SFNIC: Hybrid Spatial‐Frequency Information for Lightweight Neural Image Compression

Neural image compression (NIC) has shown remarkable rate‐distortion (R‐D) efficiency. However, the considerable computational and spatial complexity of most NIC methods presents deployment challenges on resource‐constrained devices. We introduce a lightweight neural image compression framework desig...

Full description

Saved in:
Bibliographic Details
Published inCAAI Transactions on Intelligence Technology
Main Authors Bao, Youneng, Tan, Wen, Li, Mu, Chen, Jiacong, Mao, Qingyu, Liang, Yongsheng
Format Journal Article
LanguageEnglish
Published 01.07.2025
Online AccessGet full text
ISSN2468-2322
2468-2322
DOI10.1049/cit2.70034

Cover

Abstract Neural image compression (NIC) has shown remarkable rate‐distortion (R‐D) efficiency. However, the considerable computational and spatial complexity of most NIC methods presents deployment challenges on resource‐constrained devices. We introduce a lightweight neural image compression framework designed to efficiently process both local and global information. In this framework, the convolutional branch extracts local information, whereas the frequency domain branch extracts global information. To capture global information without the high computational costs of dense pixel operations, such as attention mechanisms, Fourier transform is employed. This approach allows for the manipulation of global information in the frequency domain. Additionally, we employ feature shift operations as a strategy to acquire large receptive fields without any computational cost, thus circumventing the need for large kernel convolution. Our framework achieves a superior balance between rate‐distortion performance and complexity. On varying resolution sets, our method not only achieves rate‐distortion (R‐D) performance on par with versatile video coding (VVC) intra and other state‐of‐the‐art (SOTA) NIC methods but also exhibits the lowest computational requirements, with approximately 200 KMACs/pixel. The code will be available at https://github.com/baoyu2020/SFNIC .
AbstractList Neural image compression (NIC) has shown remarkable rate‐distortion (R‐D) efficiency. However, the considerable computational and spatial complexity of most NIC methods presents deployment challenges on resource‐constrained devices. We introduce a lightweight neural image compression framework designed to efficiently process both local and global information. In this framework, the convolutional branch extracts local information, whereas the frequency domain branch extracts global information. To capture global information without the high computational costs of dense pixel operations, such as attention mechanisms, Fourier transform is employed. This approach allows for the manipulation of global information in the frequency domain. Additionally, we employ feature shift operations as a strategy to acquire large receptive fields without any computational cost, thus circumventing the need for large kernel convolution. Our framework achieves a superior balance between rate‐distortion performance and complexity. On varying resolution sets, our method not only achieves rate‐distortion (R‐D) performance on par with versatile video coding (VVC) intra and other state‐of‐the‐art (SOTA) NIC methods but also exhibits the lowest computational requirements, with approximately 200 KMACs/pixel. The code will be available at https://github.com/baoyu2020/SFNIC .
Author Chen, Jiacong
Tan, Wen
Mao, Qingyu
Li, Mu
Liang, Yongsheng
Bao, Youneng
Author_xml – sequence: 1
  givenname: Youneng
  orcidid: 0000-0003-3781-6938
  surname: Bao
  fullname: Bao, Youneng
  organization: Harbin Institute of Technology Shenzhen China
– sequence: 2
  givenname: Wen
  orcidid: 0000-0001-8560-7554
  surname: Tan
  fullname: Tan, Wen
  organization: Harbin Institute of Technology Shenzhen China
– sequence: 3
  givenname: Mu
  surname: Li
  fullname: Li, Mu
  organization: Harbin Institute of Technology Shenzhen China
– sequence: 4
  givenname: Jiacong
  surname: Chen
  fullname: Chen, Jiacong
  organization: Shenzhen University Shenzhen China, College of Big Data and Internet Shenzhen Technology University Shenzhen China
– sequence: 5
  givenname: Qingyu
  surname: Mao
  fullname: Mao, Qingyu
  organization: Shenzhen University Shenzhen China
– sequence: 6
  givenname: Yongsheng
  surname: Liang
  fullname: Liang, Yongsheng
  organization: Harbin Institute of Technology Shenzhen China, College of Big Data and Internet Shenzhen Technology University Shenzhen China
BookMark eNpNkEtOwzAYhC1UJErphhN4jZTy-9HEZociSiNVZVFgGznOnxKUF3Yq1B1H4IychARYsJkZjUaz-M7JpGkbJOSSwYKB1Ne27PkiAhDyhEy5DFXABeeTf_mMzL1_BQCmtV6KaEqed6ttEt_Q9TFzZU53nelLU319fK4cvh2wsUeaNEXr6qFvGzokuin3L_07jkq3eHCmoklt9kjjtu4cej8ML8hpYSqP8z-fkafV3WO8DjYP90l8uwks56oPVCSLPNM52kgpiEQmOIhM8SUTCJIbpnJmuR7HWkuNENpCZSJHBA2hFGJGrn5_rWu9d1iknStr444pg3SEko5Q0h8o4htFRlb-
Cites_doi 10.1109/CVPR52688.2022.01697
10.1109/ICIP49359.2023.10222822
10.1109/ICIP40778.2020.9190935
10.1117/12.19537
10.1109/TCSVT.2023.3323015
10.1145/3524273.3532906
10.1109/tcsvt.2021.3101953
10.1109/ICASSP40776.2020.9053102
10.1109/CVPR52688.2022.00563
10.1109/WACV57701.2024.00427
10.1109/CVPR.2017.195
10.1109/ICIP46576.2022.9897854
10.1016/j.sigpro.2023.109128
10.1007/s11432‐021‐3461‐9
10.1109/tcsvt.2012.2221191
10.1016/s0923‐5965(01)00024‐8
10.1109/tcsvt.2022.3216713
10.1109/ATIT50783.2020.9349289
10.1109/CVPR42600.2020.00165
10.1109/ICIP46576.2022.9897508
10.1109/DCC.2000.838192
10.1109/tpami.2021.3065339
10.1109/ICIP49359.2023.10222336
10.1109/30.125072
10.1109/ICIP40778.2020.9190805
10.1109/CVPR.2018.00716
10.1016/j.patcog.2020.107281
10.1109/lsp.2020.3039932
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1049/cit2.70034
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2468-2322
ExternalDocumentID 10_1049_cit2_70034
GroupedDBID 0R~
1OC
24P
AAEDW
AAHJG
AAJGR
AALRI
AAMMB
AAXUO
AAYWO
AAYXX
ABMAC
ABQXS
ACCMX
ACESK
ACGFS
ACVFH
ACXQS
ADBBV
ADCNI
ADMLS
ADVLN
AEFGJ
AEUPX
AEXQZ
AFKRA
AFPUW
AGXDD
AIDQK
AIDYY
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMRAJ
ARAPS
ARCSS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
HCIFZ
IAO
ICD
IDLOA
ITC
K7-
M41
M43
O9-
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PUEGO
ROL
RUI
SSZ
WIN
ID FETCH-LOGICAL-c228t-874fdb9dec788073b3203b82513e042a18d1c29c2289949e06cf8b3dee0906433
ISSN 2468-2322
IngestDate Wed Sep 10 04:47:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c228t-874fdb9dec788073b3203b82513e042a18d1c29c2289949e06cf8b3dee0906433
ORCID 0000-0001-8560-7554
0000-0003-3781-6938
OpenAccessLink https://doi.org/10.1049/cit2.70034
ParticipantIDs crossref_primary_10_1049_cit2_70034
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationTitle CAAI Transactions on Intelligence Technology
PublicationYear 2025
References Vaswani A. (e_1_2_11_26_1) 2017; 30
Guo‐Hua W. (e_1_2_11_18_1) 2023
e_1_2_11_32_1
e_1_2_11_51_1
e_1_2_11_13_1
Kim H. (e_1_2_11_33_1) 2024
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_6_1
e_1_2_11_48_1
e_1_2_11_2_1
