Star-transformer based semantic enhanced union relation extraction
Relation extraction is a crucial task in natural language processing and knowledge graph construction. However, existing methods often suffer from three major limitations: (1) they overlook the intrinsic semantic associations between subjects and objects; (2) they have limited generalization in long...
Saved in:
Published in | The Journal of supercomputing Vol. 81; no. 10 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer Nature B.V
11.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Relation extraction is a crucial task in natural language processing and knowledge graph construction. However, existing methods often suffer from three major limitations: (1) they overlook the intrinsic semantic associations between subjects and objects; (2) they have limited generalization in long-text scenarios; and (3) their resource consumption grows rapidly with sentence length due to matrix-based tagging strategies. To address the issues, we propose ST-ICRE (star-transformer intrinsic correlation relation extraction), a novel relation extraction model that leverages the intrinsic correlations between subjects and objects. The model effectively captures the associations between the subject and the object by adopting the relay node and satellite node interaction mechanism within the star-transformer structure, thereby improving the sentence’s semantic representation. Moreover, to mitigate the resource consumption of the conventional “filling-the-form” approach, we introduce an entity tagging method with linear-level complexity. The experimental results on both Chinese and English datasets (DuIE2.0, CMeIE, SciERC, FinRED) demonstrate that ST-ICRE outperforms strong baseline models, achieving F1-score improvements of 4.4% on DuIE2.0 and 11.4% on SciERC. Notably, ST-ICRE shows significant performance in handling complex scenarios with overlapping entity relationships. |
---|---|
AbstractList | Relation extraction is a crucial task in natural language processing and knowledge graph construction. However, existing methods often suffer from three major limitations: (1) they overlook the intrinsic semantic associations between subjects and objects; (2) they have limited generalization in long-text scenarios; and (3) their resource consumption grows rapidly with sentence length due to matrix-based tagging strategies. To address the issues, we propose ST-ICRE (star-transformer intrinsic correlation relation extraction), a novel relation extraction model that leverages the intrinsic correlations between subjects and objects. The model effectively captures the associations between the subject and the object by adopting the relay node and satellite node interaction mechanism within the star-transformer structure, thereby improving the sentence’s semantic representation. Moreover, to mitigate the resource consumption of the conventional “filling-the-form” approach, we introduce an entity tagging method with linear-level complexity. The experimental results on both Chinese and English datasets (DuIE2.0, CMeIE, SciERC, FinRED) demonstrate that ST-ICRE outperforms strong baseline models, achieving F1-score improvements of 4.4% on DuIE2.0 and 11.4% on SciERC. Notably, ST-ICRE shows significant performance in handling complex scenarios with overlapping entity relationships. |
ArticleNumber | 1144 |
Author | Sun, Shuifa Wu, Yirong Wang, Ben Hu, Qin Hu, Feng Pei, Wei |
Author_xml | – sequence: 1 givenname: Feng surname: Hu fullname: Hu, Feng – sequence: 2 givenname: Wei surname: Pei fullname: Pei, Wei – sequence: 3 givenname: Yirong surname: Wu fullname: Wu, Yirong – sequence: 4 givenname: Qin surname: Hu fullname: Hu, Qin – sequence: 5 givenname: Ben surname: Wang fullname: Wang, Ben – sequence: 6 givenname: Shuifa surname: Sun fullname: Sun, Shuifa |
BookMark | eNpNkE1LxDAQhoOs4O7qH_BU8BzNR9M0R138ggUP6jlM0wl22aZr0oL-e7PWg8xhXoZ35h2eFVmEISAhl5xdc8b0TeJcCE2ZUJRpZTgVJ2TJlZaUlXW5-KfPyCqlHWOslFouyd3rCJGOEULyQ-wxFg0kbIuEPYSxcwWGDwguT6bQDaGIuIfxKPArL7mjPCenHvYJL_76mrw_3L9tnuj25fF5c7ulToh6pJg_rF1VSoEVomqUBnRcC-5N09YKwGDDK-8brk2DCJVEjSZbwLe5vFyTq_nuIQ6fE6bR7oYphhxppRCmNJVRMrvE7HJxSCmit4fY9RC_LWf2yMrOrGxmZX9ZWSF_AFQnYD0 |
Cites_doi | 10.18653/v1/2021.acl-long.486 10.18653/v1/2021.emnlp-main.17 10.18653/v1/N19-1133 10.1007/978-3-030-60450-9_22 10.1016/j.knosys.2023.110550 10.1007/s11023-020-09548-1 10.1145/3038912.3052708 10.1109/TNNLS.2023.3264735 10.1007/978-3-030-32236-6_72 10.3115/1219840.1219893 10.18653/v1/2022.emnlp-main.477 10.18653/v1/P19-1136 10.1609/aaai.v36i10.21379 10.18653/v1/2020.coling-main.138 10.18653/v1/2020.acl-main.136 10.1609/aaai.v33i01.33017080 10.18653/v1/P18-1047 10.18653/v1/2021.naacl-main.5 10.18653/v1/2022.acl-long.337 10.18653/v1/D18-1360 10.1145/3487553.3524637 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11227-025-07591-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-0484 |
ExternalDocumentID | 10_1007_s11227_025_07591_2 |
GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACUHS ACZOJ ADHHG ADHIR ADIMF ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BSONS CITATION CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAP EBLON EBS EIOEI ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM MA- N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R89 R9I RHV ROL RPX RSV S16 S1Z S27 S3B SAP SCJ SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WH7 WK8 YLTOR Z45 ZMTXR ~EX BGNMA M4Y |
ID | FETCH-LOGICAL-c228t-e1228c6432e6ee5b57aec1721f9bd85aa9eb16ffb179beea63e7e9ec1afdfdff3 |
ISSN | 1573-0484 0920-8542 |
IngestDate | Fri Jul 25 08:53:15 EDT 2025 Wed Jul 16 16:48:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c228t-e1228c6432e6ee5b57aec1721f9bd85aa9eb16ffb179beea63e7e9ec1afdfdff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3229496953 |
PQPubID | 2043774 |
ParticipantIDs | proquest_journals_3229496953 crossref_primary_10_1007_s11227_025_07591_2 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-11 |
PublicationDateYYYYMMDD | 2025-07-11 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Journal of supercomputing |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | D Sui (7591_CR13) 2024; 35 7591_CR9 7591_CR8 7591_CR19 7591_CR23 7591_CR22 7591_CR24 7591_CR21 7591_CR20 L Floridi (7591_CR17) 2020; 30 X Liu (7591_CR25) 2022; 17 7591_CR5 7591_CR16 7591_CR4 7591_CR15 7591_CR7 7591_CR18 7591_CR6 7591_CR1 7591_CR12 7591_CR11 7591_CR3 7591_CR14 7591_CR2 C Gao (7591_CR26) 2023; 271 7591_CR10 |
