Energy-stable and efficient finite element schemes for the Shliomis model of ferrofluid flows

In this paper, we aim to design two energy-stable and efficient finite element schemes for simulating the ferrofluid flows based on the well-known Shliomis model. The model is a highly nonlinear, coupled, multi-physics system, consisting of the Navier–Stokes equations, magnetostatic equation, and ma...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 51; no. 4
Main Authors Zhang, Guo-Dong, Pan, Kejia, He, Xiaoming, Yang, Xiaofeng
Format Journal Article
LanguageEnglish
Published New York Springer Nature B.V 01.08.2025
Subjects
Online AccessGet full text
ISSN1019-7168
1572-9044
DOI10.1007/s10444-025-10249-5

Cover

Loading…
Abstract In this paper, we aim to design two energy-stable and efficient finite element schemes for simulating the ferrofluid flows based on the well-known Shliomis model. The model is a highly nonlinear, coupled, multi-physics system, consisting of the Navier–Stokes equations, magnetostatic equation, and magnetization field equation. We propose two reliable numerical algorithms with the following desired features: linearity and unconditional energy stability. Several key techniques are used to achieve the required features, including the auxiliary variable method, consistent terms method, prediction-correction method, and semi-implicit stabilization method. The first scheme is based on a hybrid continuous/discontinuous finite elements spatial approximation, and the second utilizes decoupled continuous finite element spatial discretization. We have rigorously demonstrated that the proposed schemes are unconditionally energy stable and carried out extensive numerical simulations to illustrate the accuracy and stability of the developed schemes, as well as some interesting controllable characteristics of the ferrofluid flows.
AbstractList In this paper, we aim to design two energy-stable and efficient finite element schemes for simulating the ferrofluid flows based on the well-known Shliomis model. The model is a highly nonlinear, coupled, multi-physics system, consisting of the Navier–Stokes equations, magnetostatic equation, and magnetization field equation. We propose two reliable numerical algorithms with the following desired features: linearity and unconditional energy stability. Several key techniques are used to achieve the required features, including the auxiliary variable method, consistent terms method, prediction-correction method, and semi-implicit stabilization method. The first scheme is based on a hybrid continuous/discontinuous finite elements spatial approximation, and the second utilizes decoupled continuous finite element spatial discretization. We have rigorously demonstrated that the proposed schemes are unconditionally energy stable and carried out extensive numerical simulations to illustrate the accuracy and stability of the developed schemes, as well as some interesting controllable characteristics of the ferrofluid flows.
ArticleNumber 36
Author Yang, Xiaofeng
Zhang, Guo-Dong
He, Xiaoming
Pan, Kejia
Author_xml – sequence: 1
  givenname: Guo-Dong
  surname: Zhang
  fullname: Zhang, Guo-Dong
– sequence: 2
  givenname: Kejia
  surname: Pan
  fullname: Pan, Kejia
– sequence: 3
  givenname: Xiaoming
  surname: He
  fullname: He, Xiaoming
– sequence: 4
  givenname: Xiaofeng
  surname: Yang
  fullname: Yang, Xiaofeng
BookMark eNotkE1LAzEQhoMo2Fb_gKeA52iSTTbJUUr9gIIH9ShhP2Zsyu6mJluk_96t9TTv8D7MwDMn50McgJAbwe8E5-Y-C66UYlxqJrhUjukzMhPaSOam4nzKXDhmRGkvyTznLefclUbPyOdqgPR1YHms6g5oNbQUEEMTYBgphiGMQKGD_rjmZjOFTDEmOm6Avm26EPuQaR9b6GhEipBSxG4fWopd_MlX5AKrLsP1_1yQj8fV-_KZrV-fXpYPa9ZIaUeGri1RNqUC1Gjq2gFoJxy3FapKGl7oRihlK6hbZYUQhalMoWrZcu20VVgsyO3p7i7F7z3k0W_jPg3TS1_Igls7YXai5IlqUsw5AfpdCn2VDl5wf9ToTxr9pNH_afS6-AVNSGea
Cites_doi 10.1109/TMAG.2021.3066412
10.1109/TMAG.2019.2949362
10.1007/3-540-45646-5_5
10.3390/s21165545
10.1017/jfm.2018.83
10.1017/jfm.2016.231
10.1017/jfm.2021.171
10.1016/j.jmmm.2013.07.021
10.1137/18M1224957
10.1016/j.jmmm.2021.168222
10.1137/19M1288280
10.1016/j.jmaa.2009.10.032
10.1021/la5009939
10.1017/jfm.2014.709
10.1007/978-3-642-61623-5
10.1017/jfm.2021.782
10.1142/S0218202516500573
10.1016/j.nonrwa.2010.05.012
10.1016/j.jmmm.2011.06.016
10.1103/PhysRevE.100.053105
10.1016/j.sna.2009.05.004
10.1093/imamat/hxu016
10.1007/s10404-011-0849-7
10.1103/PhysRevE.93.043106
10.1017/jfm.2021.245
10.3934/cpaa.2016039
10.1016/j.jde.2019.05.030
10.1051/m2an/2022020
10.1016/j.cma.2005.10.010
10.1109/TMAG.2017.2749539
10.1017/jfm.2019.60
10.1016/j.physa.2015.01.053
10.1016/j.jcp.2016.05.055
10.1016/j.jmmm.2018.08.016
10.1007/s42967-023-00347-w
10.1016/j.cej.2011.04.003
10.1016/j.na.2010.03.042
10.1016/j.cnsns.2023.107330
10.1016/j.jde.2018.08.043
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1007/s10444-025-10249-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1572-9044
ExternalDocumentID 10_1007_s10444_025_10249_5
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~EX
ID FETCH-LOGICAL-c228t-f9d6f2c64ef5f7bb9ee591908af4a27035c1448aebd4811137a734b2d059584f3
ISSN 1019-7168
IngestDate Sat Aug 23 12:39:56 EDT 2025
Thu Jul 24 01:51:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c228t-f9d6f2c64ef5f7bb9ee591908af4a27035c1448aebd4811137a734b2d059584f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3230889588
PQPubID 2043875
ParticipantIDs proquest_journals_3230889588
crossref_primary_10_1007_s10444_025_10249_5
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advances in computational mathematics
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References RH Nochetto (10249_CR36) 2016; 26
C Wang (10249_CR41) 2024; 436
J Zhu (10249_CR7) 2012; 12
P Vafeas (10249_CR28) 2015; 80
H Rahman (10249_CR17) 2016; 795
F Bai (10249_CR19) 2020; 85
S Scrobogna (10249_CR30) 2019; 266
I Raouf (10249_CR12) 2021; 21
S Pal (10249_CR6) 2011; 323
S Shyam (10249_CR21) 2021; 917
10249_CR1
R Zanella (10249_CR33) 2019; 469
T Tsai (10249_CR45) 2009; 153
Z Wang (10249_CR29) 2019; 267
10249_CR42
10249_CR22
R Canu (10249_CR13) 2021; 927
JL Guermond (10249_CR43) 2006; 195
P Guyenne (10249_CR5) 2016; 321
G-D Zhang (10249_CR40) 2021; 43
H Rahman (10249_CR18) 2015; 764
S Mouraya (10249_CR20) 2019; 100
MI Shliomis (10249_CR23) 2002; 594
RH Nochetto (10249_CR31) 2019; 51
J Byrom (10249_CR2) 2014; 30
Y Lin (10249_CR44) 2011; 171
L Fu (10249_CR46) 2010; 9
J Zeng (10249_CR9) 2013; 346
T Vieu (10249_CR16) 2018; 840
Y Amirat (10249_CR25) 2016; 15
R Zanella (10249_CR34) 2017; 54
R Canu (10249_CR14) 2021; 915
SN El Dine (10249_CR32) 2019; 56
A Lange (10249_CR15) 2016; 93
M Latorre (10249_CR11) 2009; 28
Z Tan (10249_CR26) 2010; 364
Y Wang (10249_CR27) 2010; 11
10249_CR10
A Doak (10249_CR4) 2019; 865
10249_CR35
J Zeng (10249_CR8) 2013; 346
10249_CR37
Y Amirat (10249_CR24) 2010; 73
10249_CR38
AS Elkady (10249_CR3) 2015; 428
10249_CR39
References_xml – ident: 10249_CR35
  doi: 10.1109/TMAG.2021.3066412
– volume: 56
  start-page: 1
  issue: 1
  year: 2019
  ident: 10249_CR32
  publication-title: IEEE T. Magn.
  doi: 10.1109/TMAG.2019.2949362
– volume: 594
  start-page: 85
  year: 2002
  ident: 10249_CR23
  publication-title: Lect. Notes Phys.
  doi: 10.1007/3-540-45646-5_5
– volume: 21
  start-page: 5545
  issue: 16
  year: 2021
  ident: 10249_CR12
  publication-title: Sensors
  doi: 10.3390/s21165545
– volume: 840
  start-page: 455
  year: 2018
  ident: 10249_CR16
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.83
– volume: 795
  start-page: 847
  year: 2016
  ident: 10249_CR17
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.231
– volume: 915
  start-page: 137
  year: 2021
  ident: 10249_CR14
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.171
– volume: 346
  start-page: 118
  issue: 1
  year: 2013
  ident: 10249_CR9
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2013.07.021
– volume: 436
  year: 2024
  ident: 10249_CR41
  publication-title: J. Comput. Appl. Math.
– volume: 51
  start-page: 4245
  issue: 6
  year: 2019
  ident: 10249_CR31
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/18M1224957
– ident: 10249_CR10
  doi: 10.1016/j.jmmm.2021.168222
– volume: 43
  start-page: 167
  issue: 1
  year: 2021
  ident: 10249_CR40
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/19M1288280
– volume: 364
  start-page: 424
  issue: 2
  year: 2010
  ident: 10249_CR26
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2009.10.032
– volume: 30
  start-page: 9045
  issue: 30
  year: 2014
  ident: 10249_CR2
  publication-title: Langmuir
  doi: 10.1021/la5009939
– volume: 764
  start-page: 316
  year: 2015
  ident: 10249_CR18
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2014.709
– ident: 10249_CR39
  doi: 10.1007/978-3-642-61623-5
– volume: 927
  start-page: 36
  year: 2021
  ident: 10249_CR13
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.782
– volume: 26
  start-page: 2393
  issue: 13
  year: 2016
  ident: 10249_CR36
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202516500573
– ident: 10249_CR1
– volume: 11
  start-page: 4254
  issue: 5
  year: 2010
  ident: 10249_CR27
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2010.05.012
– volume: 323
  start-page: 2701
  issue: 21
  year: 2011
  ident: 10249_CR6
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2011.06.016
– volume: 100
  start-page: 053105
  issue: 5
  year: 2019
  ident: 10249_CR20
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.100.053105
– volume: 28
  start-page: 227
  issue: 3
  year: 2009
  ident: 10249_CR11
  publication-title: Puerto Rico Health Sci. J.
– volume: 153
  start-page: 267
  issue: 2
  year: 2009
  ident: 10249_CR45
  publication-title: Sensors Actuators A Phys.
  doi: 10.1016/j.sna.2009.05.004
– volume: 80
  start-page: 839
  issue: 3
  year: 2015
  ident: 10249_CR28
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/hxu016
– volume: 12
  start-page: 65
  issue: 1–4
  year: 2012
  ident: 10249_CR7
  publication-title: Microfluid. Nanofluidics
  doi: 10.1007/s10404-011-0849-7
– volume: 85
  year: 2020
  ident: 10249_CR19
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 93
  issue: 4
  year: 2016
  ident: 10249_CR15
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.93.043106
– volume: 917
  start-page: 15
  year: 2021
  ident: 10249_CR21
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.245
– volume: 15
  start-page: 2329
  issue: 6
  year: 2016
  ident: 10249_CR25
  publication-title: Commun. Pure Appl. Anal.
  doi: 10.3934/cpaa.2016039
– volume: 267
  start-page: 5290
  issue: 9
  year: 2019
  ident: 10249_CR29
  publication-title: J. Diff. Equat.
  doi: 10.1016/j.jde.2019.05.030
– volume: 9
  start-page: 270
  issue: 1
  year: 2010
  ident: 10249_CR46
  publication-title: Rapid micromixer via ferrofluids. Phys. Procedia
– ident: 10249_CR42
  doi: 10.1051/m2an/2022020
– volume: 195
  start-page: 6011
  year: 2006
  ident: 10249_CR43
  publication-title: Comput. Meth. Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2005.10.010
– volume: 54
  start-page: 1
  issue: 3
  year: 2017
  ident: 10249_CR34
  publication-title: IEEE T. Magn.
  doi: 10.1109/TMAG.2017.2749539
– volume: 865
  start-page: 414
  year: 2019
  ident: 10249_CR4
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.60
– volume: 428
  start-page: 257
  year: 2015
  ident: 10249_CR3
  publication-title: Phys. A
  doi: 10.1016/j.physa.2015.01.053
– volume: 321
  start-page: 414
  year: 2016
  ident: 10249_CR5
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.05.055
– volume: 469
  start-page: 52
  year: 2019
  ident: 10249_CR33
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2018.08.016
– ident: 10249_CR38
  doi: 10.1007/s42967-023-00347-w
– volume: 171
  start-page: 291
  issue: 1
  year: 2011
  ident: 10249_CR44
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.04.003
– volume: 73
  start-page: 471
  issue: 2
  year: 2010
  ident: 10249_CR24
  publication-title: Nonlinear Anal. Theory Methods Appl.
  doi: 10.1016/j.na.2010.03.042
– volume: 346
  start-page: 118
  year: 2013
  ident: 10249_CR8
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2013.07.021
– ident: 10249_CR37
  doi: 10.1016/j.cnsns.2023.107330
– volume: 266
  start-page: 2718
  issue: 5
  year: 2019
  ident: 10249_CR30
  publication-title: J. Diff. Equat.
  doi: 10.1016/j.jde.2018.08.043
– ident: 10249_CR22
SSID ssj0009675
Score 2.3907952
Snippet In this paper, we aim to design two energy-stable and efficient finite element schemes for simulating the ferrofluid flows based on the well-known Shliomis...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Controllability
Ferrofluids
Finite element method
Mathematical analysis
Mathematical models
Stability
Title Energy-stable and efficient finite element schemes for the Shliomis model of ferrofluid flows
URI https://www.proquest.com/docview/3230889588
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgXLjA-CXGNuQDt8io2E7iHCfWrYIxDrRSOaDITp5FptKgrb3sr-f5V6ICQsAlqpyqsfy-Pn_v-b0vhLySXBsohWFCTQyTphGsAlsyXnFTQqM5-CKaD5fFbCHfLfPlmMzx3SUb87q5_W1fyf9YFcfQrq5L9h8sO_woDuBntC9e0cJ4_SsbT33jHkOC5_qfXAocvCJEEFxybDKDUB6eYRALTpcpVRV--rrqerRxeBWOo4wWrtEnr7Zdm9lVH7l20qcNlQK-drbx74FIOcRvg-zrQM7Ptz07jZW-Ph89HlOts_dw1Q07wcxnU5edxpmMX_scU9hu3EIcj4kJng9lcbuJSVd17c5ChsYZ72eRWTIM1YLrheh7S86qSZCDTM45qtF2Y-bhF58_ST3QUkrm5vHGySCyfNzh0qn-5cf6bHFxUc-ny_ldco9jZOF8-YKfjDrNhddmHuYX-6xit-VPT9jlMrtbuecn833yIAYW9CSg5BG5A-vH5GEMMmh04TdPyJcd0FAEDR1AQwNoaAQNjaChCBqKZqYJNNSDhvaWjqChHjRPyeJsOn87Y_EdG6zhXG2YrdrC8qaQYHNbGlMB5BWSRKWt1By3g7zBkFtpMK1UuC-KUpdCGt4iLUfuasUzsrfu1_CcUMWFnrQC8kLj6hQYuiluhLYWgwgDQh2QLK1W_T1IqdSjaLZb2xrXtvZrW-cH5CgtaB3_cje1wIBZKXywevHn24fk_gjJI7K3ud7CMbLHjXnp7f0Dg0RxbQ
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-stable+and+efficient+finite+element+schemes+for+the+Shliomis+model+of+ferrofluid+flows&rft.jtitle=Advances+in+computational+mathematics&rft.au=Guo-Dong%2C+Zhang&rft.au=Pan+Kejia&rft.au=He%2C+Xiaoming&rft.au=Yang%2C+Xiaofeng&rft.date=2025-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=51&rft.issue=4&rft_id=info:doi/10.1007%2Fs10444-025-10249-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon