Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution

Recently, a novel kind of quantum key distribution called the round-robin differential phase-shift (RRDPS) protocol was proposed, which bounds the amount of leakage without monitoring signal disturbance. The protocol can be implemented by a weak coherent source. The security of this protocol with a...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 34; no. 8; pp. 16 - 20
Main Author 张莹莹 鲍皖苏 李宏伟 周淳 汪洋 江木生
Format Journal Article
LanguageEnglish
Published 01.07.2017
Subjects
Online AccessGet full text
ISSN0256-307X
1741-3540
DOI10.1088/0256-307X/34/8/080302

Cover

Abstract Recently, a novel kind of quantum key distribution called the round-robin differential phase-shift (RRDPS) protocol was proposed, which bounds the amount of leakage without monitoring signal disturbance. The protocol can be implemented by a weak coherent source. The security of this protocol with a simply characterized source has been proved. The application of a common phase shift can improve the secret key rate of the protocol. In practice, the randomized phase is discrete and the secret key rate is deviated from the continuous case. In this study, we analyze security of the RRDPS protocol with discrete-phase-randomized coherent state source and bound the secret key rate. We fix the length of each packet at 32 and 64, then simulate the secret key rates of the RRDPS protocol with discrete-phase randomization and continuous-phase randomization. Our simulation results show that the performance of the discrete-phase randomization case is close to the continuous counterpart with only a small number of discrete phases. The research is practically valuable for experimental implementation.
AbstractList Recently, a novel kind of quantum key distribution called the round-robin differential phase-shift (RRDPS) protocol was proposed, which bounds the amount of leakage without monitoring signal disturbance. The protocol can be implemented by a weak coherent source. The security of this protocol with a simply characterized source has been proved. The application of a common phase shift can improve the secret key rate of the protocol. In practice, the randomized phase is discrete and the secret key rate is deviated from the continuous case. In this study, we analyze security of the RRDPS protocol with discrete-phase-randomized coherent state source and bound the secret key rate. We fix the length of each packet at 32 and 64, then simulate the secret key rates of the RRDPS protocol with discrete-phase randomization and continuous-phase randomization. Our simulation results show that the performance of the discrete-phase randomization case is close to the continuous counterpart with only a small number of discrete phases. The research is practically valuable for experimental implementation.
Author 张莹莹 鲍皖苏 李宏伟 周淳 汪洋 江木生
AuthorAffiliation Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou Information Science and Technology Institute, Zhengzhou 450001 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Author_xml – sequence: 1
  fullname: 张莹莹 鲍皖苏 李宏伟 周淳 汪洋 江木生
BookMark eNo9UF1LwzAUDTLBbfoThOB7XdKkbfo4Nr9woG4KvpU0vVkjWzLT9GG--c9t59jTvYfzBWeEBtZZQOiakltKhJiQOEkjRrLPCeOTDgrCSHyGhjTjNGIJJwM0PGku0KhpvgihVFA6RL_T3W5jlAzGWew0lnhuGuUhAH6tZQPRUtrKbc0PVHjmavBgA14F2fEr13oF2Fi8dK2toqUru39utD6ojNwcI1a10QG_tdKGdoufYd93BG_Ktm-9ROdabhq4Ot4x-ri_e589RouXh6fZdBGpOBYhqlKheZpQASlwkgmtckVLwnhe5jJjHVGJNM_inKgyp5nWFVFagiihhIomCRuj5D9Xedc0HnSx82Yr_b6gpOh3LPqNin6jgvGig4cdO9_N0Vc7u_42dn0yphmjlMQ8Y39YWnWo
Cites_doi 10.1103/PhysRevA.72.012326
10.1007/s11433-015-5714-3
10.1103/PhysRevLett.85.441
10.1103/PhysRevA.93.022330
10.1364/OE.24.020763
10.1103/PhysRevA.93.030302
10.1038/nphoton.2015.209
10.1103/PhysRevA.88.022308
10.1103/PhysRev.131.2766
10.1103/RevModPhys.74.145
10.1103/PhysRevLett.114.180502
10.1145/382780.382781
10.1103/PhysRevA.92.060303
10.1038/nature13303
10.1364/OE.20.012366
10.1063/1.1738173
10.1126/science.283.5410.2050
10.1038/srep04759
10.1038/nphoton.2015.173
10.26421/QIC4.5-1
10.1103/PhysRevA.85.032304
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1088/0256-307X/34/8/080302
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution
EISSN 1741-3540
EndPage 20
ExternalDocumentID 10_1088_0256_307X_34_8_080302
673110247
GroupedDBID 02O
042
1JI
1PV
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CEBXE
CJUJL
CQIGP
CRLBU
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FEDTE
HAK
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
LAP
M45
N5L
N9A
NS0
NT-
NT.
P2P
PJBAE
Q02
R4D
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
T37
UCJ
W28
XPP
~02
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
TGP
U1G
U5K
ID FETCH-LOGICAL-c228t-d68f46518e6e4078fc9c1b0349b9a73518d8697290cb917ffd0cfae8bebed1553
ISSN 0256-307X
IngestDate Tue Jul 01 01:35:32 EDT 2025
Wed Feb 14 09:57:18 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c228t-d68f46518e6e4078fc9c1b0349b9a73518d8697290cb917ffd0cfae8bebed1553
Notes Recently, a novel kind of quantum key distribution called the round-robin differential phase-shift (RRDPS) protocol was proposed, which bounds the amount of leakage without monitoring signal disturbance. The protocol can be implemented by a weak coherent source. The security of this protocol with a simply characterized source has been proved. The application of a common phase shift can improve the secret key rate of the protocol. In practice, the randomized phase is discrete and the secret key rate is deviated from the continuous case. In this study, we analyze security of the RRDPS protocol with discrete-phase-randomized coherent state source and bound the secret key rate. We fix the length of each packet at 32 and 64, then simulate the secret key rates of the RRDPS protocol with discrete-phase randomization and continuous-phase randomization. Our simulation results show that the performance of the discrete-phase randomization case is close to the continuous counterpart with only a small number of discrete phases. The research is practically valuable for experimental implementation.
11-1959/O4
Ying-Ying Zhang1,2, Wan-Su Bao1,2, Hong-Wei Li1,2, Chun Zhou1,2, Yang Wang1,2, Mu-Sheng Jiang1,2(1.Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou Information Science and Technology Institute, Zhengzhou 450001;2.Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026)
PageCount 5
ParticipantIDs crossref_primary_10_1088_0256_307X_34_8_080302
chongqing_primary_673110247
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics letters
PublicationTitleAlternate Chinese Physics Letters
PublicationYear 2017
References 12
23
13
24
14
15
Bennett C H (1) 1984
16
17
18
19
Cao Z (20) 2015; 17
2
3
4
Zhang Z. (11) 2015
5
6
7
8
9
Gottesman D (22) 2004; 4
10
21
References_xml – ident: 23
  doi: 10.1103/PhysRevA.72.012326
– ident: 15
  doi: 10.1007/s11433-015-5714-3
– ident: 4
  doi: 10.1103/PhysRevLett.85.441
– year: 2015
  ident: 11
– ident: 13
  doi: 10.1103/PhysRevA.93.022330
– ident: 14
  doi: 10.1364/OE.24.020763
– ident: 8
  doi: 10.1103/PhysRevA.93.030302
– ident: 10
  doi: 10.1038/nphoton.2015.209
– ident: 17
  doi: 10.1103/PhysRevA.88.022308
– ident: 21
  doi: 10.1103/PhysRev.131.2766
– ident: 2
  doi: 10.1103/RevModPhys.74.145
– ident: 7
  doi: 10.1103/PhysRevLett.114.180502
– ident: 5
  doi: 10.1145/382780.382781
– ident: 12
  doi: 10.1103/PhysRevA.92.060303
– ident: 6
  doi: 10.1038/nature13303
– ident: 19
  doi: 10.1364/OE.20.012366
– ident: 24
  doi: 10.1063/1.1738173
– ident: 3
  doi: 10.1126/science.283.5410.2050
– ident: 18
  doi: 10.1038/srep04759
– ident: 9
  doi: 10.1038/nphoton.2015.173
– volume: 4
  start-page: 325
  issn: 1533-7146
  year: 2004
  ident: 22
  publication-title: Quant. Inf. Comp.
  doi: 10.26421/QIC4.5-1
– start-page: 175
  year: 1984
  ident: 1
  publication-title: Int. Conf. Comput. Syst. Signal Process
– volume: 17
  issn: 1367-2630
  year: 2015
  ident: 20
  publication-title: New J. Phys.
– ident: 16
  doi: 10.1103/PhysRevA.85.032304
SSID ssj0011811
Score 2.1329443
Snippet Recently, a novel kind of quantum key distribution called the round-robin differential phase-shift (RRDPS) protocol was proposed, which bounds the amount of...
SourceID crossref
chongqing
SourceType Index Database
Publisher
StartPage 16
SubjectTerms 差分
应用
循环
相位随机化
相干态
离散相
量子密钥分配
随机相位
Title Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution
URI http://lib.cqvip.com/qk/84212X/201708/673110247.html
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIiQuCCiIUkA-MKdVupu3fXR2syogoOpD2luUl7t7aJZHeumNf8548lgLEAIukdePcZT5dvxlMmMz9qZ0PTS9Xo0vOaJ2Ar-InFx62tGVK8oqDCufslw_fIxOr4J3q3C1t39oRS3dtsVJeffbvJL_0SrWoV5Nluw_aHYUihVYRv3iFTWM17_Ssdp9fe7yHBcbtAJIgydna1ydnPO8qbY3mzvjxd2ua9qIidjl5IJ89sbZcW7OVXIoDQyHd6eltMaN3om4WG90a0I_cW26mbxHC7IwW-32p2TZ1BbSABIBagFpCDKBBAsxCAlKmoKcgYhMU7IElUAagVCgQkiXkMxBKkgFCBzlmiaJrXE_XIzBtjR6DmpGfVNI5FiYQCoh8UDQpCgNJXQCxXJCEhemIwpQKVbRveKspg1v1gUlTKckhsSn7ngbSlEBuXYyVMkliZpTd5wmwBrbbeLGY4jtYF2R6xnH26pbCDvrj_TKMY4we3nofa3d30BYtt6NLNZAGX2_rkdow2nrjn4uLPsBXqhSoH31dsvwGBwZxT5yMi-I99k9L44p-ODtp7Px2xhyMjoHchA65KUJMR3rpn4wxZ80hdk1ZL1trr8gF7LYl0WjLh-xh_37D1cdmB-zvbp5wu5THHL57ZB9tyDNt5rnfIA0_xnSfIA0J0jzDtJ803AL0tyGNLcgzXtIc4Q0tyH9lF0t08v5qdOfEuKUnidap4qEDqLQFXVUm4_SupSlW5htlwqZxz42VCKS-A45KwvpxlpXs1LntSjQfFXm1Kxn7KDZNvVzxqNCSz3TsohnZVBpKdG8hSIPareUNfLqI3Y8Psnsc7cbTDaq64idDM92bKQQDyEyo5jMKCbzgwx_kmJe_FHcMXuww-1LdtB-va1fIQFui9eEhx9zGpCB
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+a+Discrete+Phase-Randomized+Coherent+State+Source+in+Round-Robin+Differential+Phase-Shift+Quantum+Key+Distribution&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86%E5%BF%AB%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E5%BC%A0%E8%8E%B9%E8%8E%B9+%E9%B2%8D%E7%9A%96%E8%8B%8F+%E6%9D%8E%E5%AE%8F%E4%BC%9F+%E5%91%A8%E6%B7%B3+%E6%B1%AA%E6%B4%8B+%E6%B1%9F%E6%9C%A8%E7%94%9F&rft.date=2017-07-01&rft.issn=0256-307X&rft.eissn=1741-3540&rft.volume=34&rft.issue=8&rft.spage=16&rft.epage=20&rft_id=info:doi/10.1088%2F0256-307X%2F34%2F8%2F080302&rft.externalDocID=673110247
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84212X%2F84212X.jpg