Promoting four-electron oxygen reduction reaction with chiral semimetals PtGa

Spin polarization has emerged as a promising strategy for designing high-performance catalysts, particularly for reactions involving intermediates with triplet-singlet transitions, such as the oxygen reduction reaction (ORR). However, the creation of spin polarization typically requires complex phas...

Full description

Saved in:
Bibliographic Details
Published inRare metals Vol. 44; no. 8; pp. 5633 - 5642
Main Authors Sun, Shu-Bin, Ma, Dan-Dan, Ma, Jin-Fu, Lei, Lei, Wang, De-Gao, Zhan, Jie, Sun, Yan, Wang, Lei, Li, Guo-Hua, Yan, Jian-Hua, Felser, Claudia, Li, Guo-Wei, Li, Wei
Format Journal Article
LanguageEnglish
Published Beijing Springer Nature B.V 01.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spin polarization has emerged as a promising strategy for designing high-performance catalysts, particularly for reactions involving intermediates with triplet-singlet transitions, such as the oxygen reduction reaction (ORR). However, the creation of spin polarization typically requires complex phase structures or external fields, making it challenging to understand the mechanisms of spin manipulation and to search for high-performance catalysts. Chiral crystals, such as B20 compounds, inherently exhibit spin polarization when subjected to an electric current due to the coupling of crystal structure chirality and electronic chirality, offering an excellent platform for modulating the ORR process. In this study, nanosized PtGa alloys were successfully dispersed onto carbon and exhibited a distinct circular dichroism signal, indicating the presence of electron spin polarization. As an ORR catalyst, this chiral alloy demonstrated a high half-wave potential of 0.91 V, a mass activity of 1.17 A mgPt−1, and a specific activity of 4.08 mA cm−2, surpassing the performance of state-of-the-art Pt/C catalysts in both activity and cost. Notably, the alloy facilitates a direct four-electron transfer pathway, significantly reducing the formation of H2O2 as a side product to an impressively low yield of 0.5%. This work provides an effective approach for generating spin-polarized electrons, thereby advancing the development of cutting-edge ORR catalysts.
AbstractList Spin polarization has emerged as a promising strategy for designing high-performance catalysts, particularly for reactions involving intermediates with triplet-singlet transitions, such as the oxygen reduction reaction (ORR). However, the creation of spin polarization typically requires complex phase structures or external fields, making it challenging to understand the mechanisms of spin manipulation and to search for high-performance catalysts. Chiral crystals, such as B20 compounds, inherently exhibit spin polarization when subjected to an electric current due to the coupling of crystal structure chirality and electronic chirality, offering an excellent platform for modulating the ORR process. In this study, nanosized PtGa alloys were successfully dispersed onto carbon and exhibited a distinct circular dichroism signal, indicating the presence of electron spin polarization. As an ORR catalyst, this chiral alloy demonstrated a high half-wave potential of 0.91 V, a mass activity of 1.17 A mgPt−1, and a specific activity of 4.08 mA cm−2, surpassing the performance of state-of-the-art Pt/C catalysts in both activity and cost. Notably, the alloy facilitates a direct four-electron transfer pathway, significantly reducing the formation of H2O2 as a side product to an impressively low yield of 0.5%. This work provides an effective approach for generating spin-polarized electrons, thereby advancing the development of cutting-edge ORR catalysts.
Author Zhan, Jie
Sun, Shu-Bin
Wang, De-Gao
Li, Wei
Sun, Yan
Yan, Jian-Hua
Ma, Jin-Fu
Li, Guo-Hua
Wang, Lei
Ma, Dan-Dan
Lei, Lei
Felser, Claudia
Li, Guo-Wei
Author_xml – sequence: 1
  givenname: Shu-Bin
  surname: Sun
  fullname: Sun, Shu-Bin
– sequence: 2
  givenname: Dan-Dan
  surname: Ma
  fullname: Ma, Dan-Dan
– sequence: 3
  givenname: Jin-Fu
  surname: Ma
  fullname: Ma, Jin-Fu
– sequence: 4
  givenname: Lei
  surname: Lei
  fullname: Lei, Lei
– sequence: 5
  givenname: De-Gao
  surname: Wang
  fullname: Wang, De-Gao
– sequence: 6
  givenname: Jie
  surname: Zhan
  fullname: Zhan, Jie
– sequence: 7
  givenname: Yan
  surname: Sun
  fullname: Sun, Yan
– sequence: 8
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
– sequence: 9
  givenname: Guo-Hua
  surname: Li
  fullname: Li, Guo-Hua
– sequence: 10
  givenname: Jian-Hua
  surname: Yan
  fullname: Yan, Jian-Hua
– sequence: 11
  givenname: Claudia
  surname: Felser
  fullname: Felser, Claudia
– sequence: 12
  givenname: Guo-Wei
  surname: Li
  fullname: Li, Guo-Wei
– sequence: 13
  givenname: Wei
  surname: Li
  fullname: Li, Wei
BookMark eNotkMtOwzAQAC1UJNrCD3CKxNngR_zIEVVQkIroAc6WnazbVE1cbFfQvyclnHYOo93VzNCkDz0gdEvJPSVEPSTKRKUxYQITzrnE4gJNqZYKK6rFZGBCKCaC0Ss0S2lHSFlKSabobR1DF3LbbwofjhHDHuocQ1-En9MG-iJCc6xzG85kR_hu87aot220-yJB13aQ7T4V67y01-jSDww3_3OOPp-fPhYvePW-fF08rnDNmM4YmK4YSA_KU-eUbTwtWdMwRgSVTjKnS02Vtk4p15TKORBQNc7WtB4s6fkc3Y17DzF8HSFlsxue74eThjNOqOa8UoPFRquOIaUI3hxi29l4MpSYczYzZjNDNvOXzQj-C_XoY3g
Cites_doi 10.1126/science.aaf5037
10.1063/1.5143800
10.1002/anie.202315146
10.1007/s12598-023-02580-x
10.1126/science.aaz3480
10.1016/j.apcatb.2020.119778
10.1021/acsaelm.4c00495
10.1002/anie.202302134
10.1021/jacs.9b07238
10.1126/sciadv.aaw9867
10.1002/adma.202307661
10.1007/s12598-024-03059-z
10.1021/jacs.1c00656
10.1016/j.xinn.2022.100362
10.1038/s41560-021-00775-z
10.1002/anie.202303296
10.1021/acscatal.6b01581
10.1016/j.ijhydene.2022.06.019
10.1002/adfm.202315039
10.1021/jacs.1c11675
10.1002/anie.201906109
10.1002/anie.202304420
10.1002/adma.202312524
10.1016/j.xinn.2022.100268
10.1007/s12598-023-02586-5
10.1021/jacs.7b10980
10.1002/anie.202405334
10.1073/pnas.2305541120
10.1016/j.partic.2022.11.010
10.1002/anie.202314303
10.1002/adma.201908518
10.1007/s12598-023-02611-7
10.1016/j.jre.2022.08.017
10.1016/j.nanoms.2021.06.002
10.1038/s41563-018-0169-3
10.1007/s40820-023-01102-9
10.1103/PhysRevMaterials.7.054201
10.1038/s41467-023-40884-9
10.1007/s12598-022-02214-8
10.1016/j.apcatb.2022.121112
10.1007/s12598-024-02698-6
10.1016/j.nanoen.2022.107341
10.59717/j.xinn-mater.2023.100013
10.1038/s41567-019-0511-y
10.1016/j.xinn.2021.100161
10.1016/j.newton.2025.100015
10.1007/s12598-022-02029-7
10.1038/s41565-019-0606-8
10.1007/s12598-023-02343-8
10.1073/pnas.2202650119
10.1038/s41467-021-21919-5
10.1021/acscatal.9b04974
10.1126/science.1135941
10.1002/anie.202301833
10.1038/srep01765
10.21203/rs.3.rs-3891721/v1
10.1038/s41586-019-1037-2
10.1007/s42864-023-00226-0
10.1126/science.aaw7493
10.1016/j.cej.2021.132642
10.59717/j.xinn-mater.2023.100020
10.1002/aenm.202300927
10.26434/chemrxiv-2023-3xspw
10.1007/s40820-020-00500-7
10.1039/b705938h
10.1021/acscatal.0c03036
ContentType Journal Article
Copyright Youke Publishing Co.,Ltd 2025.
Copyright_xml – notice: Youke Publishing Co.,Ltd 2025.
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1007/s12598-025-03336-5
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1867-7185
EndPage 5642
ExternalDocumentID 10_1007_s12598_025_03336_5
GroupedDBID --K
-SB
-S~
06D
0R~
0VY
1B1
29P
2KG
2VQ
30V
4.4
406
408
40D
5VR
5VS
5XA
5XC
8FE
8FG
8RM
8TC
92H
92I
96X
AAAVM
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
AAZMS
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACRPL
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADMLS
ADMUD
ADNMO
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGII
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ATHPR
AXYYD
AYFIA
BA0
BENPR
BGLVJ
BGNMA
CAG
CAJEB
CCEZO
CCPQU
CDRFL
CHBEP
CITATION
COF
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EO9
ESBYG
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
I~X
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M41
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PDBOC
PHGZM
PHGZT
PQGLB
PT4
Q--
Q2X
R9I
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDC
SDG
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TCJ
TGT
TSG
U1G
U2A
U5L
UG4
UOJIU
UTJUX
UY8
UZXMN
VC2
VFIZW
W48
WK8
ZMTXR
~A9
8BQ
8FD
JG9
ID FETCH-LOGICAL-c228t-e2892e6fe7f1bb7adf142dd220516b62b848178ab77bd47bbe5e9dbac1cdd26f3
ISSN 1001-0521
IngestDate Wed Jul 16 07:23:32 EDT 2025
Wed Jul 16 16:47:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c228t-e2892e6fe7f1bb7adf142dd220516b62b848178ab77bd47bbe5e9dbac1cdd26f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3230183397
PQPubID 326325
PageCount 10
ParticipantIDs proquest_journals_3230183397
crossref_primary_10_1007_s12598_025_03336_5
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Rare metals
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References AV Yakutovich (3336_CR47) 2018; 140
VR Stamenkovic (3336_CR59) 2007; 315
R Iqbal (3336_CR50) 2022; 430
Q Yang (3336_CR22) 2023; 1
R Zhou (3336_CR61) 2016; 6
B Bradlyn (3336_CR35) 2016; 353
J Fichtner (3336_CR11) 2020; 10
X Wang (3336_CR45) 2023
X Qi (3336_CR12) 2023; 5
GS Karlberg (3336_CR66) 2007; 9
G Li (3336_CR37) 2019; 5
Q Yang (3336_CR63) 2025
H Li (3336_CR54) 2021; 285
J Zhang (3336_CR26) 2023; 62
X Tian (3336_CR2) 2019; 366
M Wang (3336_CR42) 2022; 47
L Gao (3336_CR60) 2019; 141
XY Liu (3336_CR65) 2024; 43
X Liu (3336_CR43) 2023; 62
H Wang (3336_CR15) 2023; 15
Q Liu (3336_CR18) 2023; 41
S Sun (3336_CR21) 2024; 36
B Yang (3336_CR52) 2023; 79
DS Sanchez (3336_CR41) 2019; 567
X Zhao (3336_CR53) 2020; 10
C Zhou (3336_CR51) 2022; 144
M Ma (3336_CR5) 2024; 43
NBM Schröter (3336_CR31) 2020; 369
L Huang (3336_CR8) 2021; 143
P Ruan (3336_CR28) 2023; 4
TT Zhuang (3336_CR62) 2020; 15
L Scarpetta-Pizo (3336_CR20) 2023; 63
X Zhang (3336_CR13) 2024; 6
G Li (3336_CR46) 2023; 62
G Li (3336_CR36) 2019; 58
H Lv (3336_CR58) 2023; 62
Y Xie (3336_CR55) 2023; 62
3336_CR39
Y Cheng (3336_CR49) 2022; 98
X Li (3336_CR25) 2023; 13
H Peng (3336_CR57) 2013; 3
G Yang (3336_CR27) 2021; 12
ZX Yang (3336_CR1) 2022; 41
J Long (3336_CR7) 2024; 43
HZ Xu (3336_CR9) 2023; 6
Y Li (3336_CR16) 2024; 63
Y-F Zhang (3336_CR19) 2024
H Tian (3336_CR56) 2020; 12
H Lv (3336_CR29) 2023; 7
QY Cheng (3336_CR4) 2023; 42
C Yang (3336_CR6) 2023; 42
Q Yang (3336_CR30) 2023; 120
DA Cullen (3336_CR3) 2021; 6
R Gui (3336_CR48) 2023; 36
NBM Schröter (3336_CR33) 2019; 15
G Chang (3336_CR34) 2018; 17
Z Li (3336_CR23) 2022; 3
X Cheng (3336_CR14) 2022; 306
Q Yang (3336_CR32) 2020; 32
Y Dong (3336_CR10) 2021; 2
Y Adhikari (3336_CR40) 2023; 14
Z Fang (3336_CR24) 2024; 34
JA Lai (3336_CR17) 2023; 1
F Zhan (3336_CR44) 2024; 43
Y Sang (3336_CR64) 2022; 119
G Li (3336_CR38) 2020; 116
References_xml – volume: 353
  start-page: 5037
  issue: 6299
  year: 2016
  ident: 3336_CR35
  publication-title: Science
  doi: 10.1126/science.aaf5037
– volume: 116
  start-page: 070501
  issue: 7
  year: 2020
  ident: 3336_CR38
  publication-title: Appl Phys Lett
  doi: 10.1063/1.5143800
– volume: 63
  start-page: e202315146
  issue: 4
  year: 2023
  ident: 3336_CR20
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202315146
– volume: 43
  start-page: 1965
  issue: 5
  year: 2024
  ident: 3336_CR7
  publication-title: Rare Met
  doi: 10.1007/s12598-023-02580-x
– volume: 369
  start-page: 179
  issue: 6500
  year: 2020
  ident: 3336_CR31
  publication-title: Science
  doi: 10.1126/science.aaz3480
– volume: 285
  start-page: 119778
  year: 2021
  ident: 3336_CR54
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2020.119778
– volume: 6
  start-page: 4440
  issue: 6
  year: 2024
  ident: 3336_CR13
  publication-title: ACS Appl Electron Mater
  doi: 10.1021/acsaelm.4c00495
– volume: 62
  start-page: e202302134
  issue: 23
  year: 2023
  ident: 3336_CR43
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202302134
– volume: 141
  start-page: 18083
  issue: 45
  year: 2019
  ident: 3336_CR60
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.9b07238
– volume: 5
  start-page: 9867
  issue: 8
  year: 2019
  ident: 3336_CR37
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aaw9867
– volume: 36
  start-page: 2307661
  issue: 11
  year: 2023
  ident: 3336_CR48
  publication-title: Adv Mater
  doi: 10.1002/adma.202307661
– year: 2024
  ident: 3336_CR19
  publication-title: Rare Met
  doi: 10.1007/s12598-024-03059-z
– volume: 143
  start-page: 6933
  issue: 18
  year: 2021
  ident: 3336_CR8
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.1c00656
– volume: 4
  start-page: 100362
  issue: 1
  year: 2023
  ident: 3336_CR28
  publication-title: Innov
  doi: 10.1016/j.xinn.2022.100362
– volume: 6
  start-page: 462
  issue: 5
  year: 2021
  ident: 3336_CR3
  publication-title: Nat Energy
  doi: 10.1038/s41560-021-00775-z
– volume: 62
  start-page: e202303296
  issue: 27
  year: 2023
  ident: 3336_CR46
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202303296
– volume: 6
  start-page: 4720
  issue: 7
  year: 2016
  ident: 3336_CR61
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b01581
– volume: 47
  start-page: 27116
  issue: 63
  year: 2022
  ident: 3336_CR42
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.06.019
– volume: 34
  start-page: 2315039
  issue: 22
  year: 2024
  ident: 3336_CR24
  publication-title: Adv Func Mater
  doi: 10.1002/adfm.202315039
– volume: 144
  start-page: 2694
  issue: 6
  year: 2022
  ident: 3336_CR51
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.1c11675
– volume: 58
  start-page: 13107
  issue: 37
  year: 2019
  ident: 3336_CR36
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201906109
– volume: 62
  start-page: e202304420
  issue: 24
  year: 2023
  ident: 3336_CR58
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202304420
– volume: 36
  start-page: 2312524
  issue: 37
  year: 2024
  ident: 3336_CR21
  publication-title: Adv Mater
  doi: 10.1002/adma.202312524
– volume: 3
  start-page: 100268
  issue: 4
  year: 2022
  ident: 3336_CR23
  publication-title: Innov
  doi: 10.1016/j.xinn.2022.100268
– volume: 43
  start-page: 2444
  issue: 6
  year: 2024
  ident: 3336_CR44
  publication-title: Rare Met
  doi: 10.1007/s12598-023-02586-5
– volume: 140
  start-page: 1401
  issue: 4
  year: 2018
  ident: 3336_CR47
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.7b10980
– volume: 63
  start-page: e202405334
  issue: 28
  year: 2024
  ident: 3336_CR16
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202405334
– volume: 120
  start-page: e2305541120
  issue: 48
  year: 2023
  ident: 3336_CR30
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2305541120
– volume: 79
  start-page: 18
  year: 2023
  ident: 3336_CR52
  publication-title: Particuology
  doi: 10.1016/j.partic.2022.11.010
– volume: 62
  start-page: e202314303
  issue: 52
  year: 2023
  ident: 3336_CR26
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.202314303
– volume: 32
  start-page: 1908518
  issue: 14
  year: 2020
  ident: 3336_CR32
  publication-title: Adv Mater
  doi: 10.1002/adma.201908518
– volume: 43
  start-page: 3107
  issue: 7
  year: 2024
  ident: 3336_CR65
  publication-title: Rare Met
  doi: 10.1007/s12598-023-02611-7
– volume: 41
  start-page: 1189
  issue: 8
  year: 2023
  ident: 3336_CR18
  publication-title: J Rare Earths
  doi: 10.1016/j.jre.2022.08.017
– volume: 5
  start-page: 287
  issue: 3
  year: 2023
  ident: 3336_CR12
  publication-title: Pd Au Nano Mater Sci
  doi: 10.1016/j.nanoms.2021.06.002
– volume: 17
  start-page: 978
  issue: 11
  year: 2018
  ident: 3336_CR34
  publication-title: Nat Mater
  doi: 10.1038/s41563-018-0169-3
– volume: 15
  start-page: 143
  issue: 1
  year: 2023
  ident: 3336_CR15
  publication-title: Nano-Micro Lett
  doi: 10.1007/s40820-023-01102-9
– volume: 7
  start-page: 054201
  issue: 5
  year: 2023
  ident: 3336_CR29
  publication-title: Phys Rev Mater
  doi: 10.1103/PhysRevMaterials.7.054201
– volume: 14
  start-page: 5163
  issue: 1
  year: 2023
  ident: 3336_CR40
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-40884-9
– volume: 42
  start-page: 1865
  issue: 6
  year: 2023
  ident: 3336_CR6
  publication-title: Rare Met
  doi: 10.1007/s12598-022-02214-8
– volume: 306
  start-page: 121112
  year: 2022
  ident: 3336_CR14
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2022.121112
– volume: 43
  start-page: 4198
  issue: 9
  year: 2024
  ident: 3336_CR5
  publication-title: Rare Met
  doi: 10.1007/s12598-024-02698-6
– volume: 98
  start-page: 107341
  year: 2022
  ident: 3336_CR49
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107341
– volume: 1
  start-page: 100013
  issue: 1
  year: 2023
  ident: 3336_CR22
  publication-title: Innov Mater
  doi: 10.59717/j.xinn-mater.2023.100013
– volume: 15
  start-page: 759
  issue: 8
  year: 2019
  ident: 3336_CR33
  publication-title: Nat Phys
  doi: 10.1038/s41567-019-0511-y
– volume: 2
  start-page: 100161
  issue: 4
  year: 2021
  ident: 3336_CR10
  publication-title: The Innovation
  doi: 10.1016/j.xinn.2021.100161
– year: 2025
  ident: 3336_CR63
  publication-title: Newton
  doi: 10.1016/j.newton.2025.100015
– volume: 41
  start-page: 3251
  issue: 10
  year: 2022
  ident: 3336_CR1
  publication-title: Rare Met
  doi: 10.1007/s12598-022-02029-7
– volume: 15
  start-page: 192
  issue: 3
  year: 2020
  ident: 3336_CR62
  publication-title: Nat Nanotechnol
  doi: 10.1038/s41565-019-0606-8
– volume: 42
  start-page: 3553
  issue: 11
  year: 2023
  ident: 3336_CR4
  publication-title: Rare Met
  doi: 10.1007/s12598-023-02343-8
– volume: 119
  start-page: e2202650119
  issue: 30
  year: 2022
  ident: 3336_CR64
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2202650119
– volume: 12
  start-page: 1734
  issue: 1
  year: 2021
  ident: 3336_CR27
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21919-5
– volume: 10
  start-page: 3131
  issue: 5
  year: 2020
  ident: 3336_CR11
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b04974
– volume: 315
  start-page: 493
  issue: 5811
  year: 2007
  ident: 3336_CR59
  publication-title: Science
  doi: 10.1126/science.1135941
– volume: 62
  start-page: e202301833
  issue: 17
  year: 2023
  ident: 3336_CR55
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202301833
– volume: 3
  start-page: 1765
  issue: 1
  year: 2013
  ident: 3336_CR57
  publication-title: Sci Rep
  doi: 10.1038/srep01765
– ident: 3336_CR39
  doi: 10.21203/rs.3.rs-3891721/v1
– volume: 567
  start-page: 500
  issue: 7749
  year: 2019
  ident: 3336_CR41
  publication-title: Nature
  doi: 10.1038/s41586-019-1037-2
– volume: 6
  start-page: 293
  issue: 2
  year: 2023
  ident: 3336_CR9
  publication-title: Tungsten
  doi: 10.1007/s42864-023-00226-0
– volume: 366
  start-page: 850
  issue: 6467
  year: 2019
  ident: 3336_CR2
  publication-title: Science
  doi: 10.1126/science.aaw7493
– volume: 430
  start-page: 132642
  year: 2022
  ident: 3336_CR50
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.132642
– volume: 1
  start-page: 100020
  issue: 2
  year: 2023
  ident: 3336_CR17
  publication-title: Innov Mater
  doi: 10.59717/j.xinn-mater.2023.100020
– volume: 13
  start-page: 2300927
  issue: 24
  year: 2023
  ident: 3336_CR25
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202300927
– year: 2023
  ident: 3336_CR45
  publication-title: ChemRxiv
  doi: 10.26434/chemrxiv-2023-3xspw
– volume: 12
  start-page: 161
  issue: 1
  year: 2020
  ident: 3336_CR56
  publication-title: Nano-Micro Lett
  doi: 10.1007/s40820-020-00500-7
– volume: 9
  start-page: 5158
  issue: 37
  year: 2007
  ident: 3336_CR66
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/b705938h
– volume: 10
  start-page: 10637
  issue: 18
  year: 2020
  ident: 3336_CR53
  publication-title: ACS Catal
  doi: 10.1021/acscatal.0c03036
SSID ssj0044660
Score 2.3490384
Snippet Spin polarization has emerged as a promising strategy for designing high-performance catalysts, particularly for reactions involving intermediates with...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 5633
SubjectTerms Alloys
Catalysts
Chemical reduction
Chirality
Crystal structure
Dichroism
Electron spin
Electron transfer
Hydrogen peroxide
Oxygen reduction reactions
Polarization (spin alignment)
Title Promoting four-electron oxygen reduction reaction with chiral semimetals PtGa
URI https://www.proquest.com/docview/3230183397
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLc6uGyHaWOb9gGTD9wqo8aJnfYIgw6hFhBrpZ5mxc6L6IEylUTa9tfznJekCZumwSWKnLS13vv1fdjv98zYPkaosXPRQCQxeEqOzITVNhWpC1I3AD1y4Nc7puf6dB6dLdSi1_veqloqcnvgfv-VV_IUreIY6tWzZB-h2eZLcQDvUb94RQ3j9b90fEm1dGUtZLEW9ZE2_dufv_Az_bVvy1rqFyNDuqFK8-ulp-Xfwc3yBnLfP_ky_5q0w9QrXw9Gz5olmOtCHFHDgW9FgygEjTimNdRpY-DPlisxLrpjEyAaNizb6wxSNVVu3XVGX0TttzYaHkxpNsvCLEVc5wOgsSGaYPR8qm1rqddjhalhy3AqTf0wKiesNPXc-sPADyrCM2ZtOD0_yzAMtVAbd1Zv4Z9fmPF8MjGzk8XsGduWmEb4Ey7m8rD21H4rm7pVVLOvSFVErXz4C93Apeu3y2Bk9oq9rLIIfkiQeM16sNphL1q9Jd-waQMO3gEHJ3DwBhy8Bgf34OAEDr4BB_fgeMvm45PZl1NRnZ0hnJTDXAAm0hJ0BnEWWBsnaRZEMk09rTrQVkvrj1GIh4mNY5tGsbWgYJTaxAUO39JZ-I5trW5X8J7xMLJotxPUZIK5PGa4dgTgRjIYZJmLrPrA-rVgzA9qkWI2zbC9GA2K0ZRiNPj2bi07U_2V7kyIiTD6FoyNP_778Sf2fIPNXbaVrwvYw6gwt59L1d4DkcdhKg
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Promoting+four-electron+oxygen+reduction+reaction+with+chiral+semimetals+PtGa&rft.jtitle=Rare+metals&rft.au=Shu-Bin%2C+Sun&rft.au=Dan-Dan%2C+Ma&rft.au=Jin-Fu%2C+Ma&rft.au=Lei%2C+Lei&rft.date=2025-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=44&rft.issue=8&rft.spage=5633&rft.epage=5642&rft_id=info:doi/10.1007%2Fs12598-025-03336-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0521&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0521&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0521&client=summon