Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution
Recently, a novel kind of quantum key distribution called the round-robin differential phase-shift (RRDPS) protocol was proposed, which bounds the amount of leakage without monitoring signal disturbance. The protocol can be implemented by a weak coherent source. The security of this protocol with a...
Saved in:
Published in | Chinese physics letters Vol. 34; no. 8; pp. 16 - 20 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.07.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0256-307X 1741-3540 |
DOI | 10.1088/0256-307X/34/8/080302 |
Cover
Abstract | Recently, a novel kind of quantum key distribution called the round-robin differential phase-shift (RRDPS) protocol was proposed, which bounds the amount of leakage without monitoring signal disturbance. The protocol can be implemented by a weak coherent source. The security of this protocol with a simply characterized source has been proved. The application of a common phase shift can improve the secret key rate of the protocol. In practice, the randomized phase is discrete and the secret key rate is deviated from the continuous case. In this study, we analyze security of the RRDPS protocol with discrete-phase-randomized coherent state source and bound the secret key rate. We fix the length of each packet at 32 and 64, then simulate the secret key rates of the RRDPS protocol with discrete-phase randomization and continuous-phase randomization. Our simulation results show that the performance of the discrete-phase randomization case is close to the continuous counterpart with only a small number of discrete phases. The research is practically valuable for experimental implementation. |
---|---|
AbstractList | Recently, a novel kind of quantum key distribution called the round-robin differential phase-shift (RRDPS) protocol was proposed, which bounds the amount of leakage without monitoring signal disturbance. The protocol can be implemented by a weak coherent source. The security of this protocol with a simply characterized source has been proved. The application of a common phase shift can improve the secret key rate of the protocol. In practice, the randomized phase is discrete and the secret key rate is deviated from the continuous case. In this study, we analyze security of the RRDPS protocol with discrete-phase-randomized coherent state source and bound the secret key rate. We fix the length of each packet at 32 and 64, then simulate the secret key rates of the RRDPS protocol with discrete-phase randomization and continuous-phase randomization. Our simulation results show that the performance of the discrete-phase randomization case is close to the continuous counterpart with only a small number of discrete phases. The research is practically valuable for experimental implementation. |
Author | 张莹莹 鲍皖苏 李宏伟 周淳 汪洋 江木生 |
AuthorAffiliation | Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou Information Science and Technology Institute, Zhengzhou 450001 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 |
Author_xml | – sequence: 1 fullname: 张莹莹 鲍皖苏 李宏伟 周淳 汪洋 江木生 |
BookMark | eNo9UF1LwzAUDTLBbfoThOB7XdKkbfo4Nr9woG4KvpU0vVkjWzLT9GG--c9t59jTvYfzBWeEBtZZQOiakltKhJiQOEkjRrLPCeOTDgrCSHyGhjTjNGIJJwM0PGku0KhpvgihVFA6RL_T3W5jlAzGWew0lnhuGuUhAH6tZQPRUtrKbc0PVHjmavBgA14F2fEr13oF2Fi8dK2toqUru39utD6ojNwcI1a10QG_tdKGdoufYd93BG_Ktm-9ROdabhq4Ot4x-ri_e589RouXh6fZdBGpOBYhqlKheZpQASlwkgmtckVLwnhe5jJjHVGJNM_inKgyp5nWFVFagiihhIomCRuj5D9Xedc0HnSx82Yr_b6gpOh3LPqNin6jgvGig4cdO9_N0Vc7u_42dn0yphmjlMQ8Y39YWnWo |
Cites_doi | 10.1103/PhysRevA.72.012326 10.1007/s11433-015-5714-3 10.1103/PhysRevLett.85.441 10.1103/PhysRevA.93.022330 10.1364/OE.24.020763 10.1103/PhysRevA.93.030302 10.1038/nphoton.2015.209 10.1103/PhysRevA.88.022308 10.1103/PhysRev.131.2766 10.1103/RevModPhys.74.145 10.1103/PhysRevLett.114.180502 10.1145/382780.382781 10.1103/PhysRevA.92.060303 10.1038/nature13303 10.1364/OE.20.012366 10.1063/1.1738173 10.1126/science.283.5410.2050 10.1038/srep04759 10.1038/nphoton.2015.173 10.26421/QIC4.5-1 10.1103/PhysRevA.85.032304 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
DOI | 10.1088/0256-307X/34/8/080302 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution |
EISSN | 1741-3540 |
EndPage | 20 |
ExternalDocumentID | 10_1088_0256_307X_34_8_080302 673110247 |
GroupedDBID | 02O 042 1JI 1PV 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CEBXE CJUJL CQIGP CRLBU CS3 EBS EDWGO EJD EMSAF EPQRW EQZZN FEDTE HAK HVGLF IHE IJHAN IOP IZVLO JCGBZ KNG KOT LAP M45 N5L N9A NS0 NT- NT. P2P PJBAE Q02 R4D RIN RNS RO9 ROL RPA RW3 S3P SY9 T37 UCJ W28 XPP ~02 ~WA -SA -S~ AAYXX ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- TGP U1G U5K |
ID | FETCH-LOGICAL-c228t-d68f46518e6e4078fc9c1b0349b9a73518d8697290cb917ffd0cfae8bebed1553 |
ISSN | 0256-307X |
IngestDate | Tue Jul 01 01:35:32 EDT 2025 Wed Feb 14 09:57:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c228t-d68f46518e6e4078fc9c1b0349b9a73518d8697290cb917ffd0cfae8bebed1553 |
Notes | Recently, a novel kind of quantum key distribution called the round-robin differential phase-shift (RRDPS) protocol was proposed, which bounds the amount of leakage without monitoring signal disturbance. The protocol can be implemented by a weak coherent source. The security of this protocol with a simply characterized source has been proved. The application of a common phase shift can improve the secret key rate of the protocol. In practice, the randomized phase is discrete and the secret key rate is deviated from the continuous case. In this study, we analyze security of the RRDPS protocol with discrete-phase-randomized coherent state source and bound the secret key rate. We fix the length of each packet at 32 and 64, then simulate the secret key rates of the RRDPS protocol with discrete-phase randomization and continuous-phase randomization. Our simulation results show that the performance of the discrete-phase randomization case is close to the continuous counterpart with only a small number of discrete phases. The research is practically valuable for experimental implementation. 11-1959/O4 Ying-Ying Zhang1,2, Wan-Su Bao1,2, Hong-Wei Li1,2, Chun Zhou1,2, Yang Wang1,2, Mu-Sheng Jiang1,2(1.Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou Information Science and Technology Institute, Zhengzhou 450001;2.Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026) |
PageCount | 5 |
ParticipantIDs | crossref_primary_10_1088_0256_307X_34_8_080302 chongqing_primary_673110247 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics letters |
PublicationTitleAlternate | Chinese Physics Letters |
PublicationYear | 2017 |
References | 12 23 13 24 14 15 Bennett C H (1) 1984 16 17 18 19 Cao Z (20) 2015; 17 2 3 4 Zhang Z. (11) 2015 5 6 7 8 9 Gottesman D (22) 2004; 4 10 21 |
References_xml | – ident: 23 doi: 10.1103/PhysRevA.72.012326 – ident: 15 doi: 10.1007/s11433-015-5714-3 – ident: 4 doi: 10.1103/PhysRevLett.85.441 – year: 2015 ident: 11 – ident: 13 doi: 10.1103/PhysRevA.93.022330 – ident: 14 doi: 10.1364/OE.24.020763 – ident: 8 doi: 10.1103/PhysRevA.93.030302 – ident: 10 doi: 10.1038/nphoton.2015.209 – ident: 17 doi: 10.1103/PhysRevA.88.022308 – ident: 21 doi: 10.1103/PhysRev.131.2766 – ident: 2 doi: 10.1103/RevModPhys.74.145 – ident: 7 doi: 10.1103/PhysRevLett.114.180502 – ident: 5 doi: 10.1145/382780.382781 – ident: 12 doi: 10.1103/PhysRevA.92.060303 – ident: 6 doi: 10.1038/nature13303 – ident: 19 doi: 10.1364/OE.20.012366 – ident: 24 doi: 10.1063/1.1738173 – ident: 3 doi: 10.1126/science.283.5410.2050 – ident: 18 doi: 10.1038/srep04759 – ident: 9 doi: 10.1038/nphoton.2015.173 – volume: 4 start-page: 325 issn: 1533-7146 year: 2004 ident: 22 publication-title: Quant. Inf. Comp. doi: 10.26421/QIC4.5-1 – start-page: 175 year: 1984 ident: 1 publication-title: Int. Conf. Comput. Syst. Signal Process – volume: 17 issn: 1367-2630 year: 2015 ident: 20 publication-title: New J. Phys. – ident: 16 doi: 10.1103/PhysRevA.85.032304 |
SSID | ssj0011811 |
Score | 2.1329443 |
Snippet | Recently, a novel kind of quantum key distribution called the round-robin differential phase-shift (RRDPS) protocol was proposed, which bounds the amount of... |
SourceID | crossref chongqing |
SourceType | Index Database Publisher |
StartPage | 16 |
SubjectTerms | 差分 应用 循环 相位随机化 相干态 离散相 量子密钥分配 随机相位 |
Title | Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution |
URI | http://lib.cqvip.com/qk/84212X/201708/673110247.html |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIiQuCCiIUkA-MKdVupu3fXR2syogoOpD2luUl7t7aJZHeumNf8548lgLEAIukdePcZT5dvxlMmMz9qZ0PTS9Xo0vOaJ2Ar-InFx62tGVK8oqDCufslw_fIxOr4J3q3C1t39oRS3dtsVJeffbvJL_0SrWoV5Nluw_aHYUihVYRv3iFTWM17_Ssdp9fe7yHBcbtAJIgydna1ydnPO8qbY3mzvjxd2ua9qIidjl5IJ89sbZcW7OVXIoDQyHd6eltMaN3om4WG90a0I_cW26mbxHC7IwW-32p2TZ1BbSABIBagFpCDKBBAsxCAlKmoKcgYhMU7IElUAagVCgQkiXkMxBKkgFCBzlmiaJrXE_XIzBtjR6DmpGfVNI5FiYQCoh8UDQpCgNJXQCxXJCEhemIwpQKVbRveKspg1v1gUlTKckhsSn7ngbSlEBuXYyVMkliZpTd5wmwBrbbeLGY4jtYF2R6xnH26pbCDvrj_TKMY4we3nofa3d30BYtt6NLNZAGX2_rkdow2nrjn4uLPsBXqhSoH31dsvwGBwZxT5yMi-I99k9L44p-ODtp7Px2xhyMjoHchA65KUJMR3rpn4wxZ80hdk1ZL1trr8gF7LYl0WjLh-xh_37D1cdmB-zvbp5wu5THHL57ZB9tyDNt5rnfIA0_xnSfIA0J0jzDtJ803AL0tyGNLcgzXtIc4Q0tyH9lF0t08v5qdOfEuKUnidap4qEDqLQFXVUm4_SupSlW5htlwqZxz42VCKS-A45KwvpxlpXs1LntSjQfFXm1Kxn7KDZNvVzxqNCSz3TsohnZVBpKdG8hSIPareUNfLqI3Y8Psnsc7cbTDaq64idDM92bKQQDyEyo5jMKCbzgwx_kmJe_FHcMXuww-1LdtB-va1fIQFui9eEhx9zGpCB |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+a+Discrete+Phase-Randomized+Coherent+State+Source+in+Round-Robin+Differential+Phase-Shift+Quantum+Key+Distribution&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86%E5%BF%AB%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E5%BC%A0%E8%8E%B9%E8%8E%B9+%E9%B2%8D%E7%9A%96%E8%8B%8F+%E6%9D%8E%E5%AE%8F%E4%BC%9F+%E5%91%A8%E6%B7%B3+%E6%B1%AA%E6%B4%8B+%E6%B1%9F%E6%9C%A8%E7%94%9F&rft.date=2017-07-01&rft.issn=0256-307X&rft.eissn=1741-3540&rft.volume=34&rft.issue=8&rft.spage=16&rft.epage=20&rft_id=info:doi/10.1088%2F0256-307X%2F34%2F8%2F080302&rft.externalDocID=673110247 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84212X%2F84212X.jpg |