On the Large Amplitude Solution of the Boltzmann equation with Large External Potential and Boundary Effects
The Boltzmann equation is a fundamental equation in kinetic theory that describes the motion of rarefied gases. In this study, we examine the Boltzmann equation within a C1 bounded domain, subject to a large external potential Φ(x) and diffuse reflection boundary conditions. Initially, we prove the...
Saved in:
Published in | Journal of statistical physics Vol. 192; no. 6 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer Nature B.V
06.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1572-9613 0022-4715 1572-9613 |
DOI | 10.1007/s10955-025-03459-0 |
Cover
Loading…
Abstract | The Boltzmann equation is a fundamental equation in kinetic theory that describes the motion of rarefied gases. In this study, we examine the Boltzmann equation within a C1 bounded domain, subject to a large external potential Φ(x) and diffuse reflection boundary conditions. Initially, we prove the asymptotic stability of small perturbations near the local Maxwellian μE(x,v). Subsequently, we demonstrate the asymptotic stability of large amplitude solutions with initial data that is arbitrarily large in (weighted) L∞, but sufficiently small in the sense of relative entropy. Specifically, we extend the results for large amplitude solutions of the Boltzmann equation (with or without external potential) [10, 11–12, 23] to scenarios involving significant external potentials [19, 28] under diffuse reflection boundary conditions. |
---|---|
AbstractList | The Boltzmann equation is a fundamental equation in kinetic theory that describes the motion of rarefied gases. In this study, we examine the Boltzmann equation within a C1 bounded domain, subject to a large external potential Φ(x) and diffuse reflection boundary conditions. Initially, we prove the asymptotic stability of small perturbations near the local Maxwellian μE(x,v). Subsequently, we demonstrate the asymptotic stability of large amplitude solutions with initial data that is arbitrarily large in (weighted) L∞, but sufficiently small in the sense of relative entropy. Specifically, we extend the results for large amplitude solutions of the Boltzmann equation (with or without external potential) [10, 11–12, 23] to scenarios involving significant external potentials [19, 28] under diffuse reflection boundary conditions. |
ArticleNumber | 77 |
Author | Kim, Jong-in Lee, Donghyun |
Author_xml | – sequence: 1 givenname: Jong-in orcidid: 0009-0005-6632-9823 surname: Kim fullname: Kim, Jong-in – sequence: 2 givenname: Donghyun surname: Lee fullname: Lee, Donghyun |
BookMark | eNpNUMtKAzEUDVLBtvoDrgKuR_OYpJNlLfUBBQV1HdLJjZ0yTdpJBh9fb_pYuLj3HjjnXA5nhAY-eEDompJbSsjkLlKihCgIy8NLoQpyhoZUTFihJOWDf_gCjWJcE0JUpcQQtS8epxXghek-AU8327ZJvQX8Fto-NcHj4A78fWjT78Z4j2HXmwPz1aTVyTf_TtB50-LXkMCnJiPjbTb13pruB8-dgzrFS3TuTBvh6nTH6ONh_j57KhYvj8-z6aKoGatSAURJV5FlXUrqGFV2KYWjNaG8ZKV1QhnKmFBOcUelZUCYlUtmKgBQTFSOj9HN8e-2C7seYtLr0O_zRc0ZlULwScmzih1VdRdi7MDpbddsclxNid63qo-t6tyqPrSa9x_sSGyb |
Cites_doi | 10.2307/1971423 10.1007/s00220-004-1151-2 10.2140/tunis.2025.7.229 10.1007/s00205-007-0067-3 10.1007/s00222-004-0389-9 10.1007/s00205-017-1107-2 10.1007/s10955-020-02545-9 10.1002/cpa.10040 10.1016/j.jde.2016.09.014 10.1007/s00205-009-0285-y 10.1007/s00220-005-1455-x 10.1007/978-3-030-82946-9_4 10.1090/S0033-569X-09-01180-4 10.1007/s11401-018-0097-1 10.1007/s00205-019-01374-9 10.1007/s00222-003-0301-z 10.1002/cpa.21705 10.1090/S0894-0347-2011-00722-4 10.1007/s00205-019-01405-5 10.1016/j.jde.2021.10.041 10.1007/s10955-023-03203-6 10.1007/s00205-018-1241-5 10.1007/s00220-012-1417-z 10.1016/j.aim.2018.11.007 10.1080/03605302.2014.903278 10.1016/j.jde.2019.04.016 |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10955-025-03459-0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Physics |
EISSN | 1572-9613 |
ExternalDocumentID | 10_1007_s10955_025_03459_0 |
GroupedDBID | -DZ -~C -~X .86 06D 0R~ 0VY 199 1N0 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBEA ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMFV ACMLO ACNCT ACOKC ACOMO ACPIV ACREN ACSTC ACZOJ ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAGR AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CITATION CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAP EBLON EBS EIOEI ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IAO IGS IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- MQGED N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9T PF- PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UPT UTJUX VC2 W23 W48 WH7 WK8 YLTOR YQT Z45 ZMTXR ~EX ABRTQ ACUHS |
ID | FETCH-LOGICAL-c228t-e096f80bc461f219db65f1c013424df59a12259f93f16d2e02d6b2a8eee9258f3 |
ISSN | 1572-9613 0022-4715 |
IngestDate | Fri Jul 25 09:20:10 EDT 2025 Thu Jul 03 08:28:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c228t-e096f80bc461f219db65f1c013424df59a12259f93f16d2e02d6b2a8eee9258f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0005-6632-9823 |
PQID | 3216553743 |
PQPubID | 2043551 |
ParticipantIDs | proquest_journals_3216553743 crossref_primary_10_1007_s10955_025_03459_0 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-06 |
PublicationDateYYYYMMDD | 2025-06-06 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of statistical physics |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | 3459_CR22 H Chen (3459_CR6) 2020; 179 L Desvillettes (3459_CR7) 2005; 159 3459_CR2 Y Guo (3459_CR15) 2010; 68 3459_CR4 Y Guo (3459_CR16) 2010; 197 C Mouhot (3459_CR24) 2006; 261 S Ukai (3459_CR27) 1974; 50 Y Cao (3459_CR5) 2019; 233 Y Guo (3459_CR18) 2012; 310 RJ DiPerna (3459_CR8) 1989; 130 R Duan (3459_CR12) 2019; 343 C Kim (3459_CR19) 2014; 39 Y Guo (3459_CR13) 2002; 55 C Kim (3459_CR21) 2018; 230 G Ko (3459_CR23) 2022; 307 R Duan (3459_CR10) 2019; 234 R Duan (3459_CR11) 2023; 190 G Wang (3459_CR28) 2019; 267 RM Strain (3459_CR25) 2004; 251 Y Guo (3459_CR14) 2003; 153 K Asano (3459_CR1) 1994; 34 C Kim (3459_CR20) 2018; 71 Y Guo (3459_CR17) 2012; 25 RM Strain (3459_CR26) 2008; 187 X Yang (3459_CR29) 2018; 39 R Duan (3459_CR9) 2017; 225 M Briant (3459_CR3) 2016; 261 |
References_xml | – volume: 50 start-page: 179 issue: 3 year: 1974 ident: 3459_CR27 publication-title: Proc. Japan Acad. – volume: 130 start-page: 321 issue: 2 year: 1989 ident: 3459_CR8 publication-title: Ann. of Math. (2) doi: 10.2307/1971423 – volume: 251 start-page: 263 issue: 2 year: 2004 ident: 3459_CR25 publication-title: Comm. Math. Phys. doi: 10.1007/s00220-004-1151-2 – ident: 3459_CR22 doi: 10.2140/tunis.2025.7.229 – volume: 187 start-page: 287 issue: 2 year: 2008 ident: 3459_CR26 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-007-0067-3 – volume: 159 start-page: 245 issue: 2 year: 2005 ident: 3459_CR7 publication-title: Invent. Math. doi: 10.1007/s00222-004-0389-9 – volume: 225 start-page: 375 issue: 1 year: 2017 ident: 3459_CR9 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-017-1107-2 – volume: 179 start-page: 535 year: 2020 ident: 3459_CR6 publication-title: J. Stat. Phys. doi: 10.1007/s10955-020-02545-9 – ident: 3459_CR2 – volume: 55 start-page: 1104 issue: 9 year: 2002 ident: 3459_CR13 publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.10040 – volume: 261 start-page: 7000 issue: 12 year: 2016 ident: 3459_CR3 publication-title: J. Differential Equations doi: 10.1016/j.jde.2016.09.014 – volume: 197 start-page: 713 issue: 3 year: 2010 ident: 3459_CR16 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-009-0285-y – volume: 261 start-page: 629 issue: 3 year: 2006 ident: 3459_CR24 publication-title: Comm. Math. Phys. doi: 10.1007/s00220-005-1455-x – ident: 3459_CR4 doi: 10.1007/978-3-030-82946-9_4 – volume: 68 start-page: 143 issue: 1 year: 2010 ident: 