 10.1128/mbio.01718‐20 – ident: e_1_2_9_109_1 doi: 10.1007/978-3-319-24277-4_1 – ident: e_1_2_9_89_1 doi: 10.1007/s00374‐012‐0755‐5 – ident: e_1_2_9_15_1 doi: 10.1038/s41592‐021‐01101‐x – ident: e_1_2_9_113_1 doi: 10.1007/s003740000284 – ident: e_1_2_9_67_1 – ident: e_1_2_9_20_1 doi: 10.1111/j.1442‐9993.1993.tb00438.x – ident: e_1_2_9_24_1 doi: 10.2136/sssabookser9.c14 – ident: e_1_2_9_102_1 doi: 10.1007/s00374‐016‐1123‐7 – ident: e_1_2_9_123_1 doi: 10.1016/j.geoderma.2019.05.038 – ident: e_1_2_9_63_1 doi: 10.1146/annurev.biochem.78.091707.100215 – ident: e_1_2_9_111_1 doi: 10.1016/S0169‐7439(01)00155‐1 – ident: e_1_2_9_9_1 doi: 10.3389/fagro.2021.667339 – ident: e_1_2_9_46_1 doi: 10.1007/s00374‐016‐1137‐1 – ident: e_1_2_9_5_1 doi: 10.1609/icwsm.v3i1.13937 – volume: 28 start-page: 648 issue: 8 year: 1999 ident: e_1_2_9_120_1 article-title: Mountain Ecosystems and Environmental Characteristics in the Gongga Mountain Region publication-title: Ambio: A Journal of the Human Environment – ident: e_1_2_9_41_1 doi: 10.1093/femsec/fiw213 – ident: e_1_2_9_74_1 doi: 10.1007/s12275‐009‐0194‐7 – ident: e_1_2_9_80_1 doi: 10.1186/2193‐1801‐2‐587 – ident: e_1_2_9_25_1 doi: 10.31665/JFB.2018.1126 – ident: e_1_2_9_3_1 doi: 10.1038/s41522‐017‐0019‐0 – ident: e_1_2_9_73_1 doi: 10.1007/s11104‐006‐9056‐9 – ident: e_1_2_9_6_1 doi: 10.1007/s12010‐013‐0305‐0 – ident: e_1_2_9_122_1 doi: 10.1111/ejss.12536 – ident: e_1_2_9_81_1 doi: 10.1007/s00248‐016‐0748‐2 – ident: e_1_2_9_97_1 doi: 10.1186/s12866‐017‐1126‐z – ident: e_1_2_9_118_1 doi: 10.1016/j.scitotenv.2020.139295 – ident: e_1_2_9_33_1 doi: 10.3390/plants4020253 – ident: e_1_2_9_40_1 doi: 10.1038/nature10622 – ident: e_1_2_9_92_1 doi: 10.1046/j.1351‐0754.2003.0570.x – ident: e_1_2_9_48_1 doi: 10.1038/nchembio.2007.52 |
SSID | ssj0003206 |
Score | 2.4787917 |
Snippet | ABSTRACT
The rapid accumulation of bioavailable phosphorus (Bio‐P) promotes ecosystem development at the beginning of pedogenesis in the Hailuogou Glacier... The rapid accumulation of bioavailable phosphorus (Bio‐P) promotes ecosystem development at the beginning of pedogenesis in the Hailuogou Glacier foreland.... The rapid accumulation of bioavailable phosphorus (Bio-P) promotes ecosystem development at the beginning of pedogenesis in the Hailuogou Glacier foreland.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e70419 |
SubjectTerms | Accumulation Bacteria - metabolism beginning of pedogenesis Bioavailability Biological Availability China Ecological succession Ecosystem glacier foreland Glaciers Microbial activity microbial communities Microbiomes Microbiota Microorganisms Mineralization nutrient cycling Organic phosphorus Phosphorus Phosphorus - metabolism phosphorus bioavailability phosphorus cycling genes (PCGs) Phytase Polar environments Polar regions Soil - chemistry Soil formation Soil Microbiology Soil microorganisms Solubilization |
Title | Microorganisms Promote Soil Phosphorus Bioavailability at the Beginning of Pedogenesis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.70419 https://www.ncbi.nlm.nih.gov/pubmed/40792352 https://www.proquest.com/docview/3244167913 https://www.proquest.com/docview/3238720163 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za-MwEB5KodCXbpse616oSyl9cYgt-aJPTehBIUvoRR8KRpKlNmw2LnFSSH99R7KdXhSWfbPxGNnSzOgbafQNwH5GGc-8WLuJCqXLhNSu8DPpailaPFZaCUsp1P0dnt-wi7vgbg6O6rMwJT_EbMHNWIb118bAuSjeGfmDFM2oxSzlp8nVMoDo8o06ivq2rqZHA4auxqMVq5DJ4pm9-XEu-gIwP-JVO-Gc_oD7-lPLPJM_zclYNOXLJxbH__yXZViqgCg5LjVnBebUsAELZWnKaQPWT95OwKFY5QKKBjhdhNn5yIqRA9IZ9BHz2rtVuO2a9L6yUFTxtyA9m-unyFXeH5DeY148PeajSUGwFf7M-4OSI3xK-JggDiVtUyTCrNOQXJOeyvIH44j7xRrcnJ5cd87dqnCDK32zYxMFQRZSTgVjqAktllGNUUkofV8K7fGEJyLwQs2TDPELD-JICIVxZsiSiLd4puk6zA_zofoJROiYKpWg_sQhE57mMqIYIgWJZyIzKhz4VQ9h-lTyc6R1XIO9mtpedWC7Hty0MtEiRSTJzB6URx3Ymz1G4zI7Jnyo8omRoXGEEClEmY1SKWatYCSM4DjwHTi0Q_t98-lZp20vNv9ddAsWfVNp2KYabsP8eDRROwh_xmLX6vkr4EwBeg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5NQwheBhTGAgMMQoiXVE3s_JJ42cpGN9apgg3tBUW2Y28VpZmaFmn89btzko6BJk28JcpFTuy783f2-TuAtwUXsghS62cm1r5Q2voqLLRvterJ1FijHKXQ8DAeHIv9k-hkBT60Z2FqfojlghtZhvPXZOC0IP2HlZ9q1U16gjg_71BFb2LO__jlijyKh66yZsAjgc4m4A2vEOXxLF-9Phv9AzGvI1Y35ew-gO_tx9aZJj-6i7nq6t9_8Tj-7988hLUGi7KtWnkewYqZduBuXZ3yogPrO1eH4FCs8QJVB7whIu1y5sTYO9afjBH2urvH8G1IGX51rajqZ8VGLt3PsK_leMJGZ2V1flbOFhXDVuQvOZ7UNOEXTM4ZQlG2TXUiaKmGlZaNTFGeki8eV0_geHfnqD_wm9oNvg5p0yaJoiLmkishUBl6ouAWA5NYh6FWNpCZzFQUxFZmBUIYGaWJUgZDzVhkiezJwvJ1WJ2WU7MBTNmUG5OhCqWxUIGVOuEYJUVZQMEZVx68accwP68pOvI2tMFezV2verDZjm7eWGmVI5gUtA0VcA9eLx-jfdGmiZyackEyPE0QJcUo87TWimUrGAwjPo5CD967sb25-fxTf9tdPLu96Cu4NzgaHuQHe4efn8P9kAoPu8zDTVidzxbmBaKhuXrplP4S75AFlg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NQyBe-CgMMgYYhBAvqZLYcRLxxLqV8dGpAob2MCny51bRNVXTIo2_nrOTdAyEhHhLlIuc2Hfn39nn3wG80JQJHec2LAxXIZPKhjLRKrRKRiI31khPKTQ65AdH7P1xerwBr7uzMA0_xHrBzVmG99fOwOfa_mLkp0r2s4g5ys9rjEeFq9uw9-mSO4omvrBmTFOGviamLa2QS-NZv3p1MvoDYV4FrH7GGd6Gk-5bm0STb_3VUvbVj99oHP_zZ-7ArRaJkjeN6tyFDTPrwfWmNuVFD7b2L4_AoVjrA-oeBCPE2dXCi5GXZDCdIOj1d_fg68jl9zWVourzmox9sp8hn6vJlIzPqnp-Vi1WNcFWxHcxmTYk4RdELAkCUbLrqkS4hRpSWTI2ujp1nnhS34ej4f6XwUHYVm4IVeK2bLI01ZwKKhlDVYiYphbDEq6SREkbi0IUMo25FYVGACPSPJPSYKDJWZGJSGhLt2BzVs3MQyDS5tSYAhUo50zGVqiMYoyUFrELzagM4Hk3hOW8Iegou8AGe7X0vRrATje4ZWujdYlQkrlNqJgG8Gz9GK3LbZmImalWTobmGWIkjjIPGqVYt4KhMKLjNAnglR_avzdfvh3s-ovtfxd9CjfGe8Py47vDD4_gZuKqDvu0wx3YXC5W5jFCoaV84lX-J9_CBEU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microorganisms+Promote+Soil+Phosphorus+Bioavailability+at+the+Beginning+of+Pedogenesis&rft.jtitle=Global+change+biology&rft.au=Xu%2C+Mingyang&rft.au=Wu%2C+Yanhong&rft.au=Bing%2C+Haijan&rft.au=Luo%2C+Chaoyi&rft.date=2025-08-01&rft.eissn=1365-2486&rft.volume=31&rft.issue=8&rft.spage=e70419&rft_id=info:doi/10.1111%2Fgcb.70419&rft_id=info%3Apmid%2F40792352&rft.externalDocID=40792352 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |