Generalized second order vectorial ∞-eigenvalue problems
We consider the problem of minimizing the $L^\infty$ norm of a function of the hessian over a class of maps, subject to a mass constraint involving the $L^\infty$ norm of a function of the gradient and the map itself. We assume zeroth and first order Dirichlet boundary data, corresponding to the “hi...
Saved in:
Published in | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics pp. 1 - 21 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
27.03.2024
|
Online Access | Get full text |
ISSN | 0308-2105 1473-7124 |
DOI | 10.1017/prm.2024.27 |
Cover
Loading…
Abstract | We consider the problem of minimizing the
$L^\infty$
norm of a function of the hessian over a class of maps, subject to a mass constraint involving the
$L^\infty$
norm of a function of the gradient and the map itself. We assume zeroth and first order Dirichlet boundary data, corresponding to the “hinged” and the “clamped” cases. By employing the method of
$L^p$
approximations, we establish the existence of a special
$L^\infty$
minimizer, which solves a divergence PDE system with measure coefficients as parameters. This is a counterpart of the Aronsson-Euler system corresponding to this constrained variational problem. Furthermore, we establish upper and lower bounds for the eigenvalue. |
---|---|
AbstractList | We consider the problem of minimizing the
$L^\infty$
norm of a function of the hessian over a class of maps, subject to a mass constraint involving the
$L^\infty$
norm of a function of the gradient and the map itself. We assume zeroth and first order Dirichlet boundary data, corresponding to the “hinged” and the “clamped” cases. By employing the method of
$L^p$
approximations, we establish the existence of a special
$L^\infty$
minimizer, which solves a divergence PDE system with measure coefficients as parameters. This is a counterpart of the Aronsson-Euler system corresponding to this constrained variational problem. Furthermore, we establish upper and lower bounds for the eigenvalue. |
Author | Katzourakis, Nikos Clark, Ed |
Author_xml | – sequence: 1 givenname: Ed surname: Clark fullname: Clark, Ed – sequence: 2 givenname: Nikos surname: Katzourakis fullname: Katzourakis, Nikos |
BookMark | eNotj01Kw0AYQAepYFpdeYHsZeI3f_kSd1K0CgU3ug7TmW8kkmTKTC3oCTyFh_Mktujq8TYP3pzNpjgRY5cCKgECr7dprCRIXUk8YYXQqDgKqWesAAUNlwLMGZvn_AYAdWOwYDcrmijZof8kX2ZycfJlTJ5SuSe3i6m3Q_nz9c2pf6Vpb4d3KrcpbgYa8zk7DXbIdPHPBXu5v3tePvD10-pxebvmTspmx2mjnSaJdfDKS-lDi96AQaHJezSidhoQrFQBWwEWlQ9eGB2UCW1DAGrBrv66LsWcE4Vum_rRpo9OQHfcPvjYHbc7ieoXXExN4A |
Cites_doi | 10.1137/0114053 10.1016/s0294-1449(01)00070-1 10.1051/cocv:2003036 10.1201/9781315195865 10.1512/iumj.1986.35.35003 10.1017/S0308210510000867 10.1007/s00205-018-1305-6 10.1007/s00526-004-0295-4 10.1137/18M1226373 10.1088/1361-6544/ac372a 10.1051/cocv/2014058 10.1007/s00205-003-0278-1 10.1137/13094390X 10.1007/s00526-020-01782-w 10.1515/acv-2016-0052 10.1007/s002050050157 10.1007/978-3-642-61798-0 10.1090/cams/11 10.1007/978-3-319-12829-0 10.1007/s10957-020-01712-y 10.1137/19M1239908 10.1007/s00205-016-1033-8 10.1007/s00245-011-9151-z 10.1016/j.na.2022.112806 10.1080/03605300500299976 10.1006/jmaa.1997.5881 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1017/prm.2024.27 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1473-7124 |
EndPage | 21 |
ExternalDocumentID | 10_1017_prm_2024_27 |
GroupedDBID | -E. -~X .FH 09C 09E 0E1 0R~ 123 29P 4.4 5VS 74X 74Y 7~V 88I 8FE 8FG 8R4 8R5 AAAZR AABES AABWE AACJH AAGFV AAKTX AARAB AASVR AAUKB AAYXX ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABROB ABUWG ABVKB ABVZP ABXAU ABXHF ABZCX ACBMC ACDLN ACGFS ACGOD ACIMK ACIWK ACQPF ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADKIL ADVJH AEBAK AEMTW AENGE AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AFZFC AGABE AGBYD AGJUD AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKMAY ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BLZWO BMAJL BPHCQ C0O CBIIA CCPQU CCQAD CFAFE CHEAL CITATION CJCSC CS3 DOHLZ DWQXO EBS GNUQQ HCIFZ HG- HST HZ~ I.6 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KCGVB KFECR L6V L98 LHUNA LW7 M-V M2P M7S M7~ NIKVX O9- P2P P62 PHGZM PHGZT PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA ROL RR0 S6U SAAAG T9M UT1 WFFJZ WH7 WQ3 WXU WYP YNT ZYDXJ |
ID | FETCH-LOGICAL-c228t-eb4c4e276fd3d22df97d505714edd7516c4070a23f7910a73dfd154f35f98e003 |
ISSN | 0308-2105 |
IngestDate | Tue Jul 01 00:43:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c228t-eb4c4e276fd3d22df97d505714edd7516c4070a23f7910a73dfd154f35f98e003 |
OpenAccessLink | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/0EEC214955645BFC0C6A76CE60726632/S0308210524000271a.pdf/div-class-title-generalized-second-order-vectorial-eigenvalue-problems-div.pdf |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_1017_prm_2024_27 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-27 |
PublicationDateYYYYMMDD | 2024-03-27 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-27 day: 27 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics |
PublicationYear | 2024 |
References | Ribeiro (S0308210524000271_ref31) 2014; 52 Danskin (S0308210524000271_ref13) 1966; 14 Juutinen (S0308210524000271_ref19) 1999; 148 Gilbarg (S0308210524000271_ref16) 2001 Dacorogna (S0308210524000271_ref11) 2008 Champion (S0308210524000271_ref8) 2004; 10 Clark (S0308210524000271_ref10) Katzourakis (S0308210524000271_ref27) 2018 Bungert (S0308210524000271_ref6) 2022; 2 Kreisbeck (S0308210524000271_ref28) 2020; 59 Ansini (S0308210524000271_ref2) 2015; 21 Juutinen (S0308210524000271_ref18) 2005; 23 Katzourakis (S0308210524000271_ref21) 2019; 57 S0308210524000271_ref24 Zeidler (S0308210524000271_ref32) 1985 Miao (S0308210524000271_ref29) 2017; 223 Barron (S0308210524000271_ref5) 2001; 18 Hutchinson (S0308210524000271_ref17) 1986; 35 Evans (S0308210524000271_ref14) 1992 Zhou (S0308210524000271_ref33) 1998; 221 Clark (S0308210524000271_ref9) 2021; 35 Cagnetti (S0308210524000271_ref7) 2011; 141 Barron (S0308210524000271_ref4) 2005; 30 Dal Maso (S0308210524000271_ref12) 2004; 171 S0308210524000271_ref1 Aronsson (S0308210524000271_ref3) 2012; 65 Katzourakis (S0308210524000271_ref26) 2020; 13 Katzourakis (S0308210524000271_ref22) 2020; 26 Katzourakis (S0308210524000271_ref20) 2019; 51 Katzourakis (S0308210524000271_ref23) 2022; 219 S0308210524000271_ref15 Prinari (S0308210524000271_ref30) 2020; 186 Katzourakis (S0308210524000271_ref25) 2017; 24 |
References_xml | – volume: 14 start-page: 641 year: 1966 ident: S0308210524000271_ref13 article-title: The theory of min-max with application publication-title: SIAM J. Appl. Math doi: 10.1137/0114053 – volume: 18 start-page: 495 year: 2001 ident: S0308210524000271_ref5 article-title: Lower semicontinuity of $L^{\infty }$ functionals publication-title: Ann. I. H. Poincaré AN doi: 10.1016/s0294-1449(01)00070-1 – volume: 10 start-page: 14 year: 2004 ident: S0308210524000271_ref8 article-title: $\Gamma$-convergence and absolute minimizers for supremal functionals publication-title: COCV ESAIM: Control, Optim. Calc. Var doi: 10.1051/cocv:2003036 – start-page: 560 volume-title: An illustrative introduction to modern analysis year: 2018 ident: S0308210524000271_ref27 doi: 10.1201/9781315195865 – volume: 35 start-page: 45 year: 1986 ident: S0308210524000271_ref17 article-title: Second fundamental form for varifolds and the existence of surfaces minimising curvature publication-title: Indiana J. Math doi: 10.1512/iumj.1986.35.35003 – volume: 26 start-page: 60 year: 2020 ident: S0308210524000271_ref22 article-title: A minimisation problem in $L^\infty$ with PDE and unilateral constraints publication-title: ESAIM: Control, Optim. Calc. Var – volume: 141 start-page: 673 year: 2011 ident: S0308210524000271_ref7 article-title: $k$-quasi-convexity reduces to quasi-convexity publication-title: Proc. Roy. Soc. Edinburgh Sect. A doi: 10.1017/S0308210510000867 – ident: S0308210524000271_ref24 doi: 10.1007/s00205-018-1305-6 – volume: 23 start-page: 169 year: 2005 ident: S0308210524000271_ref18 article-title: On the higher eigenvalues for the $\infty$-eigenvalue problem publication-title: Calc. Var doi: 10.1007/s00526-004-0295-4 – volume: 51 start-page: 1349 year: 2019 ident: S0308210524000271_ref20 article-title: An $L^\infty$ regularisation strategy to the inverse source identification problem for elliptic equations publication-title: SIAM J. Math. Anal doi: 10.1137/18M1226373 – volume: 35 start-page: 470 year: 2021 ident: S0308210524000271_ref9 article-title: Data assimilation for the Navier-Stokes equations through PDE-constrained optimisation in $L^\infty$ publication-title: Nonlinearity doi: 10.1088/1361-6544/ac372a – volume: 21 start-page: 1053 year: 2015 ident: S0308210524000271_ref2 article-title: On the lower semicontinuity of supremal functional under differential constraints publication-title: ESAIM - Control, Opt. Calc. Var doi: 10.1051/cocv/2014058 – volume-title: Direct methods in the calculus of variations year: 2008 ident: S0308210524000271_ref11 – ident: S0308210524000271_ref10 article-title: On isosupremic vectorial minimisation problems in $L^{\infty }$ with general nonlinear constraints publication-title: Adv. Calc. Var – volume: 171 start-page: 55 year: 2004 ident: S0308210524000271_ref12 article-title: Higher-order quasiconvexity reduces to quasiconvexity publication-title: Arch. Ration. Mech. Anal doi: 10.1007/s00205-003-0278-1 – volume: 52 start-page: 3341 year: 2014 ident: S0308210524000271_ref31 article-title: Existence of minimisers for nonlevel convex functionals publication-title: SIAM J. Control Opt doi: 10.1137/13094390X – volume: 59 start-page: 1 year: 2020 ident: S0308210524000271_ref28 article-title: Lower semicontinuity and relaxation of nonlocal $L^\infty$-functionals publication-title: Calc. Var. PDE doi: 10.1007/s00526-020-01782-w – volume-title: Nonlinear functional analysis and its application III: variational methods and optimization year: 1985 ident: S0308210524000271_ref32 – volume: 13 start-page: 115 year: 2020 ident: S0308210524000271_ref26 article-title: 2nd order $L^\infty$ variational problems and the $\infty$-polyLaplacian publication-title: Adv. Calc. Var doi: 10.1515/acv-2016-0052 – volume: 148 start-page: 89 year: 1999 ident: S0308210524000271_ref19 article-title: The $\infty$-eigenvalue problem publication-title: Arch. Ration. Mech. Anal doi: 10.1007/s002050050157 – volume-title: Elliptic partial differential equations of second order year: 2001 ident: S0308210524000271_ref16 doi: 10.1007/978-3-642-61798-0 – volume: 2 start-page: 345 year: 2022 ident: S0308210524000271_ref6 article-title: Eigenvalue problems in $L^\infty$: optimality conditions, duality, and relations with optimal transport publication-title: Commun. Am. Math. Soc doi: 10.1090/cams/11 – ident: S0308210524000271_ref1 doi: 10.1007/978-3-319-12829-0 – volume-title: Measure theory and fine properties of functions year: 1992 ident: S0308210524000271_ref14 – volume: 186 start-page: 412 year: 2020 ident: S0308210524000271_ref30 article-title: A relaxation result in the vectorial setting and power law approximation for supremal functionals publication-title: J. Optim. Theory Appl doi: 10.1007/s10957-020-01712-y – volume: 24 start-page: 1 year: 2017 ident: S0308210524000271_ref25 article-title: The eigenvalue problem for the $\infty$-Bilaplacian publication-title: Nonlinear Differ. Equa. Appl. NoDEA – volume: 57 start-page: 4205 year: 2019 ident: S0308210524000271_ref21 article-title: Inverse optical tomography through PDE-constrained optimisation in $L^\infty$ publication-title: SIAM J. Control Optim doi: 10.1137/19M1239908 – volume: 223 start-page: 141 year: 2017 ident: S0308210524000271_ref29 article-title: Uniqueness of absolute minimizers for $L^\infty$-functionals involving Hamiltonians $H(x,\,p)$ publication-title: Arch. Ration. Mech. Anal doi: 10.1007/s00205-016-1033-8 – ident: S0308210524000271_ref15 – volume: 65 start-page: 53 year: 2012 ident: S0308210524000271_ref3 article-title: $L^\infty$ variational problems with running costs and constraints publication-title: Appl. Math. Optim doi: 10.1007/s00245-011-9151-z – volume: 219 start-page: 112806 year: 2022 ident: S0308210524000271_ref23 article-title: Generalised vectorial $\infty$-eigenvalue nonlinear problems for $L^\infty$ functionals publication-title: Nonlinear Anal doi: 10.1016/j.na.2022.112806 – volume: 30 start-page: 1741 year: 2005 ident: S0308210524000271_ref4 article-title: Minimizing the $L^\infty$ norm of the gradient with an energy constraint publication-title: Comm. Partial Differ. Equ doi: 10.1080/03605300500299976 – volume: 221 start-page: 217 year: 1998 ident: S0308210524000271_ref33 article-title: Weak lower semicontinuity of a functional with any order publication-title: J. Math. Anal. Appl doi: 10.1006/jmaa.1997.5881 |
SSID | ssj0006857 |
Score | 2.3527408 |
Snippet | We consider the problem of minimizing the
$L^\infty$
norm of a function of the hessian over a class of maps, subject to a mass constraint involving the... |
SourceID | crossref |
SourceType | Index Database |
StartPage | 1 |
Title | Generalized second order vectorial ∞-eigenvalue problems |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66XvQgrg9804OCsmRp07RpvamsiKCIKHhb2maCIuyKWz3sL_BX-OP8JU6SthsfB_VSSukz3zCZmc73hZAd5Uu_EBlQFsmU8lBxmmUcqKm4CQlRmGqi8PlFfHrDz26j28n6nYZdUubdYvwjr-Q_qOIxxFWzZP-AbHNTPID7iC9uEWHc_grjSjP6foxR40hntrJjpDQ7L6YWr4vhppkh2U17FLTuptb21tQos4rMyI1ML5uZbFT3DdjSQt3XaVoQ741Swl1X1-mN5Rx2O-eN8msTn5uuH-NmZePRs3KM36QDVmuBD8NPJQfGdc-VZfDXVCsfgQh8-zsarOfkIqQiYNzxhoEzrVoe9DeHbVWeHp-0KADj3eopn2Sxv0xXTROh7U8Tfby4ry_uMzFNZhimC6xFZo56F5dXzZwcJ1bztX7xiqmpxcOdZzuxiRNkXC-Q-So78A4t1G0yBYNFMucM8CJpV9545O1V8O8vkQPHEjxrCZ6xBK-xBO_99c2xAa-2gWVyc9K7Pj6l1aoYtGAsKSnkvODARKxkKBmTKhVSZ5kBBylFFMQF5uh-xkIlMBTMRCiVxDhZhZFKE0AnvkJag-EAVonHmJKxBBXEccZjSPMEAPKUZ6LQlaZ0jezU44GjbMRP-j-M-vrvTtsgsxNj2iSt8ukZtjCiK_PtCq4PsR5OMA |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+second+order+vectorial+%E2%88%9E-eigenvalue+problems&rft.jtitle=Proceedings+of+the+Royal+Society+of+Edinburgh.+Section+A.+Mathematics&rft.au=Clark%2C+Ed&rft.au=Katzourakis%2C+Nikos&rft.date=2024-03-27&rft.issn=0308-2105&rft.eissn=1473-7124&rft.spage=1&rft.epage=21&rft_id=info:doi/10.1017%2Fprm.2024.27&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_prm_2024_27 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-2105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-2105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-2105&client=summon |