Sharp uniform stabilization of a shallow shell with internal rotational inertia dissipation and nonlinear boundary feedback under free boundary conditions

The motion of a shell is characterized by a system of two coupled hyperbolic partial differential equations: (i) an elastic wave in the two-dimensional in-plane displacement, and (ii) a plate-like Kirchhoff equation in the scalar normal displacement. A dynamic shallow shell is defined on a two-dimen...

Full description

Saved in:
Bibliographic Details
Published inNonlinear differential equations and applications Vol. 32; no. 5
Main Authors Lasiecka, I., Li, S.-J., Triggiani, R.
Format Journal Article
LanguageEnglish
Published Heidelberg Springer Nature B.V 01.09.2025
Subjects
Online AccessGet full text
ISSN1021-9722
1420-9004
DOI10.1007/s00030-025-01072-4

Cover

Abstract The motion of a shell is characterized by a system of two coupled hyperbolic partial differential equations: (i) an elastic wave in the two-dimensional in-plane displacement, and (ii) a plate-like Kirchhoff equation in the scalar normal displacement. A dynamic shallow shell is defined on a two-dimensional bounded, smooth manifold with elastic deformations accounting for vertical and in-plane oscillations. In this paper, we investigate the uniform stabilization of a dynamic shallow shell model, which is subject to nonlinear dissipation on part of its boundary under absorbing boundary conditions corresponding to the wave equation, while the plate equation incorporates rotary inertia terms along with inertial dissipation and inertial boundary spill-over. The model is motivated by applications to flutter suppression [1] in bridges and buildings, where the flutter occurs due to the interaction between the flow of gas and the structure. The uniform stabilization for a shell model is established by energy method in the Riemannian geometric setting and microlocal analysis techniques. The geometric approach offers an intrinsic, coordinate-independent framework along with an initial observability-type inequality. Meanwhile, microlocal analysis provides the needed sharp trace estimates crucial for solving the stabilization problem concerning the elastic wave. Moreover, it enables the removal of geometric constraints on the controlled portion of the boundary. The final result provides uniform decay rates of the energy which are quantitative via an ODE algorithm based on the behavior of the boundary dissipation at the origin.
AbstractList The motion of a shell is characterized by a system of two coupled hyperbolic partial differential equations: (i) an elastic wave in the two-dimensional in-plane displacement, and (ii) a plate-like Kirchhoff equation in the scalar normal displacement. A dynamic shallow shell is defined on a two-dimensional bounded, smooth manifold with elastic deformations accounting for vertical and in-plane oscillations. In this paper, we investigate the uniform stabilization of a dynamic shallow shell model, which is subject to nonlinear dissipation on part of its boundary under absorbing boundary conditions corresponding to the wave equation, while the plate equation incorporates rotary inertia terms along with inertial dissipation and inertial boundary spill-over. The model is motivated by applications to flutter suppression [1] in bridges and buildings, where the flutter occurs due to the interaction between the flow of gas and the structure. The uniform stabilization for a shell model is established by energy method in the Riemannian geometric setting and microlocal analysis techniques. The geometric approach offers an intrinsic, coordinate-independent framework along with an initial observability-type inequality. Meanwhile, microlocal analysis provides the needed sharp trace estimates crucial for solving the stabilization problem concerning the elastic wave. Moreover, it enables the removal of geometric constraints on the controlled portion of the boundary. The final result provides uniform decay rates of the energy which are quantitative via an ODE algorithm based on the behavior of the boundary dissipation at the origin.
ArticleNumber 90
Author Li, S.-J.
Lasiecka, I.
Triggiani, R.
Author_xml – sequence: 1
  givenname: I.
  surname: Lasiecka
  fullname: Lasiecka, I.
– sequence: 2
  givenname: S.-J.
  surname: Li
  fullname: Li, S.-J.
– sequence: 3
  givenname: R.
  surname: Triggiani
  fullname: Triggiani, R.