References_xml | – ident: 7591_CR16 doi: 10.18653/v1/2021.acl-long.486 – ident: 7591_CR14 doi: 10.18653/v1/2021.emnlp-main.17 – ident: 7591_CR24 – ident: 7591_CR6 doi: 10.18653/v1/N19-1133 – ident: 7591_CR21 doi: 10.1007/978-3-030-60450-9_22 – volume: 271 start-page: 110550 year: 2023 ident: 7591_CR26 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2023.110550 – ident: 7591_CR18 – volume: 30 start-page: 681 year: 2020 ident: 7591_CR17 publication-title: Mind Mach doi: 10.1007/s11023-020-09548-1 – volume: 17 start-page: 0260426 issue: 1 year: 2022 ident: 7591_CR25 publication-title: PLoS ONE – ident: 7591_CR10 doi: 10.1145/3038912.3052708 – volume: 35 start-page: 12784 issue: 9 year: 2024 ident: 7591_CR13 publication-title: IEEE Trans Neural Networks Learn Syst doi: 10.1109/TNNLS.2023.3264735 – ident: 7591_CR20 doi: 10.1007/978-3-030-32236-6_72 – ident: 7591_CR1 – ident: 7591_CR7 doi: 10.3115/1219840.1219893 – ident: 7591_CR15 doi: 10.18653/v1/2022.emnlp-main.477 – ident: 7591_CR2 doi: 10.18653/v1/P19-1136 – ident: 7591_CR5 doi: 10.1609/aaai.v36i10.21379 – ident: 7591_CR12 doi: 10.18653/v1/2020.coling-main.138 – ident: 7591_CR11 doi: 10.18653/v1/2020.acl-main.136 – ident: 7591_CR4 doi: 10.1609/aaai.v33i01.33017080 – ident: 7591_CR19 – ident: 7591_CR3 doi: 10.18653/v1/P18-1047 – ident: 7591_CR8 doi: 10.18653/v1/2021.naacl-main.5 – ident: 7591_CR9 doi: 10.18653/v1/2022.acl-long.337 – ident: 7591_CR22 doi: 10.18653/v1/D18-1360 – ident: 7591_CR23 doi: 10.1145/3487553.3524637 |
SSID | ssj0004373 |
Score | 2.3793862 |
Snippet | Relation extraction is a crucial task in natural language processing and knowledge graph construction. However, existing methods often suffer from three major... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
SubjectTerms | Complexity Consumption Knowledge representation Natural language processing Semantics Sentences |
Title | Star-transformer based semantic enhanced union relation extraction |
URI | https://www.proquest.com/docview/3229496953 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZ-rKX3ce6dUMPezMuiWTZ1lub0VBGyTZIWPYkJPuY9aFecZyX_foe3eImlLGNgAnyTZzv-OjT5Tsi5CPLeFZP9SQVGa_SrEYOp6W204WmEDlwPtVule8iv1xln9diPRqd3VeX9Oa0-v2gruR_UMUyxNWqZP8B2d1DsQD_I754RITx-FcYI1Ps0j5ST-gS2ybVyQZu0F7XVQLtTz_Bv20tyl1Y-JZgQO68oOE-Nx1UYo6fbra30FVu04fYvDn4Hd2FoeQruAUB3-F6F-DdNT-sgO7gvm8hz3cYZmDCjl9Oh2GGOMxo11DbmY2dDMaPJWIftBQ-TdYphEhaIOI-Ueku1PrdWaJLTR4M4ZMgaZ4yVqS-IkJGjeRevuzFFzVfXV2p5cV6-YgcMewosDE5Op_PZotBG8v9KoNYxSCc8vLJw3fsk5P9ttkRjuUz8iQgQc897M_JCNoX5GnchYOGoPySzA69gDovoNELaPQC6ryARi-ggxe8Iqv5xfLTZRp2xkgrxso-Bax4WSGZZJADCCMKDZXtzDfS1KXQWmITnDeNwXBrAHTOoQCJl-imxl_DX5Nx-6uFN4TWlpFLpHm1MfjV5qXGZ4sG7PQsz7U4Jkk0ibr1CVDUkOraGlChAZUzoGLH5CRaTYUPZaOwzZCZzKXgb_98-h15PLjeCRn33RbeI-frzYcA6x1hb1cM |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Star-transformer+based+semantic+enhanced+union+relation+extraction&rft.jtitle=The+Journal+of+supercomputing&rft.au=Hu%2C+Feng&rft.au=Pei%2C+Wei&rft.au=Wu%2C+Yirong&rft.au=Hu%2C+Qin&rft.date=2025-07-11&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=81&rft.issue=10&rft_id=info:doi/10.1007%2Fs11227-025-07591-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-0484&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-0484&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-0484&client=summon |