Sharp uniform stabilization of a shallow shell with internal rotational inertia dissipation and nonlinear boundary feedback under free boundary conditions
The motion of a shell is characterized by a system of two coupled hyperbolic partial differential equations: (i) an elastic wave in the two-dimensional in-plane displacement, and (ii) a plate-like Kirchhoff equation in the scalar normal displacement. A dynamic shallow shell is defined on a two-dimen...
Saved in:
Published in | Nonlinear differential equations and applications Vol. 32; no. 5 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer Nature B.V
01.09.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1021-9722 1420-9004 |
DOI | 10.1007/s00030-025-01072-4 |
Cover
Abstract | The motion of a shell is characterized by a system of two coupled hyperbolic partial differential equations: (i) an elastic wave in the two-dimensional in-plane displacement, and (ii) a plate-like Kirchhoff equation in the scalar normal displacement. A dynamic shallow shell is defined on a two-dimensional bounded, smooth manifold with elastic deformations accounting for vertical and in-plane oscillations. In this paper, we investigate the uniform stabilization of a dynamic shallow shell model, which is subject to nonlinear dissipation on part of its boundary under absorbing boundary conditions corresponding to the wave equation, while the plate equation incorporates rotary inertia terms along with inertial dissipation and inertial boundary spill-over. The model is motivated by applications to flutter suppression [1] in bridges and buildings, where the flutter occurs due to the interaction between the flow of gas and the structure. The uniform stabilization for a shell model is established by energy method in the Riemannian geometric setting and microlocal analysis techniques. The geometric approach offers an intrinsic, coordinate-independent framework along with an initial observability-type inequality. Meanwhile, microlocal analysis provides the needed sharp trace estimates crucial for solving the stabilization problem concerning the elastic wave. Moreover, it enables the removal of geometric constraints on the controlled portion of the boundary. The final result provides uniform decay rates of the energy which are quantitative via an ODE algorithm based on the behavior of the boundary dissipation at the origin. |
---|---|
AbstractList | The motion of a shell is characterized by a system of two coupled hyperbolic partial differential equations: (i) an elastic wave in the two-dimensional in-plane displacement, and (ii) a plate-like Kirchhoff equation in the scalar normal displacement. A dynamic shallow shell is defined on a two-dimensional bounded, smooth manifold with elastic deformations accounting for vertical and in-plane oscillations. In this paper, we investigate the uniform stabilization of a dynamic shallow shell model, which is subject to nonlinear dissipation on part of its boundary under absorbing boundary conditions corresponding to the wave equation, while the plate equation incorporates rotary inertia terms along with inertial dissipation and inertial boundary spill-over. The model is motivated by applications to flutter suppression [1] in bridges and buildings, where the flutter occurs due to the interaction between the flow of gas and the structure. The uniform stabilization for a shell model is established by energy method in the Riemannian geometric setting and microlocal analysis techniques. The geometric approach offers an intrinsic, coordinate-independent framework along with an initial observability-type inequality. Meanwhile, microlocal analysis provides the needed sharp trace estimates crucial for solving the stabilization problem concerning the elastic wave. Moreover, it enables the removal of geometric constraints on the controlled portion of the boundary. The final result provides uniform decay rates of the energy which are quantitative via an ODE algorithm based on the behavior of the boundary dissipation at the origin. |
ArticleNumber | 90 |
Author | Li, S.-J. Lasiecka, I. Triggiani, R. |
Author_xml | – sequence: 1 givenname: I. surname: Lasiecka fullname: Lasiecka, I. – sequence: 2 givenname: S.-J. surname: Li fullname: Li, S.-J. – sequence: 3 givenname: R. surname: Triggiani fullname: Triggiani, R. |
BookMark | eNpFUctOwzAQtFCRaAs_wMkS58DGdvM4ooqXhMQBOFsb21FdUjvYiSr4FL4Wt0HitLOanX3Ngsycd4aQyxyuc4DyJgIAhwzYKoMcSpaJEzLPBYOsBhCzhIHlWV0ydkYWMW4B8rLg9Zz8vG4w9HR0tvVhR-OAje3sNw7WO-pbijRusOv8PkXTdXRvhw21bjDBYUeDH46VCVpnwmCRahuj7Sc9Ok3Tol3iMNDGj05j-KKtMbpB9ZGmahNoG4z5J5V32h7U8ZyctthFc_EXl-T9_u5t_Zg9vzw8rW-fM8VYNaSjFNNc1GXRGMZEXSmTEsGKGrFtlChWqLRC5JyVlWmhEYWpas1Al4ozVfEluZr69sF_jiYOcuvHw3lR8tRwVQmefrUkbKpSwccYTCv7YHdpY5mDPHggJw9k8kAePZCC_wKRG4AP |
Cites_doi | 10.4171/aihpc/13 10.1137/1.9781611970821 10.1080/00029890.1999.12005001 10.1007/BF01182480 10.1016/j.na.2005.07.024 10.1007/978-1-4614-3609-6 10.1137/S0363012999338692 10.1137/S0363012996301907 10.1007/978-3-0348-6418-3_17 10.1201/b11042 10.1016/j.na.2006.06.007 10.1137/0330055 10.3934/dcdss.2009.2.697 10.1007/978-0-387-87712-9 10.1007/978-3-319-15434-3 10.1007/s00245-016-9349-1 10.1016/0362-546X(91)90129-O 10.1016/S0022-247X(02)00041-0 10.1137/S0363012992228350 10.1017/CBO9781107340848 10.1006/jmaa.1996.0356 10.1016/0362-546X(92)90149-9 10.1137/S0363012901397156 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00030-025-01072-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1420-9004 |
ExternalDocumentID | 10_1007_s00030_025_01072_4 |
GroupedDBID | -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFDZB AFEXP AFGCZ AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MBV N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~EX |
ID | FETCH-LOGICAL-c228t-97c2d34976be22498ce4974269aafbc465acdcaa33278ef0b46e89d20d7c32c83 |
ISSN | 1021-9722 |
IngestDate | Wed Aug 20 00:32:36 EDT 2025 Thu Aug 21 00:12:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c228t-97c2d34976be22498ce4974269aafbc465acdcaa33278ef0b46e89d20d7c32c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3224584376 |
PQPubID | 2044004 |
ParticipantIDs | proquest_journals_3224584376 crossref_primary_10_1007_s00030_025_01072_4 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-01 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Nonlinear differential equations and applications |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | M Bradley (1072_CR2) 1992; 18 1072_CR12 1072_CR14 M Bernadou (1072_CR4) 1981; 60 J Lagnese (1072_CR18) 1991; 100 I Lasiecka (1072_CR25) 1997; 6 J Lagnese (1072_CR19) 1991; 16 C Bardos (1072_CR3) 1992; 30 1072_CR17 1072_CR1 J Puel (1072_CR31) 1995; 33 P-F Yao (1072_CR33) 2009; 2 SG Chai (1072_CR11) 2003; 42 I Lasiecka (1072_CR21) 1998; 36 1072_CR22 I Lasiecka (1072_CR24) 1992; 25 1072_CR8 P-F Yao (1072_CR32) 2000; 38 I Chueshov (1072_CR9) 2016; 73 D Bonheure (1072_CR5) 2022; 39 P-F Yao (1072_CR34) 2011 1072_CR6 1072_CR7 I Chueshov (1072_CR10) 2008; 195 1072_CR28 JP McKenna (1072_CR29) 1999; 106 A Favini (1072_CR13) 1995; 32 V Komornik (1072_CR16) 1994 D Toundykov (1072_CR30) 2007; 67 L Hormander (1072_CR15) 1985 I Lasiecka (1072_CR26) 2006; 64 I Lasiecka (1072_CR23) 2002; 269 I Lasiecka (1072_CR27) 1996; 22 I Lasiecka (1072_CR20) 2001 |
References_xml | – volume-title: The Analysis of Linear Partial Differential Operators year: 1985 ident: 1072_CR15 – volume: 39 start-page: 457 issue: 2 year: 2022 ident: 1072_CR5 publication-title: Annales de l Institut. Henri Poincaré C Analyse Non Linéaire doi: 10.4171/aihpc/13 – volume: 195 start-page: 1 issue: 912 year: 2008 ident: 1072_CR10 publication-title: Mem. Amer. Math. Soc. – ident: 1072_CR17 doi: 10.1137/1.9781611970821 – ident: 1072_CR7 – volume: 106 start-page: 1 issue: 1 year: 1999 ident: 1072_CR29 publication-title: Amer. Math. Monthly doi: 10.1080/00029890.1999.12005001 – volume: 25 start-page: 189 year: 1992 ident: 1072_CR24 publication-title: Appl. Math. Optim. doi: 10.1007/BF01182480 – volume: 64 start-page: 1757 issue: 8 year: 2006 ident: 1072_CR26 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2005.07.024 – volume: 32 start-page: 721 year: 1995 ident: 1072_CR13 publication-title: Osaka Journal of Mathematics – ident: 1072_CR1 doi: 10.1007/978-1-4614-3609-6 – volume-title: Mathematical Control Theory of Coupled Systems year: 2001 ident: 1072_CR20 – volume: 38 start-page: 1729 issue: 6 year: 2000 ident: 1072_CR32 publication-title: SIAM J. Control. Optim. doi: 10.1137/S0363012999338692 – volume: 6 start-page: 507 year: 1997 ident: 1072_CR25 publication-title: Differential Integral Equations – volume: 36 start-page: 1376 issue: 4 year: 1998 ident: 1072_CR21 publication-title: SIAM J. Control. Optim. doi: 10.1137/S0363012996301907 – volume: 100 start-page: 247 year: 1991 ident: 1072_CR18 publication-title: Int. Ser. Numer. Math. doi: 10.1007/978-3-0348-6418-3_17 – volume-title: Modeling and Control in Vibrational and Structural Dynamics, A Differential Geometric Approach year: 2011 ident: 1072_CR34 doi: 10.1201/b11042 – volume: 67 start-page: 512 issue: 2m year: 2007 ident: 1072_CR30 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2006.06.007 – volume: 30 start-page: 1024 issue: 5 year: 1992 ident: 1072_CR3 publication-title: SIAM J. Control. Optim. doi: 10.1137/0330055 – volume: 60 start-page: 258 year: 1981 ident: 1072_CR4 publication-title: J. de Maths. Pures et Appliquées – volume: 2 start-page: 697 issue: 3 year: 2009 ident: 1072_CR33 publication-title: Discrete and Continuous Dynamical Systems-S doi: 10.3934/dcdss.2009.2.697 – ident: 1072_CR8 doi: 10.1007/978-0-387-87712-9 – ident: 1072_CR14 doi: 10.1007/978-3-319-15434-3 – volume: 73 start-page: 475 issue: 3 year: 2016 ident: 1072_CR9 publication-title: Appl. Math. Optim. doi: 10.1007/s00245-016-9349-1 – ident: 1072_CR6 – volume: 16 start-page: 35 year: 1991 ident: 1072_CR19 publication-title: Nonlinear Anal. doi: 10.1016/0362-546X(91)90129-O – volume: 269 start-page: 642 issue: 2 year: 2002 ident: 1072_CR23 publication-title: J. Math. Anal. Appl. doi: 10.1016/S0022-247X(02)00041-0 – volume: 33 start-page: 255 issue: 1 year: 1995 ident: 1072_CR31 publication-title: SIAM J. Control. Optim. doi: 10.1137/S0363012992228350 – ident: 1072_CR12 – ident: 1072_CR22 doi: 10.1017/CBO9781107340848 – volume: 22 start-page: 951 year: 1996 ident: 1072_CR27 publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.1996.0356 – volume-title: Exact Controllability and Stabilization-The Multiplier Method year: 1994 ident: 1072_CR16 – ident: 1072_CR28 – volume: 18 start-page: 333 year: 1992 ident: 1072_CR2 publication-title: Nonlinear Anal. doi: 10.1016/0362-546X(92)90149-9 – volume: 42 start-page: 239 issue: 1 year: 2003 ident: 1072_CR11 publication-title: SIAM J. Control. Optim. doi: 10.1137/S0363012901397156 |
SSID | ssj0017639 |
Score | 2.3649058 |
Snippet | The motion of a shell is characterized by a system of two coupled hyperbolic partial differential equations: (i) an elastic wave in the two-dimensional... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
SubjectTerms | Boundary conditions Decay rate Dissipation Elastic deformation Elastic waves Energy methods Flutter Free boundaries Geometric constraints Partial differential equations Rotary inertia Shallow shells Stabilization Vertical oscillations Vibration Wave equations |
Title | Sharp uniform stabilization of a shallow shell with internal rotational inertia dissipation and nonlinear boundary feedback under free boundary conditions |
URI | https://www.proquest.com/docview/3224584376 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcoED4ikKBe2Bm-UqrDd-HCvUqqracCCRclut9yFFhaTYjhD9KRz4rczsrtexihBwcRJbdlaez97Zb76ZIeRdkeW6MMqmhdY25cqqtH5vkIC3WA-sMqXEBOereX6-5Ber2Woy-bmnWtp19bG6_W1eyf9YFfaBXTFL9h8sGy8KO-A72Be2YGHY_pWNsdryTbLbYHbVF2QFUOl6G51AmbTYKmX7DT6RonOc69pTgJ-TZtv1RCAmAMKTjtGaNkisXVBh4-toyCapXfel5ntiYbarpbp2_XObxDbGDAdhba3XAwMYfN55vErfjaVDmt583QUZnqsXuxdIjyIh2a6NupYjcvdTeuG5hMg5NMia-9ZUQf4YWAw2izKtMYuJEm0MnMQsG_dSdjKSwucvHxu_j8Oyt5r61sX9m3xgSvtY-Z0JwmtCWrcUTN04YP3LQqLRqBr3_KM4W15eisXpanGP3GdF4WQAS3YSo1Twbq5cND2MLyRludTMO_8wdnzG875zZhaPyaOwCqEnHlJPyMRsnpKHV7GEb_uM_HDgogFcdAQuurVU0gAu6sBFEVy0BxcdwEUDuOgeuChYnEZw0R4_tAcXdeCiCK7h4ACu52R5drr4cJ6GRh6pYqzs4N4opjMOnm9twGWsSmXgByZRS2lrxfOZVFpJmWWsKI2d1jw3ZaXZVBcqY6rMXpADGJR5SSicpqS24AdryWdVJUtw0Y3lHE-1eX5Ikv4uixtfr0XEytzOJgJsIpxNBD8kR70hRHiuWwFTHIoHYOZ99efDr8mDAcpH5KBrduYNuKhd_dbh5BcDspty |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sharp+uniform+stabilization+of+a+shallow+shell+with+internal+rotational+inertia+dissipation+and+nonlinear+boundary+feedback+under+free+boundary+conditions&rft.jtitle=Nonlinear+differential+equations+and+applications&rft.au=Lasiecka%2C+I&rft.au=S-J%2C+Li&rft.au=Triggiani%2C+R&rft.date=2025-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1021-9722&rft.eissn=1420-9004&rft.volume=32&rft.issue=5&rft_id=info:doi/10.1007%2Fs00030-025-01072-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1021-9722&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1021-9722&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1021-9722&client=summon |