BookMark eNpFUctOwzAQtFCRaAs_wMkS58DGdvM4ooqXhMQBOFsb21FdUjvYiSr4FL4Wt0HitLOanX3Ngsycd4aQyxyuc4DyJgIAhwzYKoMcSpaJEzLPBYOsBhCzhIHlWV0ydkYWMW4B8rLg9Zz8vG4w9HR0tvVhR-OAje3sNw7WO-pbijRusOv8PkXTdXRvhw21bjDBYUeDH46VCVpnwmCRahuj7Sc9Ok3Tol3iMNDGj05j-KKtMbpB9ZGmahNoG4z5J5V32h7U8ZyctthFc_EXl-T9_u5t_Zg9vzw8rW-fM8VYNaSjFNNc1GXRGMZEXSmTEsGKGrFtlChWqLRC5JyVlWmhEYWpas1Al4ozVfEluZr69sF_jiYOcuvHw3lR8tRwVQmefrUkbKpSwccYTCv7YHdpY5mDPHggJw9k8kAePZCC_wKRG4AP
Cites_doi 10.4171/aihpc/13
10.1137/1.9781611970821
10.1080/00029890.1999.12005001
10.1007/BF01182480
10.1016/j.na.2005.07.024
10.1007/978-1-4614-3609-6
10.1137/S0363012999338692
10.1137/S0363012996301907
10.1007/978-3-0348-6418-3_17
10.1201/b11042
10.1016/j.na.2006.06.007
10.1137/0330055
10.3934/dcdss.2009.2.697
10.1007/978-0-387-87712-9
10.1007/978-3-319-15434-3
10.1007/s00245-016-9349-1
10.1016/0362-546X(91)90129-O
10.1016/S0022-247X(02)00041-0
10.1137/S0363012992228350
10.1017/CBO9781107340848
10.1006/jmaa.1996.0356
10.1016/0362-546X(92)90149-9
10.1137/S0363012901397156
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
DBID AAYXX
CITATION
DOI 10.1007/s00030-025-01072-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1420-9004
ExternalDocumentID 10_1007_s00030_025_01072_4
GroupedDBID -Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFDZB
AFEXP
AFGCZ
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MBV
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~EX
ID FETCH-LOGICAL-c228t-97c2d34976be22498ce4974269aafbc465acdcaa33278ef0b46e89d20d7c32c83
ISSN 1021-9722
IngestDate Wed Aug 20 00:32:36 EDT 2025
Thu Aug 21 00:12:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c228t-97c2d34976be22498ce4974269aafbc465acdcaa33278ef0b46e89d20d7c32c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3224584376
PQPubID 2044004
ParticipantIDs proquest_journals_3224584376
crossref_primary_10_1007_s00030_025_01072_4
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Nonlinear differential equations and applications
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References M Bradley (1072_CR2) 1992; 18
1072_CR12
1072_CR14
M Bernadou (1072_CR4) 1981; 60
J Lagnese (1072_CR18) 1991; 100
I Lasiecka (1072_CR25) 1997; 6
J Lagnese (1072_CR19) 1991; 16
C Bardos (1072_CR3) 1992; 30
1072_CR17
1072_CR1
J Puel (1072_CR31) 1995; 33
P-F Yao (1072_CR33) 2009; 2
SG Chai (1072_CR11) 2003; 42
I Lasiecka (1072_CR21) 1998; 36
1072_CR22
I Lasiecka (1072_CR24) 1992; 25
1072_CR8
P-F Yao (1072_CR32) 2000; 38
I Chueshov (1072_CR9) 2016; 73
D Bonheure (1072_CR5) 2022; 39
P-F Yao (1072_CR34) 2011
1072_CR6
1072_CR7
I Chueshov (1072_CR10) 2008; 195
1072_CR28
JP McKenna (1072_CR29) 1999; 106
A Favini (1072_CR13) 1995; 32
V Komornik (1072_CR16) 1994
D Toundykov (1072_CR30) 2007; 67
L Hormander (1072_CR15) 1985
I Lasiecka (1072_CR26) 2006; 64
I Lasiecka (1072_CR23) 2002; 269
I Lasiecka (1072_CR27) 1996; 22
I Lasiecka (1072_CR20) 2001
References_xml – volume-title: The Analysis of Linear Partial Differential Operators
  year: 1985
  ident: 1072_CR15
– volume: 39
  start-page: 457
  issue: 2
  year: 2022
  ident: 1072_CR5
  publication-title: Annales de l Institut. Henri Poincaré C Analyse Non Linéaire
  doi: 10.4171/aihpc/13
– volume: 195
  start-page: 1
  issue: 912
  year: 2008
  ident: 1072_CR10
  publication-title: Mem. Amer. Math. Soc.
– ident: 1072_CR17
  doi: 10.1137/1.9781611970821
– ident: 1072_CR7
– volume: 106
  start-page: 1
  issue: 1
  year: 1999
  ident: 1072_CR29
  publication-title: Amer. Math. Monthly
  doi: 10.1080/00029890.1999.12005001
– volume: 25
  start-page: 189
  year: 1992
  ident: 1072_CR24
  publication-title: Appl. Math. Optim.
  doi: 10.1007/BF01182480
– volume: 64
  start-page: 1757
  issue: 8
  year: 2006
  ident: 1072_CR26
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2005.07.024
– volume: 32
  start-page: 721
  year: 1995
  ident: 1072_CR13
  publication-title: Osaka Journal of Mathematics
– ident: 1072_CR1
  doi: 10.1007/978-1-4614-3609-6
– volume-title: Mathematical Control Theory of Coupled Systems
  year: 2001
  ident: 1072_CR20
– volume: 38
  start-page: 1729
  issue: 6
  year: 2000
  ident: 1072_CR32
  publication-title: SIAM J. Control. Optim.
  doi: 10.1137/S0363012999338692
– volume: 6
  start-page: 507
  year: 1997
  ident: 1072_CR25
  publication-title: Differential Integral Equations
– volume: 36
  start-page: 1376
  issue: 4
  year: 1998
  ident: 1072_CR21
  publication-title: SIAM J. Control. Optim.
  doi: 10.1137/S0363012996301907
– volume: 100
  start-page: 247
  year: 1991
  ident: 1072_CR18
  publication-title: Int. Ser. Numer. Math.
  doi: 10.1007/978-3-0348-6418-3_17
– volume-title: Modeling and Control in Vibrational and Structural Dynamics, A Differential Geometric Approach
  year: 2011
  ident: 1072_CR34
  doi: 10.1201/b11042
– volume: 67
  start-page: 512
  issue: 2m
  year: 2007
  ident: 1072_CR30
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2006.06.007
– volume: 30
  start-page: 1024
  issue: 5
  year: 1992
  ident: 1072_CR3
  publication-title: SIAM J. Control. Optim.
  doi: 10.1137/0330055
– volume: 60
  start-page: 258
  year: 1981
  ident: 1072_CR4
  publication-title: J. de Maths. Pures et Appliquées
– volume: 2
  start-page: 697
  issue: 3
  year: 2009
  ident: 1072_CR33
  publication-title: Discrete and Continuous Dynamical Systems-S
  doi: 10.3934/dcdss.2009.2.697
– ident: 1072_CR8
  doi: 10.1007/978-0-387-87712-9
– ident: 1072_CR14
  doi: 10.1007/978-3-319-15434-3
– volume: 73
  start-page: 475
  issue: 3
  year: 2016
  ident: 1072_CR9
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-016-9349-1
– ident: 1072_CR6
– volume: 16
  start-page: 35
  year: 1991
  ident: 1072_CR19
  publication-title: Nonlinear Anal.
  doi: 10.1016/0362-546X(91)90129-O
– volume: 269
  start-page: 642
  issue: 2
  year: 2002
  ident: 1072_CR23
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/S0022-247X(02)00041-0
– volume: 33
  start-page: 255
  issue: 1
  year: 1995
  ident: 1072_CR31
  publication-title: SIAM J. Control. Optim.
  doi: 10.1137/S0363012992228350
– ident: 1072_CR12
– ident: 1072_CR22
  doi: 10.1017/CBO9781107340848
– volume: 22
  start-page: 951
  year: 1996
  ident: 1072_CR27
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1996.0356
– volume-title: Exact Controllability and Stabilization-The Multiplier Method
  year: 1994
  ident: 1072_CR16
– ident: 1072_CR28
– volume: 18
  start-page: 333
  year: 1992
  ident: 1072_CR2
  publication-title: Nonlinear Anal.
  doi: 10.1016/0362-546X(92)90149-9
– volume: 42
  start-page: 239
  issue: 1
  year: 2003
  ident: 1072_CR11
  publication-title: SIAM J. Control. Optim.
  doi: 10.1137/S0363012901397156
SSID ssj0017639
Score 2.3649058
Snippet The motion of a shell is characterized by a system of two coupled hyperbolic partial differential equations: (i) an elastic wave in the two-dimensional...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Boundary conditions
Decay rate
Dissipation
Elastic deformation
Elastic waves
Energy methods
Flutter
Free boundaries
Geometric constraints
Partial differential equations
Rotary inertia
Shallow shells
Stabilization
Vertical oscillations
Vibration
Wave equations
Title Sharp uniform stabilization of a shallow shell with internal rotational inertia dissipation and nonlinear boundary feedback under free boundary conditions
URI https://www.proquest.com/docview/3224584376
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcoED4ikKBe2Bm-UqrDd-HCvUqqracCCRclut9yFFhaTYjhD9KRz4rczsrtexihBwcRJbdlaez97Zb76ZIeRdkeW6MMqmhdY25cqqtH5vkIC3WA-sMqXEBOereX6-5Ber2Woy-bmnWtp19bG6_W1eyf9YFfaBXTFL9h8sGy8KO-A72Be2YGHY_pWNsdryTbLbYHbVF2QFUOl6G51AmbTYKmX7DT6RonOc69pTgJ-TZtv1RCAmAMKTjtGaNkisXVBh4-toyCapXfel5ntiYbarpbp2_XObxDbGDAdhba3XAwMYfN55vErfjaVDmt583QUZnqsXuxdIjyIh2a6NupYjcvdTeuG5hMg5NMia-9ZUQf4YWAw2izKtMYuJEm0MnMQsG_dSdjKSwucvHxu_j8Oyt5r61sX9m3xgSvtY-Z0JwmtCWrcUTN04YP3LQqLRqBr3_KM4W15eisXpanGP3GdF4WQAS3YSo1Twbq5cND2MLyRludTMO_8wdnzG875zZhaPyaOwCqEnHlJPyMRsnpKHV7GEb_uM_HDgogFcdAQuurVU0gAu6sBFEVy0BxcdwEUDuOgeuChYnEZw0R4_tAcXdeCiCK7h4ACu52R5drr4cJ6GRh6pYqzs4N4opjMOnm9twGWsSmXgByZRS2lrxfOZVFpJmWWsKI2d1jw3ZaXZVBcqY6rMXpADGJR5SSicpqS24AdryWdVJUtw0Y3lHE-1eX5Ikv4uixtfr0XEytzOJgJsIpxNBD8kR70hRHiuWwFTHIoHYOZ99efDr8mDAcpH5KBrduYNuKhd_dbh5BcDspty
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sharp+uniform+stabilization+of+a+shallow+shell+with+internal+rotational+inertia+dissipation+and+nonlinear+boundary+feedback+under+free+boundary+conditions&rft.jtitle=Nonlinear+differential+equations+and+applications&rft.au=Lasiecka%2C+I&rft.au=S-J%2C+Li&rft.au=Triggiani%2C+R&rft.date=2025-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1021-9722&rft.eissn=1420-9004&rft.volume=32&rft.issue=5&rft_id=info:doi/10.1007%2Fs00030-025-01072-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1021-9722&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1021-9722&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1021-9722&client=summon