YOLOv11-based multi-task learning for enhanced bone fracture detection and classification in X-ray images

This study presents a multi-task learning framework based on the YOLOv11 architecture to improve both fracture detection and localization. The goal is to provide an efficient solution for clinical applications. We used a large dataset of X-ray images, including both fracture and non-fracture cases f...

Full description

Saved in:
Bibliographic Details
Published inJournal of radiation research and applied sciences Vol. 18; no. 1; p. 101309
Main Authors Wei, Wanmian, Huang, Yan, Zheng, Junchi, Rao, Yuanyong, Wei, Yongping, Tan, Xingyue, OuYang, Haiyang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2025
Subjects
Online AccessGet full text
ISSN1687-8507
1687-8507
DOI10.1016/j.jrras.2025.101309

Cover

Loading…
Abstract This study presents a multi-task learning framework based on the YOLOv11 architecture to improve both fracture detection and localization. The goal is to provide an efficient solution for clinical applications. We used a large dataset of X-ray images, including both fracture and non-fracture cases from the upper and lower extremities. The dataset was divided into three parts: training (70%), validation (15%), and test (15%). The training set had 10,966 cases (5778 normal, 5188 with fractures), while the validation and test sets each contained 2350 cases (1238 normal, 1112 with fractures). A multi-task learning model based on YOLOv11 was trained for fracture classification and localization. We applied data augmentation to prevent overfitting and improve generalization. Model performance was evaluated using two metrics: mean Average Precision (mAP) and Intersection over Union (IoU), with comparisons made to Faster R-CNN and SSD models. Training was done with a learning rate of 0.001 and a batch size of 16, using the Adam optimizer for better convergence. We also benchmarked the YOLOv11 model against Faster R-CNN and SSD to assess performance using mAP and IoU scores at different thresholds. The YOLOv11 model achieved excellent results, with a mean Average Precision (mAP) of 96.8% at an IoU threshold of 0.5 and an IoU of 92.5%. These results were better than Faster R-CNN (mAP: 87.5%, IoU: 85.23%) and SSD (mAP: 82.9%, IoU: 80.12%), showing that YOLOv11 outperformed these models in fracture detection and localization. This improvement highlights the model's strength and efficiency for real-time use. The YOLOv11-based multi-task learning framework significantly outperforms traditional methods, offering high accuracy and real-time fracture localization. This model shows great potential for clinical use, improving diagnostic accuracy, increasing productivity, and streamlining the workflow for radiologists.
AbstractList This study presents a multi-task learning framework based on the YOLOv11 architecture to improve both fracture detection and localization. The goal is to provide an efficient solution for clinical applications. We used a large dataset of X-ray images, including both fracture and non-fracture cases from the upper and lower extremities. The dataset was divided into three parts: training (70%), validation (15%), and test (15%). The training set had 10,966 cases (5778 normal, 5188 with fractures), while the validation and test sets each contained 2350 cases (1238 normal, 1112 with fractures). A multi-task learning model based on YOLOv11 was trained for fracture classification and localization. We applied data augmentation to prevent overfitting and improve generalization. Model performance was evaluated using two metrics: mean Average Precision (mAP) and Intersection over Union (IoU), with comparisons made to Faster R-CNN and SSD models. Training was done with a learning rate of 0.001 and a batch size of 16, using the Adam optimizer for better convergence. We also benchmarked the YOLOv11 model against Faster R-CNN and SSD to assess performance using mAP and IoU scores at different thresholds. The YOLOv11 model achieved excellent results, with a mean Average Precision (mAP) of 96.8% at an IoU threshold of 0.5 and an IoU of 92.5%. These results were better than Faster R-CNN (mAP: 87.5%, IoU: 85.23%) and SSD (mAP: 82.9%, IoU: 80.12%), showing that YOLOv11 outperformed these models in fracture detection and localization. This improvement highlights the model's strength and efficiency for real-time use. The YOLOv11-based multi-task learning framework significantly outperforms traditional methods, offering high accuracy and real-time fracture localization. This model shows great potential for clinical use, improving diagnostic accuracy, increasing productivity, and streamlining the workflow for radiologists.
ArticleNumber 101309
Author Rao, Yuanyong
Tan, Xingyue
Zheng, Junchi
OuYang, Haiyang
Huang, Yan
Wei, Wanmian
Wei, Yongping
Author_xml – sequence: 1
  givenname: Wanmian
  surname: Wei
  fullname: Wei, Wanmian
  organization: Department of Orthopedic surgery, The first People's Hospital of Hechi, No. 124 Guiyu Street, Hechi City, Guangxi, 546300, China
– sequence: 2
  givenname: Yan
  surname: Huang
  fullname: Huang, Yan
  organization: Department of medical imaging, The first People's Hospital of Hechi, No. 124 Guiyu Street, Hechi City, Guangxi, 546300, China
– sequence: 3
  givenname: Junchi
  surname: Zheng
  fullname: Zheng, Junchi
  organization: Department of Joint and Sports Medicine, Zhongshan Torch Development Zone People's Hospital, No.123, Yat Sin Road, Zhongshan Torch Development Zone, Guangdong, 528437, China
– sequence: 4
  givenname: Yuanyong
  surname: Rao
  fullname: Rao, Yuanyong
  organization: Department of Orthopedic surgery, The first People's Hospital of Hechi, No. 124 Guiyu Street, Hechi City, Guangxi, 546300, China
– sequence: 5
  givenname: Yongping
  surname: Wei
  fullname: Wei, Yongping
  organization: Department of Orthopedic surgery, The first People's Hospital of Hechi, No. 124 Guiyu Street, Hechi City, Guangxi, 546300, China
– sequence: 6
  givenname: Xingyue
  surname: Tan
  fullname: Tan, Xingyue
  organization: Department of Orthopedic surgery, The first People's Hospital of Hechi, No. 124 Guiyu Street, Hechi City, Guangxi, 546300, China
– sequence: 7
  givenname: Haiyang
  surname: OuYang
  fullname: OuYang, Haiyang
  email: ouyanghaiyang_012@163.com
  organization: Department of Joint and Sports Medicine, Zhongshan Torch Development Zone People's Hospital, No.123, Yat Sin Road, Zhongshan Torch Development Zone, Guangdong, 528437, China
BookMark eNp9kE1OwzAQhS1UJAr0BGx8gRTbqWNnwQJV_EmVugEJVtbEGReH1EF2Wqm3J2lZsGI1o9G8mfe-SzIJXUBCbjibc8aL22bexAhpLpiQ4yRn5RmZ8kKrTEumJn_6CzJLqWGM8VJIxdmU-I_1ar3nPKsgYU23u7b3WQ_pi7YIMfiwoa6LFMMnBDssVMNv6iLYfheR1tij7X0XKISa2hZS8s5bOI58oO9ZhAP1W9hguibnDtqEs996Rd4eH16Xz9lq_fSyvF9lVgjdZwALVzOrsC4WpVCqyJHLQjpRSW1F5XguhbOgsNS50rzKrda6KmuoNJTcyvyK5Ke7NnYpRXTmOw4O4sFwZkZgpjFHYGYEZk7ABtXdSYWDtb3HaJL1OEb2cYho6s7_q_8BjX530g
Cites_doi 10.1002/ima.70008
10.3390/bioengineering11070643
10.1109/ACCESS.2024.3378568
10.3390/diagnostics12102420
10.3390/jimaging7060100
10.1016/j.compbiomed.2023.107916
10.1302/2046-3758.1111.BJR-2022-0181.R1
10.1007/s00330-023-10392-x
10.1007/s40520-022-02279-6
10.1038/s41746-020-00352-w
10.3390/make5040083
10.1016/j.procs.2022.01.135
10.1038/s41584-022-00764-w
10.1038/s41598-021-85570-2
10.1007/s11042-022-13644-y
10.3390/diagnostics13203245
10.1016/j.csbj.2023.06.017
10.1097/RLI.0000000000000908
10.1080/20479700.2022.2097765
10.1109/ACCESS.2023.3338379
10.1016/j.compbiomed.2024.109179
10.1007/s00247-021-05130-8
10.1016/j.bspc.2024.106843
10.1001/jamanetworkopen.2021.6096
10.1186/s43055-024-01287-y
10.3390/app10041507
10.1007/s00330-023-10506-5
10.3390/jimaging6110127
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jrras.2025.101309
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1687-8507
ExternalDocumentID 10_1016_j_jrras_2025_101309
S1687850725000214
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFJKZ
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
IXB
KQ8
KTTOD
M41
M4Z
NCXOZ
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c228t-aa4fd0c7ed64927763e1565f2b58c2bf1352fca7e983781b3c888b9dab8a91c53
IEDL.DBID IXB
ISSN 1687-8507
IngestDate Tue Jul 01 02:37:04 EDT 2025
Sat Feb 22 15:41:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Model evaluation
YOLOv11
Bone fracture detection
X-ray images
Multi-task learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c228t-aa4fd0c7ed64927763e1565f2b58c2bf1352fca7e983781b3c888b9dab8a91c53
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1687850725000214
ParticipantIDs crossref_primary_10_1016_j_jrras_2025_101309
elsevier_sciencedirect_doi_10_1016_j_jrras_2025_101309
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Journal of radiation research and applied sciences
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ibad, de Cesar Netto, Shakoor, Sisniega, Liu, Siewerdsen (bib11) 2023; 58
Yadav, Rathor (bib35) 2020
Karanam, Srinivas, Chakravarty (bib17) 2022
Yoon, Lee, Kane, Kuo, Lin, Chung (bib38) 2021; 4
Hussain (bib10) 2024; 12
Kandel, Castelli, Popovič (bib15) 2020; 6
Fatan, Hosseinzadeh, Askari, Sheikhi, Rezaeijo, Salmanpour (bib8) 2022
Jiang, Ergu, Liu, Cai, Ma (bib13) 2022; 199
Meena, Roy (bib20) 2022; 12
Tanzi, Vezzetti, Moreno, Moos (bib32) 2020; 10
Jones, Sharma, Hotchkiss, Sperling, Hamburger, Ledig (bib14) 2020; 3
Ryu, Lee, Jang, Koh, Bae, Jegal (bib28) 2023; 21
Soós, Szentpétery, Raterman, Lems, Bhattoa, Szekanecz (bib30) 2022; 18
Guo, Tahir, Hore, Collins, Rideout, Wang (bib9) 2024; 182
Burr, Milgrom (bib5) 2001
AkbarnezhadSany, EntezariZarch, AlipoorKermani, Shahin, Cheki, Karami (bib2) 2025; 35
Terven, Córdova-Esparza, Romero-González (bib33) 2023; 5
Ponkilainen, Kuitunen, Liukkonen, Vaajala, Reito, Uimonen (bib25) 2022; 11
Chevalley, Brandi, Cashman, Cavalier, Harvey, Maggi (bib6) 2022; 34
Yu, Liu, Li, Liu, Bao, Jin (bib39) 2025; 99
Kandel, Castelli, Popovič (bib16) 2021; 7
Karanam, Srinivas, Chakravarty (bib18) 2023; 30
Offiah (bib23) 2022; 52
Bijari, Sayfollahi, Mardokh-Rouhani, Bijari, Moradian, Zahiri (bib4) 2024; 11
Su, Adam, Nasrudin, Ayob, Punganan (bib31) 2023; 13
Abbas, Adnan, Javid, Majeed, Ahsan, Hassan (bib1) 2020
Vasilakakis, Iosifidou, Fragkaki, Iakovidis (bib34) 2019
Mahboubisarighieh, Shahverdi, Jafarpoor Nesheli, Alipoor Kermani, Niknam, Torkashvand (bib19) 2024; 55
Mu, Xue, Guo, Xu, Wang, Li (bib21) 2020
Ni, Zhao, Zhang, Chen, Wang, Tian (bib22) 2024; 34
Zhang, Lin, Pan, Shao, Xu, Cao (bib40) 2024; 170
Rezaeijo, Harimi, Salmanpour (bib27) 2022
Javanmardi, Hosseinzadeh, Hajianfar, Nabizadeh, Rezaeijo, Rahmim (bib12) 2022
Raisuddin, Vaattovaara, Nevalainen, Nikki, Järvenpää, Makkonen (bib26) 2021; 11
Salmanpour, Hosseinzadeh, Akbari, Borazjani, Mojallal, Askari (bib29) 2022
Parsa, Banerjee (bib24) 2021
Yeoh, Goh, Hasikin, Wu, Lai (bib37) 2023; 11
Bhuiyan, Tarin, Niaz, Dolon, Afroz, Rahman (bib3) 2024
Ye, Yang, Lin, Wang, Song, Xie (bib36) 2024; 34
Diwan, Anirudh, Tembhurne (bib7) 2023; 82
Abbas (10.1016/j.jrras.2025.101309_bib1) 2020
Fatan (10.1016/j.jrras.2025.101309_bib8) 2022
Ni (10.1016/j.jrras.2025.101309_bib22) 2024; 34
Bhuiyan (10.1016/j.jrras.2025.101309_bib3) 2024
Guo (10.1016/j.jrras.2025.101309_bib9) 2024; 182
Parsa (10.1016/j.jrras.2025.101309_bib24) 2021
Jones (10.1016/j.jrras.2025.101309_bib14) 2020; 3
Chevalley (10.1016/j.jrras.2025.101309_bib6) 2022; 34
Karanam (10.1016/j.jrras.2025.101309_bib17) 2022
Meena (10.1016/j.jrras.2025.101309_bib20) 2022; 12
Tanzi (10.1016/j.jrras.2025.101309_bib32) 2020; 10
Yeoh (10.1016/j.jrras.2025.101309_bib37) 2023; 11
Javanmardi (10.1016/j.jrras.2025.101309_bib12) 2022
Diwan (10.1016/j.jrras.2025.101309_bib7) 2023; 82
Yoon (10.1016/j.jrras.2025.101309_bib38) 2021; 4
Karanam (10.1016/j.jrras.2025.101309_bib18) 2023; 30
Salmanpour (10.1016/j.jrras.2025.101309_bib29) 2022
Mu (10.1016/j.jrras.2025.101309_bib21) 2020
AkbarnezhadSany (10.1016/j.jrras.2025.101309_bib2) 2025; 35
Hussain (10.1016/j.jrras.2025.101309_bib10) 2024; 12
Soós (10.1016/j.jrras.2025.101309_bib30) 2022; 18
Offiah (10.1016/j.jrras.2025.101309_bib23) 2022; 52
Terven (10.1016/j.jrras.2025.101309_bib33) 2023; 5
Ibad (10.1016/j.jrras.2025.101309_bib11) 2023; 58
Jiang (10.1016/j.jrras.2025.101309_bib13) 2022; 199
Rezaeijo (10.1016/j.jrras.2025.101309_bib27) 2022
Ryu (10.1016/j.jrras.2025.101309_bib28) 2023; 21
Su (10.1016/j.jrras.2025.101309_bib31) 2023; 13
Ponkilainen (10.1016/j.jrras.2025.101309_bib25) 2022; 11
Vasilakakis (10.1016/j.jrras.2025.101309_bib34) 2019
Burr (10.1016/j.jrras.2025.101309_bib5) 2001
Mahboubisarighieh (10.1016/j.jrras.2025.101309_bib19) 2024; 55
Zhang (10.1016/j.jrras.2025.101309_bib40) 2024; 170
Ye (10.1016/j.jrras.2025.101309_bib36) 2024; 34
Yu (10.1016/j.jrras.2025.101309_bib39) 2025; 99
Bijari (10.1016/j.jrras.2025.101309_bib4) 2024; 11
Yadav (10.1016/j.jrras.2025.101309_bib35) 2020
Kandel (10.1016/j.jrras.2025.101309_bib15) 2020; 6
Kandel (10.1016/j.jrras.2025.101309_bib16) 2021; 7
Raisuddin (10.1016/j.jrras.2025.101309_bib26) 2021; 11
References_xml – volume: 5
  start-page: 1680
  year: 2023
  end-page: 1716
  ident: bib33
  article-title: A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas
  publication-title: Mach Learn Knowl Extr
– start-page: 1
  year: 2020
  end-page: 6
  ident: bib1
  article-title: Lower leg bone fracture detection and classification using faster RCNN for X-rays images
  publication-title: 2020 IEEE 23rd international multitopic conference (INMIC)
– start-page: 764
  year: 2024
  end-page: 769
  ident: bib3
  article-title: Fracture classification in musculoskeletal radiographs using custom CNN and ensemble learning
  publication-title: 2024 6th international conference on electrical engineering and information & communication technology (ICEEICT)
– start-page: 726
  year: 2019
  end-page: 730
  ident: bib34
  article-title: Bone fracture identification in x-ray images using fuzzy wavelet features
  publication-title: 2019 IEEE 19th international conference on bioinformatics and bioengineering (BIBE)
– year: 2022
  ident: bib12
  article-title: Multi-modality fusion coupled with deep learning for improved outcome prediction in head and neck cancer
  publication-title: Medical imaging 2022: Image processing
– volume: 55
  start-page: 1
  year: 2024
  end-page: 12
  ident: bib19
  article-title: Assessing the efficacy of 3D Dual-CycleGAN model for multi-contrast MRI synthesis
  publication-title: Egypt J Radiol Nucl Med
– volume: 13
  start-page: 3245
  year: 2023
  ident: bib31
  article-title: Skeletal fracture detection with deep learning: A comprehensive review
  publication-title: Diagnostics
– volume: 58
  start-page: 99
  year: 2023
  end-page: 110
  ident: bib11
  article-title: Computed tomography: State-of-the-art advancements in musculoskeletal imaging
  publication-title: Investigative Radiology
– volume: 18
  start-page: 249
  year: 2022
  end-page: 257
  ident: bib30
  article-title: Effects of targeted therapies on bone in rheumatic and musculoskeletal diseases
  publication-title: Nature Reviews Rheumatology
– volume: 11
  start-page: 814
  year: 2022
  end-page: 825
  ident: bib25
  article-title: The incidence of musculoskeletal injuries: A systematic review and meta-analysis
  publication-title: Bone Joint Res
– volume: 3
  start-page: 144
  year: 2020
  ident: bib14
  article-title: Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs
  publication-title: NPJ Digit Med
– start-page: 211
  year: 2022
  end-page: 223
  ident: bib8
  publication-title: Fusion-based head and neck tumor segmentation and survival prediction using robust deep learning techniques and advanced hybrid machine learning systems BT - head and neck tumor segmentation and outcome prediction
– year: 2022
  ident: bib27
  article-title: Fusion-based automated segmentation in head and neck cancer via advance deep learning techniques
  publication-title: 3D head and neck tumor segmentation in PET/CT challenge
– volume: 82
  start-page: 9243
  year: 2023
  end-page: 9275
  ident: bib7
  article-title: Object detection using YOLO: Challenges, architectural successors, datasets and applications
  publication-title: Multimedia Tools and Applications
– volume: 182
  year: 2024
  ident: bib9
  article-title: A multi-task learning model for clinically interpretable sesamoiditis grading
  publication-title: Computers in Biology and Medicine
– volume: 99
  year: 2025
  ident: bib39
  article-title: Multi-task learning for calcaneus fracture diagnosis of X-ray images
  publication-title: Biomedical Signal Processing and Control
– start-page: 140
  year: 2020
  end-page: 144
  ident: bib21
  article-title: Automatic calcaneus fracture identification and segmentation using a multi-task U-Net
  publication-title: 2020 5th international conference on communication, image and signal processing (CCISP)
– year: 2022
  ident: bib29
  article-title: Prediction of TNM stage in head and neck cancer using hybrid machine learning systems and radiomics features
  publication-title: Medical imaging 2022: Computer-aided diagnosis
– start-page: 2352
  year: 2021
  end-page: 2362
  ident: bib24
  article-title: A multi-task learning approach for human activity segmentation and ergonomics risk assessment
  publication-title: Proceedings of the IEEE/CVF winter conference on applications of computer vision
– volume: 35
  year: 2025
  ident: bib2
  article-title: YOLOv8 outperforms traditional CNN models in mammography classification: Insights from a multi‐institutional dataset
  publication-title: International Journal of Imaging Systems and Technology
– volume: 199
  start-page: 1066
  year: 2022
  end-page: 1073
  ident: bib13
  article-title: A Review of Yolo algorithm developments
  publication-title: Procedia Computer Science
– volume: 34
  start-page: 3538
  year: 2024
  end-page: 3551
  ident: bib22
  article-title: MRI-based automated multitask deep learning system to evaluate supraspinatus tendon injuries
  publication-title: European Radiology
– start-page: 1
  year: 2022
  end-page: 12
  ident: bib17
  article-title: A systematic approach to diagnosis and categorization of bone fractures in X-Ray imagery
  publication-title: International Journal of Healthcare Management
– start-page: 282
  year: 2020
  end-page: 285
  ident: bib35
  article-title: Bone fracture detection and classification using deep learning approach
  publication-title: 2020 international conference on power electronics & IoT applications in renewable energy and its control (PARC)
– volume: 21
  start-page: 3452
  year: 2023
  end-page: 3458
  ident: bib28
  article-title: Diagnosis of osteoporotic vertebral compression fractures and fracture level detection using multitask learning with U-Net in lumbar spine lateral radiographs
  publication-title: Computational and Structural Biotechnology Journal
– volume: 11
  start-page: 643
  year: 2024
  ident: bib4
  article-title: Radiomics and deep features: Robust classification of brain hemorrhages and reproducibility analysis using a 3D autoencoder neural network
  publication-title: Bioengineering
– volume: 6
  start-page: 127
  year: 2020
  ident: bib15
  article-title: Musculoskeletal images classification for detection of fractures using transfer learning
  publication-title: J imaging
– volume: 52
  start-page: 2149
  year: 2022
  end-page: 2158
  ident: bib23
  article-title: Current and emerging artificial intelligence applications for pediatric musculoskeletal radiology
  publication-title: Pediatric Radiology
– volume: 30
  start-page: 369
  year: 2023
  end-page: 385
  ident: bib18
  article-title: A supervised approach to musculoskeletal imaging fracture detection and classification using deep learning algorithms
  publication-title: Computer Assisted Mechanics and Engineering Sciences
– year: 2001
  ident: bib5
  article-title: Musculoskeletal fatigue and stress fractures
– volume: 34
  start-page: 4287
  year: 2024
  end-page: 4299
  ident: bib36
  article-title: Automatic detection, segmentation, and classification of primary bone tumors and bone infections using an ensemble multi-task deep learning framework on multi-parametric MRIs: A multi-center study
  publication-title: European Radiology
– volume: 10
  start-page: 1507
  year: 2020
  ident: bib32
  article-title: X-Ray bone fracture classification using deep learning: A baseline for designing a reliable approach
  publication-title: Applied Sciences
– volume: 4
  year: 2021
  ident: bib38
  article-title: Development and validation of a deep learning model using convolutional neural networks to identify scaphoid fractures in radiographs
  publication-title: JAMA Network Open
– volume: 11
  start-page: 135323
  year: 2023
  end-page: 135333
  ident: bib37
  article-title: 3D efficient multi-task neural network for knee osteoarthritis diagnosis using MRI scans: Data from the osteoarthritis initiative
  publication-title: IEEE Access
– volume: 170
  year: 2024
  ident: bib40
  article-title: DeepmdQCT: A multitask network with domain invariant features and comprehensive attention mechanism for quantitative computer tomography diagnosis of osteoporosis
  publication-title: Computers in Biology and Medicine
– volume: 34
  start-page: 2603
  year: 2022
  end-page: 2623
  ident: bib6
  article-title: Role of vitamin D supplementation in the management of musculoskeletal diseases: Update from an European society of clinical and economical aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO) working group
  publication-title: Aging-Clinical & Experimental Research
– volume: 12
  start-page: 42816
  year: 2024
  end-page: 42833
  ident: bib10
  article-title: Yolov1 to v8: Unveiling each variant–a comprehensive review of yolo
  publication-title: IEEE Access
– volume: 7
  start-page: 100
  year: 2021
  ident: bib16
  article-title: Comparing stacking ensemble techniques to improve musculoskeletal fracture image classification
  publication-title: J Imaging
– volume: 12
  start-page: 2420
  year: 2022
  ident: bib20
  article-title: Bone fracture detection using deep supervised learning from radiological images: A paradigm shift
  publication-title: Diagnostics
– volume: 11
  start-page: 6006
  year: 2021
  ident: bib26
  article-title: Critical evaluation of deep neural networks for wrist fracture detection
  publication-title: Scientific Reports
– start-page: 1
  year: 2020
  ident: 10.1016/j.jrras.2025.101309_bib1
  article-title: Lower leg bone fracture detection and classification using faster RCNN for X-rays images
– volume: 35
  issue: 1
  year: 2025
  ident: 10.1016/j.jrras.2025.101309_bib2
  article-title: YOLOv8 outperforms traditional CNN models in mammography classification: Insights from a multi‐institutional dataset
  publication-title: International Journal of Imaging Systems and Technology
  doi: 10.1002/ima.70008
– volume: 11
  start-page: 643
  issue: 7
  year: 2024
  ident: 10.1016/j.jrras.2025.101309_bib4
  article-title: Radiomics and deep features: Robust classification of brain hemorrhages and reproducibility analysis using a 3D autoencoder neural network
  publication-title: Bioengineering
  doi: 10.3390/bioengineering11070643
– volume: 12
  start-page: 42816
  year: 2024
  ident: 10.1016/j.jrras.2025.101309_bib10
  article-title: Yolov1 to v8: Unveiling each variant–a comprehensive review of yolo
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3378568
– volume: 12
  start-page: 2420
  issue: 10
  year: 2022
  ident: 10.1016/j.jrras.2025.101309_bib20
  article-title: Bone fracture detection using deep supervised learning from radiological images: A paradigm shift
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12102420
– volume: 7
  start-page: 100
  issue: 6
  year: 2021
  ident: 10.1016/j.jrras.2025.101309_bib16
  article-title: Comparing stacking ensemble techniques to improve musculoskeletal fracture image classification
  publication-title: J Imaging
  doi: 10.3390/jimaging7060100
– volume: 170
  year: 2024
  ident: 10.1016/j.jrras.2025.101309_bib40
  article-title: DeepmdQCT: A multitask network with domain invariant features and comprehensive attention mechanism for quantitative computer tomography diagnosis of osteoporosis
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2023.107916
– start-page: 2352
  year: 2021
  ident: 10.1016/j.jrras.2025.101309_bib24
  article-title: A multi-task learning approach for human activity segmentation and ergonomics risk assessment
– year: 2022
  ident: 10.1016/j.jrras.2025.101309_bib12
  article-title: Multi-modality fusion coupled with deep learning for improved outcome prediction in head and neck cancer
– volume: 11
  start-page: 814
  issue: 11
  year: 2022
  ident: 10.1016/j.jrras.2025.101309_bib25
  article-title: The incidence of musculoskeletal injuries: A systematic review and meta-analysis
  publication-title: Bone Joint Res
  doi: 10.1302/2046-3758.1111.BJR-2022-0181.R1
– volume: 34
  start-page: 3538
  issue: 6
  year: 2024
  ident: 10.1016/j.jrras.2025.101309_bib22
  article-title: MRI-based automated multitask deep learning system to evaluate supraspinatus tendon injuries
  publication-title: European Radiology
  doi: 10.1007/s00330-023-10392-x
– year: 2022
  ident: 10.1016/j.jrras.2025.101309_bib27
  article-title: Fusion-based automated segmentation in head and neck cancer via advance deep learning techniques
– volume: 34
  start-page: 2603
  issue: 11
  year: 2022
  ident: 10.1016/j.jrras.2025.101309_bib6
  article-title: Role of vitamin D supplementation in the management of musculoskeletal diseases: Update from an European society of clinical and economical aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO) working group
  publication-title: Aging-Clinical & Experimental Research
  doi: 10.1007/s40520-022-02279-6
– start-page: 764
  year: 2024
  ident: 10.1016/j.jrras.2025.101309_bib3
  article-title: Fracture classification in musculoskeletal radiographs using custom CNN and ensemble learning
– volume: 3
  start-page: 144
  issue: 1
  year: 2020
  ident: 10.1016/j.jrras.2025.101309_bib14
  article-title: Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-020-00352-w
