Energy-stable and efficient finite element schemes for the Shliomis model of ferrofluid flows
In this paper, we aim to design two energy-stable and efficient finite element schemes for simulating the ferrofluid flows based on the well-known Shliomis model. The model is a highly nonlinear, coupled, multi-physics system, consisting of the Navier–Stokes equations, magnetostatic equation, and ma...
Saved in:
Published in | Advances in computational mathematics Vol. 51; no. 4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer Nature B.V
01.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1019-7168 1572-9044 |
DOI | 10.1007/s10444-025-10249-5 |
Cover
Loading…
Abstract | In this paper, we aim to design two energy-stable and efficient finite element schemes for simulating the ferrofluid flows based on the well-known Shliomis model. The model is a highly nonlinear, coupled, multi-physics system, consisting of the Navier–Stokes equations, magnetostatic equation, and magnetization field equation. We propose two reliable numerical algorithms with the following desired features: linearity and unconditional energy stability. Several key techniques are used to achieve the required features, including the auxiliary variable method, consistent terms method, prediction-correction method, and semi-implicit stabilization method. The first scheme is based on a hybrid continuous/discontinuous finite elements spatial approximation, and the second utilizes decoupled continuous finite element spatial discretization. We have rigorously demonstrated that the proposed schemes are unconditionally energy stable and carried out extensive numerical simulations to illustrate the accuracy and stability of the developed schemes, as well as some interesting controllable characteristics of the ferrofluid flows. |
---|---|
AbstractList | In this paper, we aim to design two energy-stable and efficient finite element schemes for simulating the ferrofluid flows based on the well-known Shliomis model. The model is a highly nonlinear, coupled, multi-physics system, consisting of the Navier–Stokes equations, magnetostatic equation, and magnetization field equation. We propose two reliable numerical algorithms with the following desired features: linearity and unconditional energy stability. Several key techniques are used to achieve the required features, including the auxiliary variable method, consistent terms method, prediction-correction method, and semi-implicit stabilization method. The first scheme is based on a hybrid continuous/discontinuous finite elements spatial approximation, and the second utilizes decoupled continuous finite element spatial discretization. We have rigorously demonstrated that the proposed schemes are unconditionally energy stable and carried out extensive numerical simulations to illustrate the accuracy and stability of the developed schemes, as well as some interesting controllable characteristics of the ferrofluid flows. |
ArticleNumber | 36 |
Author | Yang, Xiaofeng Zhang, Guo-Dong He, Xiaoming Pan, Kejia |
Author_xml | – sequence: 1 givenname: Guo-Dong surname: Zhang fullname: Zhang, Guo-Dong – sequence: 2 givenname: Kejia surname: Pan fullname: Pan, Kejia – sequence: 3 givenname: Xiaoming surname: He fullname: He, Xiaoming – sequence: 4 givenname: Xiaofeng surname: Yang fullname: Yang, Xiaofeng |
