YOLOv11-based multi-task learning for enhanced bone fracture detection and classification in X-ray images
This study presents a multi-task learning framework based on the YOLOv11 architecture to improve both fracture detection and localization. The goal is to provide an efficient solution for clinical applications. We used a large dataset of X-ray images, including both fracture and non-fracture cases f...
Saved in:
Published in | Journal of radiation research and applied sciences Vol. 18; no. 1; p. 101309 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1687-8507 1687-8507 |
DOI | 10.1016/j.jrras.2025.101309 |
Cover
Loading…
Abstract | This study presents a multi-task learning framework based on the YOLOv11 architecture to improve both fracture detection and localization. The goal is to provide an efficient solution for clinical applications.
We used a large dataset of X-ray images, including both fracture and non-fracture cases from the upper and lower extremities. The dataset was divided into three parts: training (70%), validation (15%), and test (15%). The training set had 10,966 cases (5778 normal, 5188 with fractures), while the validation and test sets each contained 2350 cases (1238 normal, 1112 with fractures). A multi-task learning model based on YOLOv11 was trained for fracture classification and localization. We applied data augmentation to prevent overfitting and improve generalization. Model performance was evaluated using two metrics: mean Average Precision (mAP) and Intersection over Union (IoU), with comparisons made to Faster R-CNN and SSD models. Training was done with a learning rate of 0.001 and a batch size of 16, using the Adam optimizer for better convergence. We also benchmarked the YOLOv11 model against Faster R-CNN and SSD to assess performance using mAP and IoU scores at different thresholds.
The YOLOv11 model achieved excellent results, with a mean Average Precision (mAP) of 96.8% at an IoU threshold of 0.5 and an IoU of 92.5%. These results were better than Faster R-CNN (mAP: 87.5%, IoU: 85.23%) and SSD (mAP: 82.9%, IoU: 80.12%), showing that YOLOv11 outperformed these models in fracture detection and localization. This improvement highlights the model's strength and efficiency for real-time use.
The YOLOv11-based multi-task learning framework significantly outperforms traditional methods, offering high accuracy and real-time fracture localization. This model shows great potential for clinical use, improving diagnostic accuracy, increasing productivity, and streamlining the workflow for radiologists. |
---|---|
AbstractList | This study presents a multi-task learning framework based on the YOLOv11 architecture to improve both fracture detection and localization. The goal is to provide an efficient solution for clinical applications.
We used a large dataset of X-ray images, including both fracture and non-fracture cases from the upper and lower extremities. The dataset was divided into three parts: training (70%), validation (15%), and test (15%). The training set had 10,966 cases (5778 normal, 5188 with fractures), while the validation and test sets each contained 2350 cases (1238 normal, 1112 with fractures). A multi-task learning model based on YOLOv11 was trained for fracture classification and localization. We applied data augmentation to prevent overfitting and improve generalization. Model performance was evaluated using two metrics: mean Average Precision (mAP) and Intersection over Union (IoU), with comparisons made to Faster R-CNN and SSD models. Training was done with a learning rate of 0.001 and a batch size of 16, using the Adam optimizer for better convergence. We also benchmarked the YOLOv11 model against Faster R-CNN and SSD to assess performance using mAP and IoU scores at different thresholds.
The YOLOv11 model achieved excellent results, with a mean Average Precision (mAP) of 96.8% at an IoU threshold of 0.5 and an IoU of 92.5%. These results were better than Faster R-CNN (mAP: 87.5%, IoU: 85.23%) and SSD (mAP: 82.9%, IoU: 80.12%), showing that YOLOv11 outperformed these models in fracture detection and localization. This improvement highlights the model's strength and efficiency for real-time use.
The YOLOv11-based multi-task learning framework significantly outperforms traditional methods, offering high accuracy and real-time fracture localization. This model shows great potential for clinical use, improving diagnostic accuracy, increasing productivity, and streamlining the workflow for radiologists. |
ArticleNumber | 101309 |
Author | Rao, Yuanyong Tan, Xingyue Zheng, Junchi OuYang, Haiyang Huang, Yan Wei, Wanmian Wei, Yongping |
Author_xml | – sequence: 1 givenname: Wanmian surname: Wei fullname: Wei, Wanmian organization: Department of Orthopedic surgery, The first People's Hospital of Hechi, No. 124 Guiyu Street, Hechi City, Guangxi, 546300, China – sequence: 2 givenname: Yan surname: Huang fullname: Huang, Yan organization: Department of medical imaging, The first People's Hospital of Hechi, No. 124 Guiyu Street, Hechi City, Guangxi, 546300, China – sequence: 3 givenname: Junchi surname: Zheng fullname: Zheng, Junchi organization: Department of Joint and Sports Medicine, Zhongshan Torch Development Zone People's Hospital, No.123, Yat Sin Road, Zhongshan Torch Development Zone, Guangdong, 528437, China – sequence: 4 givenname: Yuanyong surname: Rao fullname: Rao, Yuanyong organization: Department of Orthopedic surgery, The first People's Hospital of Hechi, No. 124 Guiyu Street, Hechi City, Guangxi, 546300, China – sequence: 5 givenname: Yongping surname: Wei fullname: Wei, Yongping organization: Department of Orthopedic surgery, The first People's Hospital of Hechi, No. 124 Guiyu Street, Hechi City, Guangxi, 546300, China – sequence: 6 givenname: Xingyue surname: Tan fullname: Tan, Xingyue organization: Department of Orthopedic surgery, The first People's Hospital of Hechi, No. 124 Guiyu Street, Hechi City, Guangxi, 546300, China – sequence: 7 givenname: Haiyang surname: OuYang fullname: OuYang, Haiyang email: ouyanghaiyang_012@163.com organization: Department of Joint and Sports Medicine, Zhongshan Torch Development Zone People's Hospital, No.123, Yat Sin Road, Zhongshan Torch Development Zone, Guangdong, 528437, China |
BookMark | eNp9kE1OwzAQhS1UJAr0BGx8gRTbqWNnwQJV_EmVugEJVtbEGReH1EF2Wqm3J2lZsGI1o9G8mfe-SzIJXUBCbjibc8aL22bexAhpLpiQ4yRn5RmZ8kKrTEumJn_6CzJLqWGM8VJIxdmU-I_1ar3nPKsgYU23u7b3WQ_pi7YIMfiwoa6LFMMnBDssVMNv6iLYfheR1tij7X0XKISa2hZS8s5bOI58oO9ZhAP1W9hguibnDtqEs996Rd4eH16Xz9lq_fSyvF9lVgjdZwALVzOrsC4WpVCqyJHLQjpRSW1F5XguhbOgsNS50rzKrda6KmuoNJTcyvyK5Ke7NnYpRXTmOw4O4sFwZkZgpjFHYGYEZk7ABtXdSYWDtb3HaJL1OEb2cYho6s7_q_8BjX530g |
Cites_doi | 10.1002/ima.70008 10.3390/bioengineering11070643 10.1109/ACCESS.2024.3378568 10.3390/diagnostics12102420 10.3390/jimaging7060100 10.1016/j.compbiomed.2023.107916 10.1302/2046-3758.1111.BJR-2022-0181.R1 10.1007/s00330-023-10392-x 10.1007/s40520-022-02279-6 10.1038/s41746-020-00352-w 10.3390/make5040083 10.1016/j.procs.2022.01.135 10.1038/s41584-022-00764-w 10.1038/s41598-021-85570-2 10.1007/s11042-022-13644-y 10.3390/diagnostics13203245 10.1016/j.csbj.2023.06.017 10.1097/RLI.0000000000000908 10.1080/20479700.2022.2097765 10.1109/ACCESS.2023.3338379 10.1016/j.compbiomed.2024.109179 10.1007/s00247-021-05130-8 10.1016/j.bspc.2024.106843 10.1001/jamanetworkopen.2021.6096 10.1186/s43055-024-01287-y 10.3390/app10041507 10.1007/s00330-023-10506-5 10.3390/jimaging6110127 |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.jrras.2025.101309 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1687-8507 |
ExternalDocumentID | 10_1016_j_jrras_2025_101309 S1687850725000214 |
GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFJKZ AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ IXB KQ8 KTTOD M41 M4Z NCXOZ OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c228t-aa4fd0c7ed64927763e1565f2b58c2bf1352fca7e983781b3c888b9dab8a91c53 |
IEDL.DBID | IXB |
ISSN | 1687-8507 |
IngestDate | Tue Jul 01 02:37:04 EDT 2025 Sat Feb 22 15:41:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Model evaluation YOLOv11 Bone fracture detection X-ray images Multi-task learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c228t-aa4fd0c7ed64927763e1565f2b58c2bf1352fca7e983781b3c888b9dab8a91c53 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1687850725000214 |
ParticipantIDs | crossref_primary_10_1016_j_jrras_2025_101309 elsevier_sciencedirect_doi_10_1016_j_jrras_2025_101309 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2025 2025-03-00 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
PublicationDecade | 2020 |
PublicationTitle | Journal of radiation research and applied sciences |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ibad, de Cesar Netto, Shakoor, Sisniega, Liu, Siewerdsen (bib11) 2023; 58 Yadav, Rathor (bib35) 2020 Karanam, Srinivas, Chakravarty (bib17) 2022 Yoon, Lee, Kane, Kuo, Lin, Chung (bib38) 2021; 4 Hussain (bib10) 2024; 12 Kandel, Castelli, Popovič (bib15) 2020; 6 Fatan, Hosseinzadeh, Askari, Sheikhi, Rezaeijo, Salmanpour (bib8) 2022 Jiang, Ergu, Liu, Cai, Ma (bib13) 2022; 199 Meena, Roy (bib20) 2022; 12 Tanzi, Vezzetti, Moreno, Moos (bib32) 2020; 10 Jones, Sharma, Hotchkiss, Sperling, Hamburger, Ledig (bib14) 2020; 3 Ryu, Lee, Jang, Koh, Bae, Jegal (bib28) 2023; 21 Soós, Szentpétery, Raterman, Lems, Bhattoa, Szekanecz (bib30) 2022; 18 Guo, Tahir, Hore, Collins, Rideout, Wang (bib9) 2024; 182 Burr, Milgrom (bib5) 2001 AkbarnezhadSany, EntezariZarch, AlipoorKermani, Shahin, Cheki, Karami (bib2) 2025; 35 Terven, Córdova-Esparza, Romero-González (bib33) 2023; 5 Ponkilainen, Kuitunen, Liukkonen, Vaajala, Reito, Uimonen (bib25) 2022; 11 Chevalley, Brandi, Cashman, Cavalier, Harvey, Maggi (bib6) 2022; 34 Yu, Liu, Li, Liu, Bao, Jin (bib39) 2025; 99 Kandel, Castelli, Popovič (bib16) 2021; 7 Karanam, Srinivas, Chakravarty (bib18) 2023; 30 Offiah (bib23) 2022; 52 Bijari, Sayfollahi, Mardokh-Rouhani, Bijari, Moradian, Zahiri (bib4) 2024; 11 Su, Adam, Nasrudin, Ayob, Punganan (bib31) 2023; 13 Abbas, Adnan, Javid, Majeed, Ahsan, Hassan (bib1) 2020 Vasilakakis, Iosifidou, Fragkaki, Iakovidis (bib34) 2019 Mahboubisarighieh, Shahverdi, Jafarpoor Nesheli, Alipoor Kermani, Niknam, Torkashvand (bib19) 2024; 55 Mu, Xue, Guo, Xu, Wang, Li (bib21) 2020 Ni, Zhao, Zhang, Chen, Wang, Tian (bib22) 2024; 34 Zhang, Lin, Pan, Shao, Xu, Cao (bib40) 2024; 170 Rezaeijo, Harimi, Salmanpour (bib27) 2022 Javanmardi, Hosseinzadeh, Hajianfar, Nabizadeh, Rezaeijo, Rahmim (bib12) 2022 Raisuddin, Vaattovaara, Nevalainen, Nikki, Järvenpää, Makkonen (bib26) 2021; 11 Salmanpour, Hosseinzadeh, Akbari, Borazjani, Mojallal, Askari (bib29) 2022 Parsa, Banerjee (bib24) 2021 Yeoh, Goh, Hasikin, Wu, Lai (bib37) 2023; 11 Bhuiyan, Tarin, Niaz, Dolon, Afroz, Rahman (bib3) 2024 Ye, Yang, Lin, Wang, Song, Xie (bib36) 2024; 34 Diwan, Anirudh, Tembhurne (bib7) 2023; 82 Abbas (10.1016/j.jrras.2025.101309_bib1) 2020 Fatan (10.1016/j.jrras.2025.101309_bib8) 2022 Ni (10.1016/j.jrras.2025.101309_bib22) 2024; 34 Bhuiyan (10.1016/j.jrras.2025.101309_bib3) 2024 Guo (10.1016/j.jrras.2025.101309_bib9) 2024; 182 Parsa (10.1016/j.jrras.2025.101309_bib24) 2021 Jones (10.1016/j.jrras.2025.101309_bib14) 2020; 3 Chevalley (10.1016/j.jrras.2025.101309_bib6) 2022; 34 Karanam (10.1016/j.jrras.2025.101309_bib17) 2022 Meena (10.1016/j.jrras.2025.101309_bib20) 2022; 12 Tanzi (10.1016/j.jrras.2025.101309_bib32) 2020; 10 Yeoh (10.1016/j.jrras.2025.101309_bib37) 2023; 11 Javanmardi (10.1016/j.jrras.2025.101309_bib12) 2022 Diwan (10.1016/j.jrras.2025.101309_bib7) 2023; 82 Yoon (10.1016/j.jrras.2025.101309_bib38) 2021; 4 Karanam (10.1016/j.jrras.2025.101309_bib18) 2023; 30 Salmanpour (10.1016/j.jrras.2025.101309_bib29) 2022 Mu (10.1016/j.jrras.2025.101309_bib21) 2020 AkbarnezhadSany (10.1016/j.jrras.2025.101309_bib2) 2025; 35 Hussain (10.1016/j.jrras.2025.101309_bib10) 2024; 12 Soós (10.1016/j.jrras.2025.101309_bib30) 2022; 18 Offiah (10.1016/j.jrras.2025.101309_bib23) 2022; 52 Terven (10.1016/j.jrras.2025.101309_bib33) 2023; 5 Ibad (10.1016/j.jrras.2025.101309_bib11) 2023; 58 Jiang (10.1016/j.jrras.2025.101309_bib13) 2022; 199 Rezaeijo (10.1016/j.jrras.2025.101309_bib27) 2022 Ryu (10.1016/j.jrras.2025.101309_bib28) 2023; 21 Su (10.1016/j.jrras.2025.101309_bib31) 2023; 13 Ponkilainen (10.1016/j.jrras.2025.101309_bib25) 2022; 11 Vasilakakis (10.1016/j.jrras.2025.101309_bib34) 2019 Burr (10.1016/j.jrras.2025.101309_bib5) 2001 Mahboubisarighieh (10.1016/j.jrras.2025.101309_bib19) 2024; 55 Zhang (10.1016/j.jrras.2025.101309_bib40) 2024; 170 Ye (10.1016/j.jrras.2025.101309_bib36) 2024; 34 Yu (10.1016/j.jrras.2025.101309_bib39) 2025; 99 Bijari (10.1016/j.jrras.2025.101309_bib4) 2024; 11 Yadav (10.1016/j.jrras.2025.101309_bib35) 2020 Kandel (10.1016/j.jrras.2025.101309_bib15) 2020; 6 Kandel (10.1016/j.jrras.2025.101309_bib16) 2021; 7 Raisuddin (10.1016/j.jrras.2025.101309_bib26) 2021; 11 |
References_xml | – volume: 5 start-page: 1680 year: 2023 end-page: 1716 ident: bib33 article-title: A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas publication-title: Mach Learn Knowl Extr – start-page: 1 year: 2020 end-page: 6 ident: bib1 article-title: Lower leg bone fracture detection and classification using faster RCNN for X-rays images publication-title: 2020 IEEE 23rd international multitopic conference (INMIC) – start-page: 764 year: 2024 end-page: 769 ident: bib3 article-title: Fracture classification in musculoskeletal radiographs using custom CNN and ensemble learning publication-title: 2024 6th international conference on electrical engineering and information & communication technology (ICEEICT) – start-page: 726 year: 2019 end-page: 730 ident: bib34 article-title: Bone fracture identification in x-ray images using fuzzy wavelet features publication-title: 2019 IEEE 19th international conference on bioinformatics and bioengineering (BIBE) – year: 2022 ident: bib12 article-title: Multi-modality fusion coupled with deep learning for improved outcome prediction in head and neck cancer publication-title: Medical imaging 2022: Image processing – volume: 55 start-page: 1 year: 2024 end-page: 12 ident: bib19 article-title: Assessing the efficacy of 3D Dual-CycleGAN model for multi-contrast MRI synthesis publication-title: Egypt J Radiol Nucl Med – volume: 13 start-page: 3245 year: 2023 ident: bib31 article-title: Skeletal fracture detection with deep learning: A comprehensive review publication-title: Diagnostics – volume: 58 start-page: 99 year: 2023 end-page: 110 ident: bib11 article-title: Computed tomography: State-of-the-art advancements in musculoskeletal imaging publication-title: Investigative Radiology – volume: 18 start-page: 249 year: 2022 end-page: 257 ident: bib30 article-title: Effects of targeted therapies on bone in rheumatic and musculoskeletal diseases publication-title: Nature Reviews Rheumatology – volume: 11 start-page: 814 year: 2022 end-page: 825 ident: bib25 article-title: The incidence of musculoskeletal injuries: A systematic review and meta-analysis publication-title: Bone Joint Res – volume: 3 start-page: 144 year: 2020 ident: bib14 article-title: Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs publication-title: NPJ Digit Med – start-page: 211 year: 2022 end-page: 223 ident: bib8 publication-title: Fusion-based head and neck tumor segmentation and survival prediction using robust deep learning techniques and advanced hybrid machine learning systems BT - head and neck tumor segmentation and outcome prediction – year: 2022 ident: bib27 article-title: Fusion-based automated segmentation in head and neck cancer via advance deep learning techniques publication-title: 3D head and neck tumor segmentation in PET/CT challenge – volume: 82 start-page: 9243 year: 2023 end-page: 9275 ident: bib7 article-title: Object detection using YOLO: Challenges, architectural successors, datasets and applications publication-title: Multimedia Tools and Applications – volume: 182 year: 2024 ident: bib9 article-title: A multi-task learning model for clinically interpretable sesamoiditis grading publication-title: Computers in Biology and Medicine – volume: 99 year: 2025 ident: bib39 article-title: Multi-task learning for calcaneus fracture diagnosis of X-ray images publication-title: Biomedical Signal Processing and Control – start-page: 140 year: 2020 end-page: 144 ident: bib21 article-title: Automatic calcaneus fracture identification and segmentation using a multi-task U-Net publication-title: 2020 5th international conference on communication, image and signal processing (CCISP) – year: 2022 ident: bib29 article-title: Prediction of TNM stage in head and neck cancer using hybrid machine learning systems and radiomics features publication-title: Medical imaging 2022: Computer-aided diagnosis – start-page: 2352 year: 2021 end-page: 2362 ident: bib24 article-title: A multi-task learning approach for human activity segmentation and ergonomics risk assessment publication-title: Proceedings of the IEEE/CVF winter conference on applications of computer vision – volume: 35 year: 2025 ident: bib2 article-title: YOLOv8 outperforms traditional CNN models in mammography classification: Insights from a multi‐institutional dataset publication-title: International Journal of Imaging Systems and Technology – volume: 199 start-page: 1066 year: 2022 end-page: 1073 ident: bib13 article-title: A Review of Yolo algorithm developments publication-title: Procedia Computer Science – volume: 34 start-page: 3538 year: 2024 end-page: 3551 ident: bib22 article-title: MRI-based automated multitask deep learning system to evaluate supraspinatus tendon injuries publication-title: European Radiology – start-page: 1 year: 2022 end-page: 12 ident: bib17 article-title: A systematic approach to diagnosis and categorization of bone fractures in X-Ray imagery publication-title: International Journal of Healthcare Management – start-page: 282 year: 2020 end-page: 285 ident: bib35 article-title: Bone fracture detection and classification using deep learning approach publication-title: 2020 international conference on power electronics & IoT applications in renewable energy and its control (PARC) – volume: 21 start-page: 3452 year: 2023 end-page: 3458 ident: bib28 article-title: Diagnosis of osteoporotic vertebral compression fractures and fracture level detection using multitask learning with U-Net in lumbar spine lateral radiographs publication-title: Computational and Structural Biotechnology Journal – volume: 11 start-page: 643 year: 2024 ident: bib4 article-title: Radiomics and deep features: Robust classification of brain hemorrhages and reproducibility analysis using a 3D autoencoder neural network publication-title: Bioengineering – volume: 6 start-page: 127 year: 2020 ident: bib15 article-title: Musculoskeletal images classification for detection of fractures using transfer learning publication-title: J imaging – volume: 52 start-page: 2149 year: 2022 end-page: 2158 ident: bib23 article-title: Current and emerging artificial intelligence applications for pediatric musculoskeletal radiology publication-title: Pediatric Radiology – volume: 30 start-page: 369 year: 2023 end-page: 385 ident: bib18 article-title: A supervised approach to musculoskeletal imaging fracture detection and classification using deep learning algorithms publication-title: Computer Assisted Mechanics and Engineering Sciences – year: 2001 ident: bib5 article-title: Musculoskeletal fatigue and stress fractures – volume: 34 start-page: 4287 year: 2024 end-page: 4299 ident: bib36 article-title: Automatic detection, segmentation, and classification of primary bone tumors and bone infections using an ensemble multi-task deep learning framework on multi-parametric MRIs: A multi-center study publication-title: European Radiology – volume: 10 start-page: 1507 year: 2020 ident: bib32 article-title: X-Ray bone fracture classification using deep learning: A baseline for designing a reliable approach publication-title: Applied Sciences – volume: 4 year: 2021 ident: bib38 article-title: Development and validation of a deep learning model using convolutional neural networks to identify scaphoid fractures in radiographs publication-title: JAMA Network Open – volume: 11 start-page: 135323 year: 2023 end-page: 135333 ident: bib37 article-title: 3D efficient multi-task neural network for knee osteoarthritis diagnosis using MRI scans: Data from the osteoarthritis initiative publication-title: IEEE Access – volume: 170 year: 2024 ident: bib40 article-title: DeepmdQCT: A multitask network with domain invariant features and comprehensive attention mechanism for quantitative computer tomography diagnosis of osteoporosis publication-title: Computers in Biology and Medicine – volume: 34 start-page: 2603 year: 2022 end-page: 2623 ident: bib6 article-title: Role of vitamin D supplementation in the management of musculoskeletal diseases: Update from an European society of clinical and economical aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO) working group publication-title: Aging-Clinical & Experimental Research – volume: 12 start-page: 42816 year: 2024 end-page: 42833 ident: bib10 article-title: Yolov1 to v8: Unveiling each variant–a comprehensive review of yolo publication-title: IEEE Access – volume: 7 start-page: 100 year: 2021 ident: bib16 article-title: Comparing stacking ensemble techniques to improve musculoskeletal fracture image classification publication-title: J Imaging – volume: 12 start-page: 2420 year: 2022 ident: bib20 article-title: Bone fracture detection using deep supervised learning from radiological images: A paradigm shift publication-title: Diagnostics – volume: 11 start-page: 6006 year: 2021 ident: bib26 article-title: Critical evaluation of deep neural networks for wrist fracture detection publication-title: Scientific Reports – start-page: 1 year: 2020 ident: 10.1016/j.jrras.2025.101309_bib1 article-title: Lower leg bone fracture detection and classification using faster RCNN for X-rays images – volume: 35 issue: 1 year: 2025 ident: 10.1016/j.jrras.2025.101309_bib2 article-title: YOLOv8 outperforms traditional CNN models in mammography classification: Insights from a multi‐institutional dataset publication-title: International Journal of Imaging Systems and Technology doi: 10.1002/ima.70008 – volume: 11 start-page: 643 issue: 7 year: 2024 ident: 10.1016/j.jrras.2025.101309_bib4 article-title: Radiomics and deep features: Robust classification of brain hemorrhages and reproducibility analysis using a 3D autoencoder neural network publication-title: Bioengineering doi: 10.3390/bioengineering11070643 – volume: 12 start-page: 42816 year: 2024 ident: 10.1016/j.jrras.2025.101309_bib10 article-title: Yolov1 to v8: Unveiling each variant–a comprehensive review of yolo publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3378568 – volume: 12 start-page: 2420 issue: 10 year: 2022 ident: 10.1016/j.jrras.2025.101309_bib20 article-title: Bone fracture detection using deep supervised learning from radiological images: A paradigm shift publication-title: Diagnostics doi: 10.3390/diagnostics12102420 – volume: 7 start-page: 100 issue: 6 year: 2021 ident: 10.1016/j.jrras.2025.101309_bib16 article-title: Comparing stacking ensemble techniques to improve musculoskeletal fracture image classification publication-title: J Imaging doi: 10.3390/jimaging7060100 – volume: 170 year: 2024 ident: 10.1016/j.jrras.2025.101309_bib40 article-title: DeepmdQCT: A multitask network with domain invariant features and comprehensive attention mechanism for quantitative computer tomography diagnosis of osteoporosis publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2023.107916 – start-page: 2352 year: 2021 ident: 10.1016/j.jrras.2025.101309_bib24 article-title: A multi-task learning approach for human activity segmentation and ergonomics risk assessment – year: 2022 ident: 10.1016/j.jrras.2025.101309_bib12 article-title: Multi-modality fusion coupled with deep learning for improved outcome prediction in head and neck cancer – volume: 11 start-page: 814 issue: 11 year: 2022 ident: 10.1016/j.jrras.2025.101309_bib25 article-title: The incidence of musculoskeletal injuries: A systematic review and meta-analysis publication-title: Bone Joint Res doi: 10.1302/2046-3758.1111.BJR-2022-0181.R1 – volume: 34 start-page: 3538 issue: 6 year: 2024 ident: 10.1016/j.jrras.2025.101309_bib22 article-title: MRI-based automated multitask deep learning system to evaluate supraspinatus tendon injuries publication-title: European Radiology doi: 10.1007/s00330-023-10392-x – year: 2022 ident: 10.1016/j.jrras.2025.101309_bib27 article-title: Fusion-based automated segmentation in head and neck cancer via advance deep learning techniques – volume: 34 start-page: 2603 issue: 11 year: 2022 ident: 10.1016/j.jrras.2025.101309_bib6 article-title: Role of vitamin D supplementation in the management of musculoskeletal diseases: Update from an European society of clinical and economical aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO) working group publication-title: Aging-Clinical & Experimental Research doi: 10.1007/s40520-022-02279-6 – start-page: 764 year: 2024 ident: 10.1016/j.jrras.2025.101309_bib3 article-title: Fracture classification in musculoskeletal radiographs using custom CNN and ensemble learning – volume: 3 start-page: 144 issue: 1 year: 2020 ident: 10.1016/j.jrras.2025.101309_bib14 article-title: Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs publication-title: NPJ Digit Med doi: 10.1038/s41746-020-00352-w – start-page: 211 year: 2022 ident: 10.1016/j.jrras.2025.101309_bib8 – start-page: 140 year: 2020 ident: 10.1016/j.jrras.2025.101309_bib21 article-title: Automatic calcaneus fracture identification and segmentation using a multi-task U-Net – volume: 5 start-page: 1680 issue: 4 year: 2023 ident: 10.1016/j.jrras.2025.101309_bib33 article-title: A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas publication-title: Mach Learn Knowl Extr doi: 10.3390/make5040083 – volume: 199 start-page: 1066 year: 2022 ident: 10.1016/j.jrras.2025.101309_bib13 article-title: A Review of Yolo algorithm developments publication-title: Procedia Computer Science doi: 10.1016/j.procs.2022.01.135 – volume: 18 start-page: 249 issue: 5 year: 2022 ident: 10.1016/j.jrras.2025.101309_bib30 article-title: Effects of targeted therapies on bone in rheumatic and musculoskeletal diseases publication-title: Nature Reviews Rheumatology doi: 10.1038/s41584-022-00764-w – volume: 11 start-page: 6006 issue: 1 year: 2021 ident: 10.1016/j.jrras.2025.101309_bib26 article-title: Critical evaluation of deep neural networks for wrist fracture detection publication-title: Scientific Reports doi: 10.1038/s41598-021-85570-2 – volume: 82 start-page: 9243 issue: 6 year: 2023 ident: 10.1016/j.jrras.2025.101309_bib7 article-title: Object detection using YOLO: Challenges, architectural successors, datasets and applications publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-022-13644-y – volume: 13 start-page: 3245 issue: 20 year: 2023 ident: 10.1016/j.jrras.2025.101309_bib31 article-title: Skeletal fracture detection with deep learning: A comprehensive review publication-title: Diagnostics doi: 10.3390/diagnostics13203245 – volume: 21 start-page: 3452 year: 2023 ident: 10.1016/j.jrras.2025.101309_bib28 article-title: Diagnosis of osteoporotic vertebral compression fractures and fracture level detection using multitask learning with U-Net in lumbar spine lateral radiographs publication-title: Computational and Structural Biotechnology Journal doi: 10.1016/j.csbj.2023.06.017 – volume: 58 start-page: 99 issue: 1 year: 2023 ident: 10.1016/j.jrras.2025.101309_bib11 article-title: Computed tomography: State-of-the-art advancements in musculoskeletal imaging publication-title: Investigative Radiology doi: 10.1097/RLI.0000000000000908 – start-page: 1 year: 2022 ident: 10.1016/j.jrras.2025.101309_bib17 article-title: A systematic approach to diagnosis and categorization of bone fractures in X-Ray imagery publication-title: International Journal of Healthcare Management doi: 10.1080/20479700.2022.2097765 – volume: 11 start-page: 135323 year: 2023 ident: 10.1016/j.jrras.2025.101309_bib37 article-title: 3D efficient multi-task neural network for knee osteoarthritis diagnosis using MRI scans: Data from the osteoarthritis initiative publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3338379 – start-page: 282 year: 2020 ident: 10.1016/j.jrras.2025.101309_bib35 article-title: Bone fracture detection and classification using deep learning approach – volume: 182 year: 2024 ident: 10.1016/j.jrras.2025.101309_bib9 article-title: A multi-task learning model for clinically interpretable sesamoiditis grading publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2024.109179 – volume: 52 start-page: 2149 issue: 11 year: 2022 ident: 10.1016/j.jrras.2025.101309_bib23 article-title: Current and emerging artificial intelligence applications for pediatric musculoskeletal radiology publication-title: Pediatric Radiology doi: 10.1007/s00247-021-05130-8 – volume: 30 start-page: 369 issue: 3 year: 2023 ident: 10.1016/j.jrras.2025.101309_bib18 article-title: A supervised approach to musculoskeletal imaging fracture detection and classification using deep learning algorithms publication-title: Computer Assisted Mechanics and Engineering Sciences – volume: 99 year: 2025 ident: 10.1016/j.jrras.2025.101309_bib39 article-title: Multi-task learning for calcaneus fracture diagnosis of X-ray images publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2024.106843 – volume: 4 issue: 5 year: 2021 ident: 10.1016/j.jrras.2025.101309_bib38 article-title: Development and validation of a deep learning model using convolutional neural networks to identify scaphoid fractures in radiographs publication-title: JAMA Network Open doi: 10.1001/jamanetworkopen.2021.6096 – volume: 55 start-page: 1 issue: 1 year: 2024 ident: 10.1016/j.jrras.2025.101309_bib19 article-title: Assessing the efficacy of 3D Dual-CycleGAN model for multi-contrast MRI synthesis publication-title: Egypt J Radiol Nucl Med doi: 10.1186/s43055-024-01287-y – year: 2001 ident: 10.1016/j.jrras.2025.101309_bib5 – volume: 10 start-page: 1507 issue: 4 year: 2020 ident: 10.1016/j.jrras.2025.101309_bib32 article-title: X-Ray bone fracture classification using deep learning: A baseline for designing a reliable approach publication-title: Applied Sciences doi: 10.3390/app10041507 – volume: 34 start-page: 4287 issue: 7 year: 2024 ident: 10.1016/j.jrras.2025.101309_bib36 article-title: Automatic detection, segmentation, and classification of primary bone tumors and bone infections using an ensemble multi-task deep learning framework on multi-parametric MRIs: A multi-center study publication-title: European Radiology doi: 10.1007/s00330-023-10506-5 – volume: 6 start-page: 127 issue: 11 year: 2020 ident: 10.1016/j.jrras.2025.101309_bib15 article-title: Musculoskeletal images classification for detection of fractures using transfer learning publication-title: J imaging doi: 10.3390/jimaging6110127 – year: 2022 ident: 10.1016/j.jrras.2025.101309_bib29 article-title: Prediction of TNM stage in head and neck cancer using hybrid machine learning systems and radiomics features – start-page: 726 year: 2019 ident: 10.1016/j.jrras.2025.101309_bib34 article-title: Bone fracture identification in x-ray images using fuzzy wavelet features |
SSID | ssj0001925710 |
Score | 2.323731 |
Snippet | This study presents a multi-task learning framework based on the YOLOv11 architecture to improve both fracture detection and localization. The goal is to... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 101309 |
SubjectTerms | Bone fracture detection Model evaluation Multi-task learning X-ray images YOLOv11 |
Title | YOLOv11-based multi-task learning for enhanced bone fracture detection and classification in X-ray images |
URI | https://dx.doi.org/10.1016/j.jrras.2025.101309 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LIHgRn7i-yMGjYdu0aZujLi6LqHvQhfVU8tSuWJduV_Dfm0lbVBAPHhs6EL6EmUnyzTcInSmqqeIsJYEJNImjjBGZKUMCm2gtjWaRfz2_vUvG0_h6xmY9NOxqYYBW2fr-xqd7b92ODFo0B4uiGNyHSZZmLp2hoOlPfTNrUGqBIr7Z5dc9C3ebshElcP8TMOjEhzzNa15VAmS7KYORCIiJvwWob0FntIU222wRXzQT2kY9U-6gdc_aVMtdVDxObibvYUggFmnsyYGkFssX3DaDeMIuJ8WmfPbv_Fi-lQZbqItaVQZrU3seVolFqbGCNBp4Q36pcFHiGanEBy5encdZ7qHp6OphOCZt7wSiKM1qIkRsdaBSo5OY09R5EeNOasxSyTJFpQ1d4mWVSA0HRflQRsodhSXXQmaCh4pF-2itdJM6QDhQKk0NC61WNLaJkly6M0sgacqBl0j76LwDLF80Ehl5xx2b5x7fHPDNG3z7KOlAzX-sdO6c-F-Gh_81PEIb8NUwx47RWl2tzIlLJWp56vfKJywGxy0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwGA1jIvoiXnFe8-CjYW3a9PKowzF1lwc3qE8ht2on1tF1gv_eJG1RQXzwNeWD8CWc76Q5OR8AFwJLLGISIkc5EvleRBCPhEJOGkjJlSSevT0fjYPBzL9LSNICveYtjJFV1thfYbpF63qkW2ezu8iy7oMbRGGk6Qw2nv7YNLNe02wgMLqu2-T660dLrHdl5UqgA5CJaNyHrM5rXhTM-HZjYkY8o0z8rUJ9qzr9bbBV00V4Vc1oB7RUvgvWrWxTLPdA9jgZTt5dF5liJKFVB6KSLV9g3Q3iCWpSClX-bC_6IX_LFUzNw6hVoaBUpRVi5ZDlEgrDo41wyK4VzHKYoIJ9wOxVQ85yH8z6N9PeANXNE5DAOCoRY34qHREqGfgxDjWMKH1UIynmJBKYp65mXqlgoYqNpbzLPaHPwjyWjEcsdgXxDkA715M6BNARIgwVcVMpsJ8GgsdcH1ocjsPYCBNxB1w2CaOLyiODNuKxObX5pSa_tMpvBwRNUumPpaYaxf8KPPpv4DnYGExHQzq8Hd8fg03zpZKRnYB2WazUqeYVJT-z--YTUMzKVA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLOv11-based+multi-task+learning+for+enhanced+bone+fracture+detection+and+classification+in+X-ray+images&rft.jtitle=Journal+of+radiation+research+and+applied+sciences&rft.au=Wei%2C+Wanmian&rft.au=Huang%2C+Yan&rft.au=Zheng%2C+Junchi&rft.au=Rao%2C+Yuanyong&rft.date=2025-03-01&rft.pub=Elsevier+B.V&rft.issn=1687-8507&rft.eissn=1687-8507&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1016%2Fj.jrras.2025.101309&rft.externalDocID=S1687850725000214 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-8507&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-8507&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-8507&client=summon |