– start-page: 211
  year: 2022
  ident: 10.1016/j.jrras.2025.101309_bib8
– start-page: 140
  year: 2020
  ident: 10.1016/j.jrras.2025.101309_bib21
  article-title: Automatic calcaneus fracture identification and segmentation using a multi-task U-Net
– volume: 5
  start-page: 1680
  issue: 4
  year: 2023
  ident: 10.1016/j.jrras.2025.101309_bib33
  article-title: A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas
  publication-title: Mach Learn Knowl Extr
  doi: 10.3390/make5040083
– volume: 199
  start-page: 1066
  year: 2022
  ident: 10.1016/j.jrras.2025.101309_bib13
  article-title: A Review of Yolo algorithm developments
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2022.01.135
– volume: 18
  start-page: 249
  issue: 5
  year: 2022
  ident: 10.1016/j.jrras.2025.101309_bib30
  article-title: Effects of targeted therapies on bone in rheumatic and musculoskeletal diseases
  publication-title: Nature Reviews Rheumatology
  doi: 10.1038/s41584-022-00764-w
– volume: 11
  start-page: 6006
  issue: 1
  year: 2021
  ident: 10.1016/j.jrras.2025.101309_bib26
  article-title: Critical evaluation of deep neural networks for wrist fracture detection
  publication-title: Scientific Reports
  doi: 10.1038/s41598-021-85570-2
– volume: 82
  start-page: 9243
  issue: 6
  year: 2023
  ident: 10.1016/j.jrras.2025.101309_bib7
  article-title: Object detection using YOLO: Challenges, architectural successors, datasets and applications
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-022-13644-y
– volume: 13
  start-page: 3245
  issue: 20
  year: 2023
  ident: 10.1016/j.jrras.2025.101309_bib31
  article-title: Skeletal fracture detection with deep learning: A comprehensive review
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13203245
– volume: 21
  start-page: 3452
  year: 2023
  ident: 10.1016/j.jrras.2025.101309_bib28
  article-title: Diagnosis of osteoporotic vertebral compression fractures and fracture level detection using multitask learning with U-Net in lumbar spine lateral radiographs
  publication-title: Computational and Structural Biotechnology Journal
  doi: 10.1016/j.csbj.2023.06.017
– volume: 58
  start-page: 99
  issue: 1
  year: 2023
  ident: 10.1016/j.jrras.2025.101309_bib11
  article-title: Computed tomography: State-of-the-art advancements in musculoskeletal imaging
  publication-title: Investigative Radiology
  doi: 10.1097/RLI.0000000000000908
– start-page: 1
  year: 2022
  ident: 10.1016/j.jrras.2025.101309_bib17
  article-title: A systematic approach to diagnosis and categorization of bone fractures in X-Ray imagery
  publication-title: International Journal of Healthcare Management
  doi: 10.1080/20479700.2022.2097765
– volume: 11
  start-page: 135323
  year: 2023
  ident: 10.1016/j.jrras.2025.101309_bib37
  article-title: 3D efficient multi-task neural network for knee osteoarthritis diagnosis using MRI scans: Data from the osteoarthritis initiative
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3338379
– start-page: 282
  year: 2020
  ident: 10.1016/j.jrras.2025.101309_bib35
  article-title: Bone fracture detection and classification using deep learning approach
– volume: 182
  year: 2024
  ident: 10.1016/j.jrras.2025.101309_bib9
  article-title: A multi-task learning model for clinically interpretable sesamoiditis grading
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2024.109179
– volume: 52
  start-page: 2149
  issue: 11
  year: 2022
  ident: 10.1016/j.jrras.2025.101309_bib23
  article-title: Current and emerging artificial intelligence applications for pediatric musculoskeletal radiology
  publication-title: Pediatric Radiology
  doi: 10.1007/s00247-021-05130-8
– volume: 30
  start-page: 369
  issue: 3
  year: 2023
  ident: 10.1016/j.jrras.2025.101309_bib18
  article-title: A supervised approach to musculoskeletal imaging fracture detection and classification using deep learning algorithms
  publication-title: Computer Assisted Mechanics and Engineering Sciences
– volume: 99
  year: 2025
  ident: 10.1016/j.jrras.2025.101309_bib39
  article-title: Multi-task learning for calcaneus fracture diagnosis of X-ray images
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2024.106843
– volume: 4
  issue: 5
  year: 2021
  ident: 10.1016/j.jrras.2025.101309_bib38
  article-title: Development and validation of a deep learning model using convolutional neural networks to identify scaphoid fractures in radiographs
  publication-title: JAMA Network Open
  doi: 10.1001/jamanetworkopen.2021.6096
– volume: 55
  start-page: 1
  issue: 1
  year: 2024
  ident: 10.1016/j.jrras.2025.101309_bib19
  article-title: Assessing the efficacy of 3D Dual-CycleGAN model for multi-contrast MRI synthesis
  publication-title: Egypt J Radiol Nucl Med
  doi: 10.1186/s43055-024-01287-y
– year: 2001
  ident: 10.1016/j.jrras.2025.101309_bib5
– volume: 10
  start-page: 1507
  issue: 4
  year: 2020
  ident: 10.1016/j.jrras.2025.101309_bib32
  article-title: X-Ray bone fracture classification using deep learning: A baseline for designing a reliable approach
  publication-title: Applied Sciences
  doi: 10.3390/app10041507
– volume: 34
  start-page: 4287
  issue: 7
  year: 2024
  ident: 10.1016/j.jrras.2025.101309_bib36
  article-title: Automatic detection, segmentation, and classification of primary bone tumors and bone infections using an ensemble multi-task deep learning framework on multi-parametric MRIs: A multi-center study
  publication-title: European Radiology
  doi: 10.1007/s00330-023-10506-5
– volume: 6
  start-page: 127
  issue: 11
  year: 2020
  ident: 10.1016/j.jrras.2025.101309_bib15
  article-title: Musculoskeletal images classification for detection of fractures using transfer learning
  publication-title: J imaging
  doi: 10.3390/jimaging6110127
– year: 2022
  ident: 10.1016/j.jrras.2025.101309_bib29
  article-title: Prediction of TNM stage in head and neck cancer using hybrid machine learning systems and radiomics features
– start-page: 726
  year: 2019
  ident: 10.1016/j.jrras.2025.101309_bib34
  article-title: Bone fracture identification in x-ray images using fuzzy wavelet features
SSID ssj0001925710
Score 2.323731
Snippet This study presents a multi-task learning framework based on the YOLOv11 architecture to improve both fracture detection and localization. The goal is to...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 101309
SubjectTerms Bone fracture detection
Model evaluation
Multi-task learning
X-ray images
YOLOv11
Title YOLOv11-based multi-task learning for enhanced bone fracture detection and classification in X-ray images
URI https://dx.doi.org/10.1016/j.jrras.2025.101309
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LIHgRn7i-yMGjYdu0aZujLi6LqHvQhfVU8tSuWJduV_Dfm0lbVBAPHhs6EL6EmUnyzTcInSmqqeIsJYEJNImjjBGZKUMCm2gtjWaRfz2_vUvG0_h6xmY9NOxqYYBW2fr-xqd7b92ODFo0B4uiGNyHSZZmLp2hoOlPfTNrUGqBIr7Z5dc9C3ebshElcP8TMOjEhzzNa15VAmS7KYORCIiJvwWob0FntIU222wRXzQT2kY9U-6gdc_aVMtdVDxObibvYUggFmnsyYGkFssX3DaDeMIuJ8WmfPbv_Fi-lQZbqItaVQZrU3seVolFqbGCNBp4Q36pcFHiGanEBy5encdZ7qHp6OphOCZt7wSiKM1qIkRsdaBSo5OY09R5EeNOasxSyTJFpQ1d4mWVSA0HRflQRsodhSXXQmaCh4pF-2itdJM6QDhQKk0NC61WNLaJkly6M0sgacqBl0j76LwDLF80Ehl5xx2b5x7fHPDNG3z7KOlAzX-sdO6c-F-Gh_81PEIb8NUwx47RWl2tzIlLJWp56vfKJywGxy0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwGA1jIvoiXnFe8-CjYW3a9PKowzF1lwc3qE8ht2on1tF1gv_eJG1RQXzwNeWD8CWc76Q5OR8AFwJLLGISIkc5EvleRBCPhEJOGkjJlSSevT0fjYPBzL9LSNICveYtjJFV1thfYbpF63qkW2ezu8iy7oMbRGGk6Qw2nv7YNLNe02wgMLqu2-T660dLrHdl5UqgA5CJaNyHrM5rXhTM-HZjYkY8o0z8rUJ9qzr9bbBV00V4Vc1oB7RUvgvWrWxTLPdA9jgZTt5dF5liJKFVB6KSLV9g3Q3iCWpSClX-bC_6IX_LFUzNw6hVoaBUpRVi5ZDlEgrDo41wyK4VzHKYoIJ9wOxVQ85yH8z6N9PeANXNE5DAOCoRY34qHREqGfgxDjWMKH1UIynmJBKYp65mXqlgoYqNpbzLPaHPwjyWjEcsdgXxDkA715M6BNARIgwVcVMpsJ8GgsdcH1ocjsPYCBNxB1w2CaOLyiODNuKxObX5pSa_tMpvBwRNUumPpaYaxf8KPPpv4DnYGExHQzq8Hd8fg03zpZKRnYB2WazUqeYVJT-z--YTUMzKVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLOv11-based+multi-task+learning+for+enhanced+bone+fracture+detection+and+classification+in+X-ray+images&rft.jtitle=Journal+of+radiation+research+and+applied+sciences&rft.au=Wei%2C+Wanmian&rft.au=Huang%2C+Yan&rft.au=Zheng%2C+Junchi&rft.au=Rao%2C+Yuanyong&rft.date=2025-03-01&rft.pub=Elsevier+B.V&rft.issn=1687-8507&rft.eissn=1687-8507&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1016%2Fj.jrras.2025.101309&rft.externalDocID=S1687850725000214
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-8507&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-8507&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-8507&client=summon