Generalized second order vectorial ∞-eigenvalue problems

We consider the problem of minimizing the $L^\infty$ norm of a function of the hessian over a class of maps, subject to a mass constraint involving the $L^\infty$ norm of a function of the gradient and the map itself. We assume zeroth and first order Dirichlet boundary data, corresponding to the “hi...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Royal Society of Edinburgh. Section A. Mathematics pp. 1 - 21
Main Authors Clark, Ed, Katzourakis, Nikos
Format Journal Article
LanguageEnglish
Published 27.03.2024
Online AccessGet full text
ISSN0308-2105
1473-7124
DOI10.1017/prm.2024.27

Cover

Loading…
Abstract We consider the problem of minimizing the $L^\infty$ norm of a function of the hessian over a class of maps, subject to a mass constraint involving the $L^\infty$ norm of a function of the gradient and the map itself. We assume zeroth and first order Dirichlet boundary data, corresponding to the “hinged” and the “clamped” cases. By employing the method of $L^p$ approximations, we establish the existence of a special $L^\infty$ minimizer, which solves a divergence PDE system with measure coefficients as parameters. This is a counterpart of the Aronsson-Euler system corresponding to this constrained variational problem. Furthermore, we establish upper and lower bounds for the eigenvalue.
AbstractList We consider the problem of minimizing the $L^\infty$ norm of a function of the hessian over a class of maps, subject to a mass constraint involving the $L^\infty$ norm of a function of the gradient and the map itself. We assume zeroth and first order Dirichlet boundary data, corresponding to the “hinged” and the “clamped” cases. By employing the method of $L^p$ approximations, we establish the existence of a special $L^\infty$ minimizer, which solves a divergence PDE system with measure coefficients as parameters. This is a counterpart of the Aronsson-Euler system corresponding to this constrained variational problem. Furthermore, we establish upper and lower bounds for the eigenvalue.
Author Katzourakis, Nikos
Clark, Ed
Author_xml – sequence: 1
  givenname: Ed
  surname: Clark
  fullname: Clark, Ed
– sequence: 2
  givenname: Nikos
  surname: Katzourakis
  fullname: Katzourakis, Nikos
BookMark eNotj01Kw0AYQAepYFpdeYHsZeI3f_kSd1K0CgU3ug7TmW8kkmTKTC3oCTyFh_Mktujq8TYP3pzNpjgRY5cCKgECr7dprCRIXUk8YYXQqDgKqWesAAUNlwLMGZvn_AYAdWOwYDcrmijZof8kX2ZycfJlTJ5SuSe3i6m3Q_nz9c2pf6Vpb4d3KrcpbgYa8zk7DXbIdPHPBXu5v3tePvD10-pxebvmTspmx2mjnSaJdfDKS-lDi96AQaHJezSidhoQrFQBWwEWlQ9eGB2UCW1DAGrBrv66LsWcE4Vum_rRpo9OQHfcPvjYHbc7ieoXXExN4A
Cites_doi 10.1137/0114053
10.1016/s0294-1449(01)00070-1
10.1051/cocv:2003036
10.1201/9781315195865
10.1512/iumj.1986.35.35003
10.1017/S0308210510000867
10.1007/s00205-018-1305-6
10.1007/s00526-004-0295-4
10.1137/18M1226373
10.1088/1361-6544/ac372a
10.1051/cocv/2014058
10.1007/s00205-003-0278-1
10.1137/13094390X
10.1007/s00526-020-01782-w
10.1515/acv-2016-0052
10.1007/s002050050157
10.1007/978-3-642-61798-0
10.1090/cams/11
10.1007/978-3-319-12829-0
10.1007/s10957-020-01712-y
10.1137/19M1239908
10.1007/s00205-016-1033-8
10.1007/s00245-011-9151-z
10.1016/j.na.2022.112806
10.1080/03605300500299976
10.1006/jmaa.1997.5881
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1017/prm.2024.27
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1473-7124
EndPage 21
ExternalDocumentID 10_1017_prm_2024_27
GroupedDBID -E.
-~X
.FH
09C
09E
0E1
0R~
123
29P
4.4
5VS
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AARAB
AASVR
AAUKB
AAYXX
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABROB
ABUWG
ABVKB
ABVZP
ABXAU
ABXHF
ABZCX
ACBMC
ACDLN
ACGFS
ACGOD
ACIMK
ACIWK
ACQPF
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADKIL
ADVJH
AEBAK
AEMTW
AENGE
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKMAY
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CITATION
CJCSC
CS3
DOHLZ
DWQXO
EBS
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M2P
M7S
M7~
NIKVX
O9-
P2P
P62
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
ROL
RR0
S6U
SAAAG
T9M
UT1
WFFJZ
WH7
WQ3
WXU
WYP
YNT
ZYDXJ
ID FETCH-LOGICAL-c228t-eb4c4e276fd3d22df97d505714edd7516c4070a23f7910a73dfd154f35f98e003
ISSN 0308-2105
IngestDate Tue Jul 01 00:43:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c228t-eb4c4e276fd3d22df97d505714edd7516c4070a23f7910a73dfd154f35f98e003
OpenAccessLink https://www.cambridge.org/core/services/aop-cambridge-core/content/view/0EEC214955645BFC0C6A76CE60726632/S0308210524000271a.pdf/div-class-title-generalized-second-order-vectorial-eigenvalue-problems-div.pdf
PageCount 21
ParticipantIDs crossref_primary_10_1017_prm_2024_27
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-27
PublicationDateYYYYMMDD 2024-03-27
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-27
  day: 27
PublicationDecade 2020
PublicationTitle Proceedings of the Royal Society of Edinburgh. Section A. Mathematics
PublicationYear 2024
References Ribeiro (S0308210524000271_ref31) 2014; 52
Danskin (S0308210524000271_ref13) 1966; 14
Juutinen (S0308210524000271_ref19) 1999; 148
Gilbarg (S0308210524000271_ref16) 2001
Dacorogna (S0308210524000271_ref11) 2008
Champion (S0308210524000271_ref8) 2004; 10
Clark (S0308210524000271_ref10)
Katzourakis (S0308210524000271_ref27) 2018
Bungert (S0308210524000271_ref6) 2022; 2
Kreisbeck (S0308210524000271_ref28) 2020; 59
Ansini (S0308210524000271_ref2) 2015; 21
Juutinen (S0308210524000271_ref18) 2005; 23
Katzourakis (S0308210524000271_ref21) 2019; 57
S0308210524000271_ref24
Zeidler (S0308210524000271_ref32) 1985
Miao (S0308210524000271_ref29) 2017; 223
Barron (S0308210524000271_ref5) 2001; 18
Hutchinson (S0308210524000271_ref17) 1986; 35
Evans (S0308210524000271_ref14) 1992
Zhou (S0308210524000271_ref33) 1998; 221
Clark (S0308210524000271_ref9) 2021; 35
Cagnetti (S0308210524000271_ref7) 2011; 141
Barron (S0308210524000271_ref4) 2005; 30
Dal Maso (S0308210524000271_ref12) 2004; 171
S0308210524000271_ref1
Aronsson (S0308210524000271_ref3) 2012; 65
Katzourakis (S0308210524000271_ref26) 2020; 13
Katzourakis (S0308210524000271_ref22) 2020; 26
Katzourakis (S0308210524000271_ref20) 2019; 51
Katzourakis (S0308210524000271_ref23) 2022; 219
S0308210524000271_ref15
Prinari (S0308210524000271_ref30) 2020; 186
Katzourakis (S0308210524000271_ref25) 2017; 24
References_xml – volume: 14
  start-page: 641
  year: 1966
  ident: S0308210524000271_ref13
  article-title: The theory of min-max with application
  publication-title: SIAM J. Appl. Math
  doi: 10.1137/0114053
– volume: 18
  start-page: 495
  year: 2001
  ident: S0308210524000271_ref5
  article-title: Lower semicontinuity of $L^{\infty }$ functionals
  publication-title: Ann. I. H. Poincaré AN
  doi: 10.1016/s0294-1449(01)00070-1
– volume: 10
  start-page: 14
  year: 2004
  ident: S0308210524000271_ref8
  article-title: $\Gamma$-convergence and absolute minimizers for supremal functionals
  publication-title: COCV ESAIM: Control, Optim. Calc. Var
  doi: 10.1051/cocv:2003036
– start-page: 560
  volume-title: An illustrative introduction to modern analysis
  year: 2018
  ident: S0308210524000271_ref27
  doi: 10.1201/9781315195865
– volume: 35
  start-page: 45
  year: 1986
  ident: S0308210524000271_ref17
  article-title: Second fundamental form for varifolds and the existence of surfaces minimising curvature
  publication-title: Indiana J. Math
  doi: 10.1512/iumj.1986.35.35003
– volume: 26
  start-page: 60
  year: 2020
  ident: S0308210524000271_ref22
  article-title: A minimisation problem in $L^\infty$ with PDE and unilateral constraints
  publication-title: ESAIM: Control, Optim. Calc. Var
– volume: 141
  start-page: 673
  year: 2011
  ident: S0308210524000271_ref7
  article-title: $k$-quasi-convexity reduces to quasi-convexity
  publication-title: Proc. Roy. Soc. Edinburgh Sect. A
  doi: 10.1017/S0308210510000867
– ident: S0308210524000271_ref24
  doi: 10.1007/s00205-018-1305-6
– volume: 23
  start-page: 169
  year: 2005
  ident: S0308210524000271_ref18
  article-title: On the higher eigenvalues for the $\infty$-eigenvalue problem
  publication-title: Calc. Var
  doi: 10.1007/s00526-004-0295-4
– volume: 51
  start-page: 1349
  year: 2019
  ident: S0308210524000271_ref20
  article-title: An $L^\infty$ regularisation strategy to the inverse source identification problem for elliptic equations
  publication-title: SIAM J. Math. Anal
  doi: 10.1137/18M1226373
– volume: 35
  start-page: 470
  year: 2021
  ident: S0308210524000271_ref9
  article-title: Data assimilation for the Navier-Stokes equations through PDE-constrained optimisation in $L^\infty$
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/ac372a
– volume: 21
  start-page: 1053
  year: 2015
  ident: S0308210524000271_ref2
  article-title: On the lower semicontinuity of supremal functional under differential constraints
  publication-title: ESAIM - Control, Opt. Calc. Var
  doi: 10.1051/cocv/2014058
– volume-title: Direct methods in the calculus of variations
  year: 2008
  ident: S0308210524000271_ref11
– ident: S0308210524000271_ref10
  article-title: On isosupremic vectorial minimisation problems in $L^{\infty }$ with general nonlinear constraints
  publication-title: Adv. Calc. Var
– volume: 171
  start-page: 55
  year: 2004
  ident: S0308210524000271_ref12
  article-title: Higher-order quasiconvexity reduces to quasiconvexity
  publication-title: Arch. Ration. Mech. Anal
  doi: 10.1007/s00205-003-0278-1
– volume: 52
  start-page: 3341
  year: 2014
  ident: S0308210524000271_ref31
  article-title: Existence of minimisers for nonlevel convex functionals
  publication-title: SIAM J. Control Opt
  doi: 10.1137/13094390X
– volume: 59
  start-page: 1
  year: 2020
  ident: S0308210524000271_ref28
  article-title: Lower semicontinuity and relaxation of nonlocal $L^\infty$-functionals
  publication-title: Calc. Var. PDE
  doi: 10.1007/s00526-020-01782-w
– volume-title: Nonlinear functional analysis and its application III: variational methods and optimization
  year: 1985
  ident: S0308210524000271_ref32
– volume: 13
  start-page: 115
  year: 2020
  ident: S0308210524000271_ref26
  article-title: 2nd order $L^\infty$ variational problems and the $\infty$-polyLaplacian
  publication-title: Adv. Calc. Var
  doi: 10.1515/acv-2016-0052
– volume: 148
  start-page: 89
  year: 1999
  ident: S0308210524000271_ref19
  article-title: The $\infty$-eigenvalue problem
  publication-title: Arch. Ration. Mech. Anal
  doi: 10.1007/s002050050157
– volume-title: Elliptic partial differential equations of second order
  year: 2001
  ident: S0308210524000271_ref16
  doi: 10.1007/978-3-642-61798-0
– volume: 2
  start-page: 345
  year: 2022
  ident: S0308210524000271_ref6
  article-title: Eigenvalue problems in $L^\infty$: optimality conditions, duality, and relations with optimal transport
  publication-title: Commun. Am. Math. Soc
  doi: 10.1090/cams/11
– ident: S0308210524000271_ref1
  doi: 10.1007/978-3-319-12829-0
– volume-title: Measure theory and fine properties of functions
  year: 1992
  ident: S0308210524000271_ref14
– volume: 186
  start-page: 412
  year: 2020
  ident: S0308210524000271_ref30
  article-title: A relaxation result in the vectorial setting and power law approximation for supremal functionals
  publication-title: J. Optim. Theory Appl
  doi: 10.1007/s10957-020-01712-y
– volume: 24
  start-page: 1
  year: 2017
  ident: S0308210524000271_ref25
  article-title: The eigenvalue problem for the $\infty$-Bilaplacian
  publication-title: Nonlinear Differ. Equa. Appl. NoDEA
– volume: 57
  start-page: 4205
  year: 2019
  ident: S0308210524000271_ref21
  article-title: Inverse optical tomography through PDE-constrained optimisation in $L^\infty$
  publication-title: SIAM J. Control Optim
  doi: 10.1137/19M1239908
– volume: 223
  start-page: 141
  year: 2017
  ident: S0308210524000271_ref29
  article-title: Uniqueness of absolute minimizers for $L^\infty$-functionals involving Hamiltonians $H(x,\,p)$
  publication-title: Arch. Ration. Mech. Anal
  doi: 10.1007/s00205-016-1033-8
– ident: S0308210524000271_ref15
– volume: 65
  start-page: 53
  year: 2012
  ident: S0308210524000271_ref3
  article-title: $L^\infty$ variational problems with running costs and constraints
  publication-title: Appl. Math. Optim
  doi: 10.1007/s00245-011-9151-z
– volume: 219
  start-page: 112806
  year: 2022
  ident: S0308210524000271_ref23
  article-title: Generalised vectorial $\infty$-eigenvalue nonlinear problems for $L^\infty$ functionals
  publication-title: Nonlinear Anal
  doi: 10.1016/j.na.2022.112806
– volume: 30
  start-page: 1741
  year: 2005
  ident: S0308210524000271_ref4
  article-title: Minimizing the $L^\infty$ norm of the gradient with an energy constraint
  publication-title: Comm. Partial Differ. Equ
  doi: 10.1080/03605300500299976
– volume: 221
  start-page: 217
  year: 1998
  ident: S0308210524000271_ref33
  article-title: Weak lower semicontinuity of a functional with any order
  publication-title: J. Math. Anal. Appl
  doi: 10.1006/jmaa.1997.5881
SSID ssj0006857
Score 2.3527408
Snippet We consider the problem of minimizing the $L^\infty$ norm of a function of the hessian over a class of maps, subject to a mass constraint involving the...
SourceID crossref
SourceType Index Database
StartPage 1
Title Generalized second order vectorial ∞-eigenvalue problems
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66XvQgrg9804OCsmRp07RpvamsiKCIKHhb2maCIuyKWz3sL_BX-OP8JU6SthsfB_VSSukz3zCZmc73hZAd5Uu_EBlQFsmU8lBxmmUcqKm4CQlRmGqi8PlFfHrDz26j28n6nYZdUubdYvwjr-Q_qOIxxFWzZP-AbHNTPID7iC9uEWHc_grjSjP6foxR40hntrJjpDQ7L6YWr4vhppkh2U17FLTuptb21tQos4rMyI1ML5uZbFT3DdjSQt3XaVoQ741Swl1X1-mN5Rx2O-eN8msTn5uuH-NmZePRs3KM36QDVmuBD8NPJQfGdc-VZfDXVCsfgQh8-zsarOfkIqQiYNzxhoEzrVoe9DeHbVWeHp-0KADj3eopn2Sxv0xXTROh7U8Tfby4ry_uMzFNZhimC6xFZo56F5dXzZwcJ1bztX7xiqmpxcOdZzuxiRNkXC-Q-So78A4t1G0yBYNFMucM8CJpV9545O1V8O8vkQPHEjxrCZ6xBK-xBO_99c2xAa-2gWVyc9K7Pj6l1aoYtGAsKSnkvODARKxkKBmTKhVSZ5kBBylFFMQF5uh-xkIlMBTMRCiVxDhZhZFKE0AnvkJag-EAVonHmJKxBBXEccZjSPMEAPKUZ6LQlaZ0jezU44GjbMRP-j-M-vrvTtsgsxNj2iSt8ukZtjCiK_PtCq4PsR5OMA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+second+order+vectorial+%E2%88%9E-eigenvalue+problems&rft.jtitle=Proceedings+of+the+Royal+Society+of+Edinburgh.+Section+A.+Mathematics&rft.au=Clark%2C+Ed&rft.au=Katzourakis%2C+Nikos&rft.date=2024-03-27&rft.issn=0308-2105&rft.eissn=1473-7124&rft.spage=1&rft.epage=21&rft_id=info:doi/10.1017%2Fprm.2024.27&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_prm_2024_27
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-2105&client=summon