3459_CR15 publication-title: Quart. Appl. Math. doi: 10.1090/S0033-569X-09-01180-4 – volume: 39 start-page: 805 issue: 5 year: 2018 ident: 3459_CR29 publication-title: Chinese Annals of Mathematics, Series B doi: 10.1007/s11401-018-0097-1 – volume: 233 start-page: 1027 issue: 3 year: 2019 ident: 3459_CR5 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-019-01374-9 – volume: 153 start-page: 593 issue: 3 year: 2003 ident: 3459_CR14 publication-title: Invent. Math. doi: 10.1007/s00222-003-0301-z – volume: 71 start-page: 411 issue: 3 year: 2018 ident: 3459_CR20 publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.21705 – volume: 25 start-page: 759 issue: 3 year: 2012 ident: 3459_CR17 publication-title: J. Amer. Math. Soc. doi: 10.1090/S0894-0347-2011-00722-4 – volume: 234 start-page: 925 issue: 2 year: 2019 ident: 3459_CR10 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-019-01405-5 – volume: 307 start-page: 297 year: 2022 ident: 3459_CR23 publication-title: J. Differential Equations doi: 10.1016/j.jde.2021.10.041 – volume: 190 start-page: Paper No. 189, issue: 12 year: 2023 ident: 3459_CR11 publication-title: J. Stat. Phys. doi: 10.1007/s10955-023-03203-6 – volume: 230 start-page: 49 issue: 1 year: 2018 ident: 3459_CR21 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-018-1241-5 – volume: 310 start-page: 649 issue: 3 year: 2012 ident: 3459_CR18 publication-title: Comm. Math. Phys. doi: 10.1007/s00220-012-1417-z – volume: 343 start-page: 36 year: 2019 ident: 3459_CR12 publication-title: Adv. Math. doi: 10.1016/j.aim.2018.11.007 – volume: 39 start-page: 1393 issue: 8 year: 2014 ident: 3459_CR19 publication-title: Comm. Partial Differential Equations doi: 10.1080/03605302.2014.903278 – volume: 267 start-page: 3610 issue: 6 year: 2019 ident: 3459_CR28 publication-title: J. Differential Equations doi: 10.1016/j.jde.2019.04.016 – volume: 34 start-page: 87 issue: 1 year: 1994 ident: 3459_CR1 publication-title: I. J. Math. Kyoto Univ. |
SSID | ssj0009895 |
Score | 2.4357996 |
Snippet | The Boltzmann equation is a fundamental equation in kinetic theory that describes the motion of rarefied gases. In this study, we examine the Boltzmann... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
SubjectTerms | Amplitudes Asymptotic properties Boltzmann transport equation Boundary conditions Kinetic theory Rarefied gases Stability |
Title | On the Large Amplitude Solution of the Boltzmann equation with Large External Potential and Boundary Effects |
URI | https://www.proquest.com/docview/3216553743 |
Volume | 192 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Pb9MwFMct6IS0C4JuiMKGfOAWZUqc2ImPLWpVodJOWiv1ZjmJcxrptoYD--t5_pVQ9kPAIVaUKGn1Po79bL_vM0KfiYxzCV9SSLjKw7SEIqdVFrKMpZFkJbi0Wpz8bcnmm_Trlm77XdeMuqQtLsr7R3Ul_0MVrgFXrZL9B7LdS-ECnANfKIEwlH_FeGVjFBc6mjsY69hwnaky8FNd3fr_7rq9_y6bJlC3NrO3nX61z01dHujgctfq0CGXPGBi9lu6-xnY_Mb7J7xYLUgyuZ61osswP5hIINQEPLEHE4k6SlqvXXRCly7oH_oxuwCtXFuZkZAzKyXtGlNOfqs17NFGOvKiZU61OhyOJKU8jPouyS_DL1ditlksxHq6Xb9ERwSGAtEAHY1nk8myT62cc-pzwuu_6KRRTiD5x28cuh-Hva9xKdZv0GtnRTy2YN-iF6oZoleX1opDdHzlbbs_QderBgNLbJjhjjX2rPGuNvc71tizxpq1e86zxh1rDKyxZ40d61O0mU3XX-ah2ykjLAnJ21DBQLTOo6JMWVxDH1QVjNZxCe59StKqplzG0G7zmid1zCqiIlKxgshcKcUJzevkHRo0u0a9Rxg8wqgEpzWREkbmmYTxMLy2UGlJeFYVZIQCb0BxYxOiiD71tTa3AHMLY24RjdCZt7FwH85eJCRmlCbgu354_vZHdNxX1DM0aO9-qHPwAdvik6sEvwBTDlxb |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Large+Amplitude+Solution+of+the+Boltzmann+equation+with+Large+External+Potential+and+Boundary+Effects&rft.jtitle=Journal+of+statistical+physics&rft.date=2025-06-06&rft.pub=Springer+Nature+B.V&rft.issn=0022-4715&rft.eissn=1572-9613&rft.volume=192&rft.issue=6&rft_id=info:doi/10.1007%2Fs10955-025-03459-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-9613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-9613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-9613&client=summon |