BookMark | eNotkE1LAzEQhoMo2Fb_gKeA52iSTTbJUUr9gIIH9ShhP2Zsyu6mJluk_96t9TTv8D7MwDMn50McgJAbwe8E5-Y-C66UYlxqJrhUjukzMhPaSOam4nzKXDhmRGkvyTznLefclUbPyOdqgPR1YHms6g5oNbQUEEMTYBgphiGMQKGD_rjmZjOFTDEmOm6Avm26EPuQaR9b6GhEipBSxG4fWopd_MlX5AKrLsP1_1yQj8fV-_KZrV-fXpYPa9ZIaUeGri1RNqUC1Gjq2gFoJxy3FapKGl7oRihlK6hbZYUQhalMoWrZcu20VVgsyO3p7i7F7z3k0W_jPg3TS1_Igls7YXai5IlqUsw5AfpdCn2VDl5wf9ToTxr9pNH_afS6-AVNSGea |
Cites_doi | 10.1109/TMAG.2021.3066412 10.1109/TMAG.2019.2949362 10.1007/3-540-45646-5_5 10.3390/s21165545 10.1017/jfm.2018.83 10.1017/jfm.2016.231 10.1017/jfm.2021.171 10.1016/j.jmmm.2013.07.021 10.1137/18M1224957 10.1016/j.jmmm.2021.168222 10.1137/19M1288280 10.1016/j.jmaa.2009.10.032 10.1021/la5009939 10.1017/jfm.2014.709 10.1007/978-3-642-61623-5 10.1017/jfm.2021.782 10.1142/S0218202516500573 10.1016/j.nonrwa.2010.05.012 10.1016/j.jmmm.2011.06.016 10.1103/PhysRevE.100.053105 10.1016/j.sna.2009.05.004 10.1093/imamat/hxu016 10.1007/s10404-011-0849-7 10.1103/PhysRevE.93.043106 10.1017/jfm.2021.245 10.3934/cpaa.2016039 10.1016/j.jde.2019.05.030 10.1051/m2an/2022020 10.1016/j.cma.2005.10.010 10.1109/TMAG.2017.2749539 10.1017/jfm.2019.60 10.1016/j.physa.2015.01.053 10.1016/j.jcp.2016.05.055 10.1016/j.jmmm.2018.08.016 10.1007/s42967-023-00347-w 10.1016/j.cej.2011.04.003 10.1016/j.na.2010.03.042 10.1016/j.cnsns.2023.107330 10.1016/j.jde.2018.08.043 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10444-025-10249-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1572-9044 |
ExternalDocumentID | 10_1007_s10444_025_10249_5 |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~EX |
ID | FETCH-LOGICAL-c228t-f9d6f2c64ef5f7bb9ee591908af4a27035c1448aebd4811137a734b2d059584f3 |
ISSN | 1019-7168 |
IngestDate | Sat Aug 23 12:39:56 EDT 2025 Thu Jul 24 01:51:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c228t-f9d6f2c64ef5f7bb9ee591908af4a27035c1448aebd4811137a734b2d059584f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3230889588 |
PQPubID | 2043875 |
ParticipantIDs | proquest_journals_3230889588 crossref_primary_10_1007_s10444_025_10249_5 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Advances in computational mathematics |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | RH Nochetto (10249_CR36) 2016; 26 C Wang (10249_CR41) 2024; 436 J Zhu (10249_CR7) 2012; 12 P Vafeas (10249_CR28) 2015; 80 H Rahman (10249_CR17) 2016; 795 F Bai (10249_CR19) 2020; 85 S Scrobogna (10249_CR30) 2019; 266 I Raouf (10249_CR12) 2021; 21 S Pal (10249_CR6) 2011; 323 S Shyam (10249_CR21) 2021; 917 10249_CR1 R Zanella (10249_CR33) 2019; 469 T Tsai (10249_CR45) 2009; 153 Z Wang (10249_CR29) 2019; 267 10249_CR42 10249_CR22 R Canu (10249_CR13) 2021; 927 JL Guermond (10249_CR43) 2006; 195 P Guyenne (10249_CR5) 2016; 321 G-D Zhang (10249_CR40) 2021; 43 H Rahman (10249_CR18) 2015; 764 S Mouraya (10249_CR20) 2019; 100 MI Shliomis (10249_CR23) 2002; 594 RH Nochetto (10249_CR31) 2019; 51 J Byrom (10249_CR2) 2014; 30 Y Lin (10249_CR44) 2011; 171 L Fu (10249_CR46) 2010; 9 J Zeng (10249_CR9) 2013; 346 T Vieu (10249_CR16) 2018; 840 Y Amirat (10249_CR25) 2016; 15 R Zanella (10249_CR34) 2017; 54 R Canu (10249_CR14) 2021; 915 SN El Dine (10249_CR32) 2019; 56 A Lange (10249_CR15) 2016; 93 M Latorre (10249_CR11) 2009; 28 Z Tan (10249_CR26) 2010; 364 Y Wang (10249_CR27) 2010; 11 10249_CR10 A Doak (10249_CR4) 2019; 865 10249_CR35 J Zeng (10249_CR8) 2013; 346 10249_CR37 Y Amirat (10249_CR24) 2010; 73 10249_CR38 AS Elkady (10249_CR3) 2015; 428 10249_CR39 |
References_xml | – ident: 10249_CR35 doi: 10.1109/TMAG.2021.3066412 – volume: 56 start-page: 1 issue: 1 year: 2019 ident: 10249_CR32 publication-title: IEEE T. Magn. doi: 10.1109/TMAG.2019.2949362 – volume: 594 start-page: 85 year: 2002 ident: 10249_CR23 publication-title: Lect. Notes Phys. doi: 10.1007/3-540-45646-5_5 – volume: 21 start-page: 5545 issue: 16 year: 2021 ident: 10249_CR12 publication-title: Sensors doi: 10.3390/s21165545 – volume: 840 start-page: 455 year: 2018 ident: 10249_CR16 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2018.83 – volume: 795 start-page: 847 year: 2016 ident: 10249_CR17 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.231 – volume: 915 start-page: 137 year: 2021 ident: 10249_CR14 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.171 – volume: 346 start-page: 118 issue: 1 year: 2013 ident: 10249_CR9 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2013.07.021 – volume: 436 year: 2024 ident: 10249_CR41 publication-title: J. Comput. Appl. Math. – volume: 51 start-page: 4245 issue: 6 year: 2019 ident: 10249_CR31 publication-title: SIAM J. Math. Anal. doi: 10.1137/18M1224957 – ident: 10249_CR10 doi: 10.1016/j.jmmm.2021.168222 – volume: 43 start-page: 167 issue: 1 year: 2021 ident: 10249_CR40 publication-title: SIAM J. Sci. Comput. doi: 10.1137/19M1288280 – volume: 364 start-page: 424 issue: 2 year: 2010 ident: 10249_CR26 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2009.10.032 – volume: 30 start-page: 9045 issue: 30 year: 2014 ident: 10249_CR2 publication-title: Langmuir doi: 10.1021/la5009939 – volume: 764 start-page: 316 year: 2015 ident: 10249_CR18 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2014.709 – ident: 10249_CR39 doi: 10.1007/978-3-642-61623-5 – volume: 927 start-page: 36 year: 2021 ident: 10249_CR13 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.782 – volume: 26 start-page: 2393 issue: 13 year: 2016 ident: 10249_CR36 publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202516500573 – ident: 10249_CR1 – volume: 11 start-page: 4254 issue: 5 year: 2010 ident: 10249_CR27 publication-title: Nonlinear Anal. Real World Appl. doi: 10.1016/j.nonrwa.2010.05.012 – volume: 323 start-page: 2701 issue: 21 year: 2011 ident: 10249_CR6 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2011.06.016 – volume: 100 start-page: 053105 issue: 5 year: 2019 ident: 10249_CR20 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.100.053105 – volume: 28 start-page: 227 issue: 3 year: 2009 ident: 10249_CR11 publication-title: Puerto Rico Health Sci. J. – volume: 153 start-page: 267 issue: 2 year: 2009 ident: 10249_CR45 publication-title: Sensors Actuators A Phys. doi: 10.1016/j.sna.2009.05.004 – volume: 80 start-page: 839 issue: 3 year: 2015 ident: 10249_CR28 publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/hxu016 – volume: 12 start-page: 65 issue: 1–4 year: 2012 ident: 10249_CR7 publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-011-0849-7 – volume: 85 year: 2020 ident: 10249_CR19 publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 93 issue: 4 year: 2016 ident: 10249_CR15 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.93.043106 – volume: 917 start-page: 15 year: 2021 ident: 10249_CR21 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.245 – volume: 15 start-page: 2329 issue: 6 year: 2016 ident: 10249_CR25 publication-title: Commun. Pure Appl. Anal. doi: 10.3934/cpaa.2016039 – volume: 267 start-page: 5290 issue: 9 year: 2019 ident: 10249_CR29 publication-title: J. Diff. Equat. doi: 10.1016/j.jde.2019.05.030 – volume: 9 start-page: 270 issue: 1 year: 2010 ident: 10249_CR46 publication-title: Rapid micromixer via ferrofluids. Phys. Procedia – ident: 10249_CR42 doi: 10.1051/m2an/2022020 – volume: 195 start-page: 6011 year: 2006 ident: 10249_CR43 publication-title: Comput. Meth. Appl. Mech. Engrg. doi: 10.1016/j.cma.2005.10.010 – volume: 54 start-page: 1 issue: 3 year: 2017 ident: 10249_CR34 publication-title: IEEE T. Magn. doi: 10.1109/TMAG.2017.2749539 – volume: 865 start-page: 414 year: 2019 ident: 10249_CR4 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.60 – volume: 428 start-page: 257 year: 2015 ident: 10249_CR3 publication-title: Phys. A doi: 10.1016/j.physa.2015.01.053 – volume: 321 start-page: 414 year: 2016 ident: 10249_CR5 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.05.055 – volume: 469 start-page: 52 year: 2019 ident: 10249_CR33 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2018.08.016 – ident: 10249_CR38 doi: 10.1007/s42967-023-00347-w – volume: 171 start-page: 291 issue: 1 year: 2011 ident: 10249_CR44 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.04.003 – volume: 73 start-page: 471 issue: 2 year: 2010 ident: 10249_CR24 publication-title: Nonlinear Anal. Theory Methods Appl. doi: 10.1016/j.na.2010.03.042 – volume: 346 start-page: 118 year: 2013 ident: 10249_CR8 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2013.07.021 – ident: 10249_CR37 doi: 10.1016/j.cnsns.2023.107330 – volume: 266 start-page: 2718 issue: 5 year: 2019 ident: 10249_CR30 publication-title: J. Diff. Equat. doi: 10.1016/j.jde.2018.08.043 – ident: 10249_CR22 |
SSID | ssj0009675 |
Score | 2.3907952 |
Snippet | In this paper, we aim to design two energy-stable and efficient finite element schemes for simulating the ferrofluid flows based on the well-known Shliomis... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
SubjectTerms | Controllability Ferrofluids Finite element method Mathematical analysis Mathematical models Stability |
Title | Energy-stable and efficient finite element schemes for the Shliomis model of ferrofluid flows |
URI | https://www.proquest.com/docview/3230889588 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgXLjA-CXGNuQDt8io2E7iHCfWrYIxDrRSOaDITp5FptKgrb3sr-f5V6ICQsAlqpyqsfy-Pn_v-b0vhLySXBsohWFCTQyTphGsAlsyXnFTQqM5-CKaD5fFbCHfLfPlmMzx3SUb87q5_W1fyf9YFcfQrq5L9h8sO_woDuBntC9e0cJ4_SsbT33jHkOC5_qfXAocvCJEEFxybDKDUB6eYRALTpcpVRV--rrqerRxeBWOo4wWrtEnr7Zdm9lVH7l20qcNlQK-drbx74FIOcRvg-zrQM7Ptz07jZW-Ph89HlOts_dw1Q07wcxnU5edxpmMX_scU9hu3EIcj4kJng9lcbuJSVd17c5ChsYZ72eRWTIM1YLrheh7S86qSZCDTM45qtF2Y-bhF58_ST3QUkrm5vHGySCyfNzh0qn-5cf6bHFxUc-ny_ldco9jZOF8-YKfjDrNhddmHuYX-6xit-VPT9jlMrtbuecn833yIAYW9CSg5BG5A-vH5GEMMmh04TdPyJcd0FAEDR1AQwNoaAQNjaChCBqKZqYJNNSDhvaWjqChHjRPyeJsOn87Y_EdG6zhXG2YrdrC8qaQYHNbGlMB5BWSRKWt1By3g7zBkFtpMK1UuC-KUpdCGt4iLUfuasUzsrfu1_CcUMWFnrQC8kLj6hQYuiluhLYWgwgDQh2QLK1W_T1IqdSjaLZb2xrXtvZrW-cH5CgtaB3_cje1wIBZKXywevHn24fk_gjJI7K3ud7CMbLHjXnp7f0Dg0RxbQ |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-stable+and+efficient+finite+element+schemes+for+the+Shliomis+model+of+ferrofluid+flows&rft.jtitle=Advances+in+computational+mathematics&rft.au=Guo-Dong%2C+Zhang&rft.au=Pan+Kejia&rft.au=He%2C+Xiaoming&rft.au=Yang%2C+Xiaofeng&rft.date=2025-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=51&rft.issue=4&rft_id=info:doi/10.1007%2Fs10444-025-10249-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon |