An ERP Data Quality Assessment Framework for the Implementation of an APS system using Bayesian Networks
In today’s manufacturing industry, enterprise-resource-planning (ERP) systems reach their limit when planning and scheduling production subject to multiple objectives and constraints. Advanced planning and scheduling (APS) systems provide these capabilities and are an extension for ERP systems. Howe...
Saved in:
Published in | Procedia computer science Vol. 200; pp. 194 - 204 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1877-0509 1877-0509 |
DOI | 10.1016/j.procs.2022.01.218 |
Cover
Loading…
Abstract | In today’s manufacturing industry, enterprise-resource-planning (ERP) systems reach their limit when planning and scheduling production subject to multiple objectives and constraints. Advanced planning and scheduling (APS) systems provide these capabilities and are an extension for ERP systems. However, when integrating an APS and ERP system, the ERP data frequently lacks quality, hindering the APS system from working as required. This paper introduces a data quality (DQ) assessment framework that employs a Bayesian Network (BN) to perform quick DQ assessments based on expert interviews and DQ measurements with actual ERP data. We explain the BN’s functionality, design, and validation and show how using the perceived DQ of experts and a semi-supervised learning algorithm improves the BN’s predictions over time. We discuss applying our framework in an APS system implementation project involving an APS system provider and a medium-sized manufacturer of hydraulic cylinders. Despite considering the DQ assessment framework in such a specific context, it is not restricted to a particular domain. We close by discussing the framework’s limits, particularly the BN as a DQ assessment methodology and future works to improve its performance. |
---|---|
AbstractList | In today’s manufacturing industry, enterprise-resource-planning (ERP) systems reach their limit when planning and scheduling production subject to multiple objectives and constraints. Advanced planning and scheduling (APS) systems provide these capabilities and are an extension for ERP systems. However, when integrating an APS and ERP system, the ERP data frequently lacks quality, hindering the APS system from working as required. This paper introduces a data quality (DQ) assessment framework that employs a Bayesian Network (BN) to perform quick DQ assessments based on expert interviews and DQ measurements with actual ERP data. We explain the BN’s functionality, design, and validation and show how using the perceived DQ of experts and a semi-supervised learning algorithm improves the BN’s predictions over time. We discuss applying our framework in an APS system implementation project involving an APS system provider and a medium-sized manufacturer of hydraulic cylinders. Despite considering the DQ assessment framework in such a specific context, it is not restricted to a particular domain. We close by discussing the framework’s limits, particularly the BN as a DQ assessment methodology and future works to improve its performance. |
Author | Herrmann, Jan-Phillip Hartlief, Jörg Rautenstengel, Jens Böhme, Jörg Loeser, Christine Padoano, Elio Tackenberg, Sven |
Author_xml | – sequence: 1 givenname: Jan-Phillip surname: Herrmann fullname: Herrmann, Jan-Phillip email: Jan-phillip.herrmann@th-owl.de organization: Ostwestfalen-Lippe University of Applied Sciences and Arts, Campusallee 12, 32657 Lemgo, Germany – sequence: 2 givenname: Sven surname: Tackenberg fullname: Tackenberg, Sven organization: Ostwestfalen-Lippe University of Applied Sciences and Arts, Campusallee 12, 32657 Lemgo, Germany – sequence: 3 givenname: Elio surname: Padoano fullname: Padoano, Elio organization: University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy – sequence: 4 givenname: Jörg surname: Hartlief fullname: Hartlief, Jörg organization: INFORM Institute for Operations Research and Management GmbH, Pascalstr. 35, 52076 Aachen, Germany – sequence: 5 givenname: Jens surname: Rautenstengel fullname: Rautenstengel, Jens organization: INFORM Institute for Operations Research and Management GmbH, Pascalstr. 35, 52076 Aachen, Germany – sequence: 6 givenname: Christine surname: Loeser fullname: Loeser, Christine organization: INFORM Institute for Operations Research and Management GmbH, Pascalstr. 35, 52076 Aachen, Germany – sequence: 7 givenname: Jörg surname: Böhme fullname: Böhme, Jörg organization: INFORM Institute for Operations Research and Management GmbH, Pascalstr. 35, 52076 Aachen, Germany |
BookMark | eNp9kMtOwzAQRS1UJErpF7DxDyTYeTjJgkUpLVSqoLzWluuMqUtjV7YLyt-TUBasmM0d6eqMRuccDYw1gNAlJTEllF1t472z0scJSZKY0Dih5Qka0rIoIpKTavBnP0Nj77ekm7QsK1oM0WZi8Ox5hW9FEPjpIHY6tHjiPXjfgAl47kQDX9Z9YGUdDhvAi2a_g74TQVuDrcLC4MnqBfvWB2jwwWvzjm9EC153zQOEHvcX6FSJnYfxb47Q23z2Or2Plo93i-lkGckkKUO0rmSWrkGyOpE1yTKpBGNlLWhBoWRFlVOmREILVgmoc7VmRECREpkrWtUqI-kIpce70lnvHSi-d7oRruWU8N4X3_IfX7z3xQnlna-Ouj5S0L32qcFxLzUYCbV2IAOvrf6X_wbpgHfX |
Cites_doi | 10.1155/2019/3518705 10.1108/14637150710752272 10.1016/j.envsoft.2006.03.006 10.1080/07421222.1996.11518099 10.1007/978-3-540-30549-1_108 10.1109/TKDE.2000.868901 10.1145/1541880.1541883 10.1108/02635570210414668 10.1145/1659225.1659227 10.1145/2254556.2254659 10.1016/j.eswa.2012.07.026 10.1109/ACCESS.2019.2899751 10.1145/505248.506010 10.1007/978-0-387-39940-9_601 10.1007/978-3-319-19719-7_39 10.1007/s00778-015-0389-y 10.1016/j.dss.2015.09.006 10.1109/PRDC.2015.41 10.1111/j.1461-0248.2010.01477.x 10.1016/j.infsof.2010.03.016 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.procs.2022.01.218 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1877-0509 |
EndPage | 204 |
ExternalDocumentID | 10_1016_j_procs_2022_01_218 S1877050922002277 |
GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c228t-b9c43bec6d2cd044cfa668da171e8679516fa21769aed5fb60ae730c5f19df403 |
IEDL.DBID | IXB |
ISSN | 1877-0509 |
IngestDate | Tue Jul 01 01:53:11 EDT 2025 Tue May 16 22:18:50 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Enterprise Resource Planning Data Quality Assessment Scheduling Advanced Planning Bayesian Network |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c228t-b9c43bec6d2cd044cfa668da171e8679516fa21769aed5fb60ae730c5f19df403 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050922002277 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_procs_2022_01_218 elsevier_sciencedirect_doi_10_1016_j_procs_2022_01_218 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022 2022-00-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022 |
PublicationDecade | 2020 |
PublicationTitle | Procedia computer science |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Rahm, Do (bib00015) 2000; 23 Druzdel, Van Der Gaag (bib00025) 2000; 12 Pitchforth, Mengersen (bib00028) 2013; 40 Finney, Corbett (bib0003) 2007 Cichy, Rass (bib00017) 2019; 7 Barateiro, Galhardas (bib00014) 2005; 14 Oliveira, Rodrigues, Henriques, Galhardas (bib00013) 2005 Scannapieco, Catarci (bib00011) 2002; 2 Cai, Zhu (bib0004) 2015 Johnson, Theodore. (2009) “Encyclopedia of Database Systems, chapter Data Profiling". Constantinou, Freestone, Marsh, Coid (bib00024) 2015; 80 Netica. (2020) “Welcome to Netica’s Help System” Norsys Software Corp. Kuhnert, Martin, Griffiths (bib00027) 2010; 13 Korb, Nicholson (bib00032) 2010 Xu, Nord, Brown, Daryl Nord (bib0001) 2002 Blackstone, Cox (bib0006) 2010 Wagner (bib00022) 2010; 52 Sessions, Valtorta (bib00023) 2009; 1 Krenczyk, Damian, and Mieczyslaw Jagodzinski. (2015) ”ERP, APS and simulation systems integration to support production planning and scheduling” 10th International Conference on Soft Computing Models in Industrial and Environmental Applications. Springer, Cham: 451-461. Abedjan, Golab, Naumann (bib00018) 2015; 24 Pipino, Lee, Wang (bib0002) 2002; 45 Pearl (bib00026) 2014 Wang, Li, Wang (bib0008) 2010; 12 Pollino, Woodberry, Nicholson, Korb, Hart (bib00021) 2007; 22 Hossain, Nur, Jaradat, Hosseini, Marufuzzaman, Puryear, Buchanan (bib00030) 2019 Wang, Strong (bib00012) 1996; 12 Woodberry, Owen, Nicholson, Ann E., Korb, Kevin B., and Carmel Pollino. (2004) “Parameterising bayesian networks” Australasian Joint Conference on Artificial Intelligence: 1101-1107. Springer, Berlin, Heidelberg. accessed 17.05.2021 Juran, Gryna (bib0007) 1988; 12 Laranjeiro, Nuno, Soydemir, Seyma N., and Jorge Bernardino. (2015) “A survey on data quality: classifying poor data” 2015 IEEE 21st Pacific rim international symposium on dependable computing (PRDC): 179-188. IEEE. Kandel, Sean, Parikh, Ravi, Paepcke, Andreas, Hellerstein, Joseph M., and Jeffrey Heer. (2012) “Profiler: Integrated statistical analysis and visualisation for data quality assessment” Proceedings of the International Working Conference on Advanced Visual Interfaces: 547-554. Batini, Cappiello, Francalanci, Maurino (bib0009) 2009; 41 Studer (bib00016) 2019 Schreiber (bib00033) 2017; 18 10.1016/j.procs.2022.01.218_bib00020 10.1016/j.procs.2022.01.218_bib0005 Pearl (10.1016/j.procs.2022.01.218_bib00026) 2014 Wang (10.1016/j.procs.2022.01.218_bib00012) 1996; 12 Studer (10.1016/j.procs.2022.01.218_bib00016) 2019 Hossain (10.1016/j.procs.2022.01.218_bib00030) 2019 Abedjan (10.1016/j.procs.2022.01.218_bib00018) 2015; 24 Xu (10.1016/j.procs.2022.01.218_bib0001) 2002 Pollino (10.1016/j.procs.2022.01.218_bib00021) 2007; 22 Scannapieco (10.1016/j.procs.2022.01.218_bib00011) 2002; 2 Barateiro (10.1016/j.procs.2022.01.218_bib00014) 2005; 14 Wagner (10.1016/j.procs.2022.01.218_bib00022) 2010; 52 Constantinou (10.1016/j.procs.2022.01.218_bib00024) 2015; 80 Korb (10.1016/j.procs.2022.01.218_bib00032) 2010 Cai (10.1016/j.procs.2022.01.218_bib0004) 2015 10.1016/j.procs.2022.01.218_bib00029 Oliveira (10.1016/j.procs.2022.01.218_bib00013) 2005 Druzdel (10.1016/j.procs.2022.01.218_bib00025) 2000; 12 Wang (10.1016/j.procs.2022.01.218_bib0008) 2010; 12 Pipino (10.1016/j.procs.2022.01.218_bib0002) 2002; 45 Cichy (10.1016/j.procs.2022.01.218_bib00017) 2019; 7 10.1016/j.procs.2022.01.218_bib00031 Juran (10.1016/j.procs.2022.01.218_bib0007) 1988; 12 Sessions (10.1016/j.procs.2022.01.218_bib00023) 2009; 1 Kuhnert (10.1016/j.procs.2022.01.218_bib00027) 2010; 13 Schreiber (10.1016/j.procs.2022.01.218_bib00033) 2017; 18 Pitchforth (10.1016/j.procs.2022.01.218_bib00028) 2013; 40 10.1016/j.procs.2022.01.218_bib00010 Finney (10.1016/j.procs.2022.01.218_bib0003) 2007 Batini (10.1016/j.procs.2022.01.218_bib0009) 2009; 41 10.1016/j.procs.2022.01.218_bib00019 Rahm (10.1016/j.procs.2022.01.218_bib00015) 2000; 23 Blackstone (10.1016/j.procs.2022.01.218_bib0006) 2010 |
References_xml | – start-page: 11 year: 2019 end-page: 23 ident: bib00016 article-title: "Das Relationenmodell" publication-title: Relationale Datenbanken – volume: 18 start-page: 5992 year: 2017 end-page: 5997 ident: bib00033 article-title: "Pomegranate: fast and flexible probabilistic modeling in python" publication-title: The Journal of Machine Learning Research – start-page: 14 year: 2015 ident: bib0004 article-title: "The challenges of data quality and data quality assessment in the big data era" publication-title: Data science journal – volume: 2 start-page: 1 year: 2002 end-page: 15 ident: bib00011 article-title: "Data quality under a computer science perspective" publication-title: Archivi & Computer – reference: Kandel, Sean, Parikh, Ravi, Paepcke, Andreas, Hellerstein, Joseph M., and Jeffrey Heer. (2012) “Profiler: Integrated statistical analysis and visualisation for data quality assessment” Proceedings of the International Working Conference on Advanced Visual Interfaces: 547-554. – volume: 23 start-page: 3 year: 2000 end-page: 13 ident: bib00015 article-title: "Data cleaning: Problems and current approaches" publication-title: IEEE Data Eng. Bull. – volume: 12 start-page: 481 year: 2000 end-page: 486 ident: bib00025 article-title: "Building probabilistic networks:’ Where do the numbers come from?’" publication-title: IEEE Transactions on knowledge and data engineering – volume: 13 start-page: 900 year: 2010 end-page: 914 ident: bib00027 article-title: "A guide to eliciting and using expert knowledge in Bayesian ecological models" publication-title: Ecology letters – volume: 12 year: 1988 ident: bib0007 publication-title: "Juran’s quality control handbook" – reference: Johnson, Theodore. (2009) “Encyclopedia of Database Systems, chapter Data Profiling". – reference: (accessed 17.05.2021) – volume: 41 start-page: 1 year: 2009 end-page: 52 ident: bib0009 article-title: "Methodologies for data quality assessment and improvement" publication-title: ACM computing surveys (CSUR) – volume: 80 start-page: 42 year: 2015 end-page: 55 ident: bib00024 article-title: "Causal inference for violence risk management and decision support in forensic psychiatry" publication-title: Decision Support Systems – volume: 22 start-page: 1140 year: 2007 end-page: 1152 ident: bib00021 article-title: "Parameterisation and evaluation of a Bayesian network for use in an ecological risk assessment" publication-title: Environmental Modelling & Software – year: 2014 ident: bib00026 publication-title: "Probabilistic reasoning in intelligent systems: networks of plausible inference" – year: 2010 ident: bib00032 publication-title: "Bayesian artificial intelligence" – year: 2010 ident: bib0006 publication-title: "APICS dictionary 13th ed." – reference: Laranjeiro, Nuno, Soydemir, Seyma N., and Jorge Bernardino. (2015) “A survey on data quality: classifying poor data” 2015 IEEE 21st Pacific rim international symposium on dependable computing (PRDC): 179-188. IEEE. – volume: 14 start-page: 15 year: 2005 end-page: 21 ident: bib00014 article-title: "A survey of data quality tools" publication-title: Datenbank-Spektrum – volume: 12 start-page: 44 year: 2010 end-page: 46 ident: bib0008 article-title: "Research on ISO 8000 series standards for data quality" publication-title: Standard Science – year: 2007 ident: bib0003 article-title: "ERP implementation: a compilation and analysis of critical success factors" publication-title: Business process management journal – year: 2019 ident: bib00030 article-title: "Metrics for assessing overall performance of inland waterway ports: A bayesian network based approach" publication-title: Complexity – volume: 45 start-page: 211 year: 2002 end-page: 218 ident: bib0002 article-title: "Data quality assessment" publication-title: Communications of the ACM – reference: Krenczyk, Damian, and Mieczyslaw Jagodzinski. (2015) ”ERP, APS and simulation systems integration to support production planning and scheduling” 10th International Conference on Soft Computing Models in Industrial and Environmental Applications. Springer, Cham: 451-461. – volume: 12 start-page: 5 year: 1996 end-page: 33 ident: bib00012 article-title: "Beyond accuracy: What data quality means to data consumers" publication-title: Journal of management information systems – start-page: 219 year: 2005 end-page: 233 ident: bib00013 article-title: "A taxonomy of data quality problems" publication-title: 2nd Int. Workshop on Data and Information Quality – volume: 40 start-page: 162 year: 2013 end-page: 167 ident: bib00028 article-title: "A proposed validation framework for expert elicited Bayesian Networks" publication-title: Expert Systems with Applications – reference: Netica. (2020) “Welcome to Netica’s Help System” Norsys Software Corp. – volume: 7 start-page: 24634 year: 2019 end-page: 24648 ident: bib00017 article-title: An overview of data quality frameworks publication-title: IEEE Access – volume: 1 start-page: 1 year: 2009 end-page: 34 ident: bib00023 article-title: "Towards a method for data accuracy assessment utilizing a bayesian network learning algorithm" publication-title: Journal of Data and Information Quality (JDIQ) – volume: 52 start-page: 1230 year: 2010 end-page: 1241 ident: bib00022 article-title: "A Bayesian network approach to assess and predict software quality using activity-based quality models" publication-title: Information and Software Technology – reference: Woodberry, Owen, Nicholson, Ann E., Korb, Kevin B., and Carmel Pollino. (2004) “Parameterising bayesian networks” Australasian Joint Conference on Artificial Intelligence: 1101-1107. Springer, Berlin, Heidelberg. – year: 2002 ident: bib0001 article-title: "Data quality issues in implementing an ERP" publication-title: Industrial management & data systems – volume: 24 start-page: 557 year: 2015 end-page: 581 ident: bib00018 article-title: "Profiling relational data: a survey" publication-title: The VLDB Journal – year: 2019 ident: 10.1016/j.procs.2022.01.218_bib00030 article-title: "Metrics for assessing overall performance of inland waterway ports: A bayesian network based approach" publication-title: Complexity doi: 10.1155/2019/3518705 – year: 2010 ident: 10.1016/j.procs.2022.01.218_bib00032 – year: 2007 ident: 10.1016/j.procs.2022.01.218_bib0003 article-title: "ERP implementation: a compilation and analysis of critical success factors" publication-title: Business process management journal doi: 10.1108/14637150710752272 – volume: 22 start-page: 1140 issue: 8 year: 2007 ident: 10.1016/j.procs.2022.01.218_bib00021 article-title: "Parameterisation and evaluation of a Bayesian network for use in an ecological risk assessment" publication-title: Environmental Modelling & Software doi: 10.1016/j.envsoft.2006.03.006 – volume: 12 start-page: 5 issue: 4 year: 1996 ident: 10.1016/j.procs.2022.01.218_bib00012 article-title: "Beyond accuracy: What data quality means to data consumers" publication-title: Journal of management information systems doi: 10.1080/07421222.1996.11518099 – ident: 10.1016/j.procs.2022.01.218_bib00029 doi: 10.1007/978-3-540-30549-1_108 – volume: 2 start-page: 1 year: 2002 ident: 10.1016/j.procs.2022.01.218_bib00011 article-title: "Data quality under a computer science perspective" publication-title: Archivi & Computer – start-page: 219 year: 2005 ident: 10.1016/j.procs.2022.01.218_bib00013 article-title: "A taxonomy of data quality problems" publication-title: 2nd Int. Workshop on Data and Information Quality – volume: 12 start-page: 481 issue: 4 year: 2000 ident: 10.1016/j.procs.2022.01.218_bib00025 article-title: "Building probabilistic networks:’ Where do the numbers come from?’" publication-title: IEEE Transactions on knowledge and data engineering doi: 10.1109/TKDE.2000.868901 – volume: 41 start-page: 1 issue: 3 year: 2009 ident: 10.1016/j.procs.2022.01.218_bib0009 article-title: "Methodologies for data quality assessment and improvement" publication-title: ACM computing surveys (CSUR) doi: 10.1145/1541880.1541883 – year: 2002 ident: 10.1016/j.procs.2022.01.218_bib0001 article-title: "Data quality issues in implementing an ERP" publication-title: Industrial management & data systems doi: 10.1108/02635570210414668 – volume: 1 start-page: 1 issue: 3 year: 2009 ident: 10.1016/j.procs.2022.01.218_bib00023 article-title: "Towards a method for data accuracy assessment utilizing a bayesian network learning algorithm" publication-title: Journal of Data and Information Quality (JDIQ) doi: 10.1145/1659225.1659227 – ident: 10.1016/j.procs.2022.01.218_bib00020 doi: 10.1145/2254556.2254659 – start-page: 11 year: 2019 ident: 10.1016/j.procs.2022.01.218_bib00016 article-title: "Das Relationenmodell" – volume: 40 start-page: 162 issue: 1 year: 2013 ident: 10.1016/j.procs.2022.01.218_bib00028 article-title: "A proposed validation framework for expert elicited Bayesian Networks" publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.07.026 – volume: 7 start-page: 24634 year: 2019 ident: 10.1016/j.procs.2022.01.218_bib00017 article-title: An overview of data quality frameworks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2899751 – volume: 14 start-page: 15 issue: 18 year: 2005 ident: 10.1016/j.procs.2022.01.218_bib00014 article-title: "A survey of data quality tools" publication-title: Datenbank-Spektrum – ident: 10.1016/j.procs.2022.01.218_bib00031 – year: 2010 ident: 10.1016/j.procs.2022.01.218_bib0006 – volume: 45 start-page: 211 issue: 4 year: 2002 ident: 10.1016/j.procs.2022.01.218_bib0002 article-title: "Data quality assessment" publication-title: Communications of the ACM doi: 10.1145/505248.506010 – volume: 23 start-page: 3 issue: 4 year: 2000 ident: 10.1016/j.procs.2022.01.218_bib00015 article-title: "Data cleaning: Problems and current approaches" publication-title: IEEE Data Eng. Bull. – ident: 10.1016/j.procs.2022.01.218_bib00019 doi: 10.1007/978-0-387-39940-9_601 – ident: 10.1016/j.procs.2022.01.218_bib0005 doi: 10.1007/978-3-319-19719-7_39 – volume: 12 start-page: 44 year: 2010 ident: 10.1016/j.procs.2022.01.218_bib0008 article-title: "Research on ISO 8000 series standards for data quality" publication-title: Standard Science – volume: 24 start-page: 557 issue: 4 year: 2015 ident: 10.1016/j.procs.2022.01.218_bib00018 article-title: "Profiling relational data: a survey" publication-title: The VLDB Journal doi: 10.1007/s00778-015-0389-y – volume: 18 start-page: 5992 issue: 1 year: 2017 ident: 10.1016/j.procs.2022.01.218_bib00033 article-title: "Pomegranate: fast and flexible probabilistic modeling in python" publication-title: The Journal of Machine Learning Research – volume: 80 start-page: 42 year: 2015 ident: 10.1016/j.procs.2022.01.218_bib00024 article-title: "Causal inference for violence risk management and decision support in forensic psychiatry" publication-title: Decision Support Systems doi: 10.1016/j.dss.2015.09.006 – volume: 12 year: 1988 ident: 10.1016/j.procs.2022.01.218_bib0007 – ident: 10.1016/j.procs.2022.01.218_bib00010 doi: 10.1109/PRDC.2015.41 – year: 2014 ident: 10.1016/j.procs.2022.01.218_bib00026 – start-page: 14 year: 2015 ident: 10.1016/j.procs.2022.01.218_bib0004 article-title: "The challenges of data quality and data quality assessment in the big data era" publication-title: Data science journal – volume: 13 start-page: 900 issue: 7 year: 2010 ident: 10.1016/j.procs.2022.01.218_bib00027 article-title: "A guide to eliciting and using expert knowledge in Bayesian ecological models" publication-title: Ecology letters doi: 10.1111/j.1461-0248.2010.01477.x – volume: 52 start-page: 1230 issue: 11 year: 2010 ident: 10.1016/j.procs.2022.01.218_bib00022 article-title: "A Bayesian network approach to assess and predict software quality using activity-based quality models" publication-title: Information and Software Technology doi: 10.1016/j.infsof.2010.03.016 |
SSID | ssj0000388917 |
Score | 2.2521951 |
Snippet | In today’s manufacturing industry, enterprise-resource-planning (ERP) systems reach their limit when planning and scheduling production subject to multiple... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 194 |
SubjectTerms | Advanced Planning Bayesian Network Data Quality Assessment Enterprise Resource Planning Scheduling |
Title | An ERP Data Quality Assessment Framework for the Implementation of an APS system using Bayesian Networks |
URI | https://dx.doi.org/10.1016/j.procs.2022.01.218 |
Volume | 200 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mceHCGzFe8oEj1dq0TZpjNzZNTEzTxsRuUdomMCS6CcZh_564jwkkxIFjqzqqPie2Y9mfCbnxld1GPg0dkSTcCVKTOEpn3BHUaM5dnUVF6uJhxAaz4H4ezhukW_fCYFllZftLm15Y6-pNu0KzvVos2lMvsotZf0dpwYOHHeXI1IJNfPPONs-CbCeiGLyL3zsoUJMPFWVe6CeQtptSpO-kOPzjNwf1zen0D8heFS1CXP7QIWno_Ijs15MYoDqYx-QlzqE3GcOdWisoaTE2EG9JN6Ffl2CBjVHBxnxQsAK_VY1HOSwNqBzi8RRKamfAevhn6KiNxi5LGJXV4h8nZNbvPXYHTjVDwUkpjdZOItLAt3piGU0zN7DKUIxFmfK4p5FrL_SYUfZawoRVUWgS5iptD30aGk9kJnD9U9LMl7k-I2CSiKvMGD_hacBFhrMUhL1Aa8aZmwrTIrc1cHJVUmXIuobsVRY4S8RZup60OLcIq8GVPzQurTH_S_D8v4IXZBefygTKJWmu3z_1lQ0p1sk12YmHk6fhdbF3vgC9asyt |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjSjPGxiJmjiJHY9padVCW1W0lbpZTmJDkUgrCEP_PXYeFUiIgTXRRdF39t3Z-u47hG5doZeRi32LRRG1vFhFlpAJtRhWklJbJkF-dTEckd7Me5j78xpqV70whlZZxv4ipufRunzSLNFsrhaL5sQJ9Md0vsM418GjW2hbVwPE8Lr689bmosXInbB88q4xsIxFpT6U87xMojC63Rgb_U5spn_8lqG-ZZ3uAdory0UIiz86RDWZHqH9ahQDlDvzGL2EKXSexnAvMgGFLsYawo3qJnQrDhboIhV00Qe5LPBb2XmUwlKBSCEcT6DQdgZDiH-GllhL02YJo4Iu_nGCZt3OtN2zyiEKVoxxkFkRiz1XO4okOE5sT3tDaIwS4VBHGrE93yFK6HMJYdpHvoqILaTe9bGvHJYoz3ZPUT1dpvIMgYoCKhKl3IjGHmWJGabA9AlaEkrsmKkGuquA46tCK4NXJLJXnuPMDc7cdrjGuYFIBS7_4XKuo_lfhuf_NbxBO73pcMAH_dHjBdo1b4rblEtUz94_5ZWuL7LoOl8_X7K_zjE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ERP+Data+Quality+Assessment+Framework+for+the+Implementation+of+an+APS+system+using+Bayesian+Networks&rft.jtitle=Procedia+computer+science&rft.au=Herrmann%2C+Jan-Phillip&rft.au=Tackenberg%2C+Sven&rft.au=Padoano%2C+Elio&rft.au=Hartlief%2C+J%C3%B6rg&rft.date=2022&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=200&rft.spage=194&rft.epage=204&rft_id=info:doi/10.1016%2Fj.procs.2022.01.218&rft.externalDocID=S1877050922002277 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |