Star-transformer based semantic enhanced union relation extraction

Relation extraction is a crucial task in natural language processing and knowledge graph construction. However, existing methods often suffer from three major limitations: (1) they overlook the intrinsic semantic associations between subjects and objects; (2) they have limited generalization in long...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of supercomputing Vol. 81; no. 10
Main Authors Hu, Feng, Pei, Wei, Wu, Yirong, Hu, Qin, Wang, Ben, Sun, Shuifa
Format Journal Article
LanguageEnglish
Published New York Springer Nature B.V 11.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Relation extraction is a crucial task in natural language processing and knowledge graph construction. However, existing methods often suffer from three major limitations: (1) they overlook the intrinsic semantic associations between subjects and objects; (2) they have limited generalization in long-text scenarios; and (3) their resource consumption grows rapidly with sentence length due to matrix-based tagging strategies. To address the issues, we propose ST-ICRE (star-transformer intrinsic correlation relation extraction), a novel relation extraction model that leverages the intrinsic correlations between subjects and objects. The model effectively captures the associations between the subject and the object by adopting the relay node and satellite node interaction mechanism within the star-transformer structure, thereby improving the sentence’s semantic representation. Moreover, to mitigate the resource consumption of the conventional “filling-the-form” approach, we introduce an entity tagging method with linear-level complexity. The experimental results on both Chinese and English datasets (DuIE2.0, CMeIE, SciERC, FinRED) demonstrate that ST-ICRE outperforms strong baseline models, achieving F1-score improvements of 4.4% on DuIE2.0 and 11.4% on SciERC. Notably, ST-ICRE shows significant performance in handling complex scenarios with overlapping entity relationships.
AbstractList Relation extraction is a crucial task in natural language processing and knowledge graph construction. However, existing methods often suffer from three major limitations: (1) they overlook the intrinsic semantic associations between subjects and objects; (2) they have limited generalization in long-text scenarios; and (3) their resource consumption grows rapidly with sentence length due to matrix-based tagging strategies. To address the issues, we propose ST-ICRE (star-transformer intrinsic correlation relation extraction), a novel relation extraction model that leverages the intrinsic correlations between subjects and objects. The model effectively captures the associations between the subject and the object by adopting the relay node and satellite node interaction mechanism within the star-transformer structure, thereby improving the sentence’s semantic representation. Moreover, to mitigate the resource consumption of the conventional “filling-the-form” approach, we introduce an entity tagging method with linear-level complexity. The experimental results on both Chinese and English datasets (DuIE2.0, CMeIE, SciERC, FinRED) demonstrate that ST-ICRE outperforms strong baseline models, achieving F1-score improvements of 4.4% on DuIE2.0 and 11.4% on SciERC. Notably, ST-ICRE shows significant performance in handling complex scenarios with overlapping entity relationships.
ArticleNumber 1144
Author Sun, Shuifa
Wu, Yirong
Wang, Ben
Hu, Qin
Hu, Feng
Pei, Wei
Author_xml – sequence: 1
  givenname: Feng
  surname: Hu
  fullname: Hu, Feng
– sequence: 2
  givenname: Wei
  surname: Pei
  fullname: Pei, Wei
– sequence: 3
  givenname: Yirong
  surname: Wu
  fullname: Wu, Yirong
– sequence: 4
  givenname: Qin
  surname: Hu
  fullname: Hu, Qin
– sequence: 5
  givenname: Ben
  surname: Wang
  fullname: Wang, Ben
– sequence: 6
  givenname: Shuifa
  surname: Sun
  fullname: Sun, Shuifa
BookMark eNpNkE1LxDAQhoOs4O7qH_BU8BzNR9M0R138ggUP6jlM0wl22aZr0oL-e7PWg8xhXoZ35h2eFVmEISAhl5xdc8b0TeJcCE2ZUJRpZTgVJ2TJlZaUlXW5-KfPyCqlHWOslFouyd3rCJGOEULyQ-wxFg0kbIuEPYSxcwWGDwguT6bQDaGIuIfxKPArL7mjPCenHvYJL_76mrw_3L9tnuj25fF5c7ulToh6pJg_rF1VSoEVomqUBnRcC-5N09YKwGDDK-8brk2DCJVEjSZbwLe5vFyTq_nuIQ6fE6bR7oYphhxppRCmNJVRMrvE7HJxSCmit4fY9RC_LWf2yMrOrGxmZX9ZWSF_AFQnYD0
Cites_doi 10.18653/v1/2021.acl-long.486
10.18653/v1/2021.emnlp-main.17
10.18653/v1/N19-1133
10.1007/978-3-030-60450-9_22
10.1016/j.knosys.2023.110550
10.1007/s11023-020-09548-1
10.1145/3038912.3052708
10.1109/TNNLS.2023.3264735
10.1007/978-3-030-32236-6_72
10.3115/1219840.1219893
10.18653/v1/2022.emnlp-main.477
10.18653/v1/P19-1136
10.1609/aaai.v36i10.21379
10.18653/v1/2020.coling-main.138
10.18653/v1/2020.acl-main.136
10.1609/aaai.v33i01.33017080
10.18653/v1/P18-1047
10.18653/v1/2021.naacl-main.5
10.18653/v1/2022.acl-long.337
10.18653/v1/D18-1360
10.1145/3487553.3524637
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1007/s11227-025-07591-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
ExternalDocumentID 10_1007_s11227_025_07591_2
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BSONS
CITATION
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAP
EBLON
EBS
EIOEI
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCJ
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
ZMTXR
~EX
BGNMA
M4Y
ID FETCH-LOGICAL-c228t-e1228c6432e6ee5b57aec1721f9bd85aa9eb16ffb179beea63e7e9ec1afdfdff3
ISSN 1573-0484
0920-8542
IngestDate Fri Jul 25 08:53:15 EDT 2025
Wed Jul 16 16:48:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c228t-e1228c6432e6ee5b57aec1721f9bd85aa9eb16ffb179beea63e7e9ec1afdfdff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3229496953
PQPubID 2043774
ParticipantIDs proquest_journals_3229496953
crossref_primary_10_1007_s11227_025_07591_2
PublicationCentury 2000
PublicationDate 2025-07-11
PublicationDateYYYYMMDD 2025-07-11
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-11
  day: 11
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Journal of supercomputing
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References D Sui (7591_CR13) 2024; 35
7591_CR9
7591_CR8
7591_CR19
7591_CR23
7591_CR22
7591_CR24
7591_CR21
7591_CR20
L Floridi (7591_CR17) 2020; 30
X Liu (7591_CR25) 2022; 17
7591_CR5
7591_CR16
7591_CR4
7591_CR15
7591_CR7
7591_CR18
7591_CR6
7591_CR1
7591_CR12
7591_CR11
7591_CR3
7591_CR14
7591_CR2
C Gao (7591_CR26) 2023; 271
7591_CR10
References_xml – ident: 7591_CR16
  doi: 10.18653/v1/2021.acl-long.486
– ident: 7591_CR14
  doi: 10.18653/v1/2021.emnlp-main.17
– ident: 7591_CR24
– ident: 7591_CR6
  doi: 10.18653/v1/N19-1133
– ident: 7591_CR21
  doi: 10.1007/978-3-030-60450-9_22
– volume: 271
  start-page: 110550
  year: 2023
  ident: 7591_CR26
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2023.110550
– ident: 7591_CR18
– volume: 30
  start-page: 681
  year: 2020
  ident: 7591_CR17
  publication-title: Mind Mach
  doi: 10.1007/s11023-020-09548-1
– volume: 17
  start-page: 0260426
  issue: 1
  year: 2022
  ident: 7591_CR25
  publication-title: PLoS ONE
– ident: 7591_CR10
  doi: 10.1145/3038912.3052708
– volume: 35
  start-page: 12784
  issue: 9
  year: 2024
  ident: 7591_CR13
  publication-title: IEEE Trans Neural Networks Learn Syst
  doi: 10.1109/TNNLS.2023.3264735
– ident: 7591_CR20
  doi: 10.1007/978-3-030-32236-6_72
– ident: 7591_CR1
– ident: 7591_CR7
  doi: 10.3115/1219840.1219893
– ident: 7591_CR15
  doi: 10.18653/v1/2022.emnlp-main.477
– ident: 7591_CR2
  doi: 10.18653/v1/P19-1136
– ident: 7591_CR5
  doi: 10.1609/aaai.v36i10.21379
– ident: 7591_CR12
  doi: 10.18653/v1/2020.coling-main.138
– ident: 7591_CR11
  doi: 10.18653/v1/2020.acl-main.136
– ident: 7591_CR4
  doi: 10.1609/aaai.v33i01.33017080
– ident: 7591_CR19
– ident: 7591_CR3
  doi: 10.18653/v1/P18-1047
– ident: 7591_CR8
  doi: 10.18653/v1/2021.naacl-main.5
– ident: 7591_CR9
  doi: 10.18653/v1/2022.acl-long.337
– ident: 7591_CR22
  doi: 10.18653/v1/D18-1360
– ident: 7591_CR23
  doi: 10.1145/3487553.3524637
SSID ssj0004373
Score 2.3793862
Snippet Relation extraction is a crucial task in natural language processing and knowledge graph construction. However, existing methods often suffer from three major...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Complexity
Consumption
Knowledge representation
Natural language processing
Semantics
Sentences
Title Star-transformer based semantic enhanced union relation extraction
URI https://www.proquest.com/docview/3229496953
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZ-rKX3ce6dUMPezMuiWTZ1lub0VBGyTZIWPYkJPuY9aFecZyX_foe3eImlLGNgAnyTZzv-OjT5Tsi5CPLeFZP9SQVGa_SrEYOp6W204WmEDlwPtVule8iv1xln9diPRqd3VeX9Oa0-v2gruR_UMUyxNWqZP8B2d1DsQD_I754RITx-FcYI1Ps0j5ST-gS2ybVyQZu0F7XVQLtTz_Bv20tyl1Y-JZgQO68oOE-Nx1UYo6fbra30FVu04fYvDn4Hd2FoeQruAUB3-F6F-DdNT-sgO7gvm8hz3cYZmDCjl9Oh2GGOMxo11DbmY2dDMaPJWIftBQ-TdYphEhaIOI-Ueku1PrdWaJLTR4M4ZMgaZ4yVqS-IkJGjeRevuzFFzVfXV2p5cV6-YgcMewosDE5Op_PZotBG8v9KoNYxSCc8vLJw3fsk5P9ttkRjuUz8iQgQc897M_JCNoX5GnchYOGoPySzA69gDovoNELaPQC6ryARi-ggxe8Iqv5xfLTZRp2xkgrxso-Bax4WSGZZJADCCMKDZXtzDfS1KXQWmITnDeNwXBrAHTOoQCJl-imxl_DX5Nx-6uFN4TWlpFLpHm1MfjV5qXGZ4sG7PQsz7U4Jkk0ibr1CVDUkOraGlChAZUzoGLH5CRaTYUPZaOwzZCZzKXgb_98-h15PLjeCRn33RbeI-frzYcA6x1hb1cM
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Star-transformer+based+semantic+enhanced+union+relation+extraction&rft.jtitle=The+Journal+of+supercomputing&rft.au=Hu%2C+Feng&rft.au=Pei%2C+Wei&rft.au=Wu%2C+Yirong&rft.au=Hu%2C+Qin&rft.date=2025-07-11&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=81&rft.issue=10&rft_id=info:doi/10.1007%2Fs11227-025-07591-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-0484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-0484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-0484&client=summon