Le H. (e_1_2_11_45_1) 2022
Wallace G. K. (e_1_2_11_24_1) 1990
Zhu Y. (e_1_2_11_29_1) 2022
Chen W. (e_1_2_11_38_1) 2023
Ballé J. (e_1_2_11_11_1) 2018
Luo C. (e_1_2_11_27_1) 2023
e_1_2_11_20_1
e_1_2_11_47_1
Qin P. (e_1_2_11_19_1) 2024
e_1_2_11_15_1
Luo A. (e_1_2_11_37_1) 2022
Ballé J. (e_1_2_11_39_1) 2019
Cheng Z. (e_1_2_11_4_1) 2020
Dosovitskiy A. (e_1_2_11_21_1) 2021
Jeon G.‐W. (e_1_2_11_42_1) 2023
Kim J.‐H. (e_1_2_11_35_1) 2020
Yin S. (e_1_2_11_36_1) 2022
e_1_2_11_10_1
e_1_2_11_52_1
Minnen D. (e_1_2_11_12_1) 2018
e_1_2_11_54_1
e_1_2_11_7_1
Dupont E. (e_1_2_11_30_1) 2021
e_1_2_11_5_1
e_1_2_11_3_1
Li F. (e_1_2_11_22_1) 2020
e_1_2_11_49_1
Xie Y. (e_1_2_11_14_1) 2021
Strümpler Y. (e_1_2_11_31_1) 2022
Tan M. (e_1_2_11_50_1) 2019
Sun H. (e_1_2_11_43_1) 2022
Shi J. (e_1_2_11_44_1) 2023; 34
Marcellin M. W. (e_1_2_11_8_1) 2000
Sun H. (e_1_2_11_41_1) 2020
e_1_2_11_46_1
Liu J. (e_1_2_11_17_1) 2023
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_16_1
He D. (e_1_2_11_28_1) 2021
References_xml – start-page: 6105
  volume-title: International Conference on Machine Learning
  year: 2019
  ident: e_1_2_11_50_1
– ident: e_1_2_11_16_1
– ident: e_1_2_11_15_1
  doi: 10.1109/CVPR52688.2022.01697
– start-page: 1
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2023
  ident: e_1_2_11_17_1
– ident: e_1_2_11_47_1
– start-page: 9347
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2024
  ident: e_1_2_11_33_1
– start-page: 162
  volume-title: Proceedings of the ACM International Conference on Multimedia
  year: 2021
  ident: e_1_2_11_14_1
– start-page: 3464
  volume-title: 2023 IEEE International Conference on Image Processing (ICIP)
  year: 2023
  ident: e_1_2_11_38_1
  doi: 10.1109/ICIP49359.2023.10222822
– start-page: 10794
  volume-title: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3–8, 2018, Montréal, Canada
  year: 2018
  ident: e_1_2_11_12_1
– ident: e_1_2_11_40_1
– ident: e_1_2_11_32_1
– ident: e_1_2_11_13_1
  doi: 10.1109/ICIP40778.2020.9190935
– start-page: 220
  volume-title: Image Processing Algorithms and Techniques
  year: 1990
  ident: e_1_2_11_24_1
  doi: 10.1117/12.19537
– ident: e_1_2_11_54_1
– volume: 34
  start-page: 3082
  year: 2023
  ident: e_1_2_11_44_1
  article-title: Rate‐Distortion Optimized Post‐Training Quantization for Learned Image Compression
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2023.3323015
– start-page: 324
  volume-title: Proceedings of the 13th ACM Multimedia Systems Conference
  year: 2022
  ident: e_1_2_11_45_1
  doi: 10.1145/3524273.3532906
– volume-title: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada
  year: 2018
  ident: e_1_2_11_11_1
– ident: e_1_2_11_10_1
  doi: 10.1109/tcsvt.2021.3101953
– start-page: 2063
  volume-title: ICASSP 2020‐2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
  year: 2020
  ident: e_1_2_11_35_1
  doi: 10.1109/ICASSP40776.2020.9053102
– ident: e_1_2_11_5_1
  doi: 10.1109/CVPR52688.2022.00563
– ident: e_1_2_11_46_1
  doi: 10.1109/WACV57701.2024.00427
– start-page: 53
  volume-title: Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
  year: 2023
  ident: e_1_2_11_27_1
– ident: e_1_2_11_48_1
  doi: 10.1109/CVPR.2017.195
– start-page: 3061
  volume-title: 2022 IEEE International Conference on Image Processing (ICIP)
  year: 2022
  ident: e_1_2_11_37_1
  doi: 10.1109/ICIP46576.2022.9897854
– start-page: 74
  volume-title: European Conference on Computer Vision
  year: 2022
  ident: e_1_2_11_31_1
– ident: e_1_2_11_3_1
  doi: 10.1016/j.sigpro.2023.109128
– volume: 30
  year: 2017
  ident: e_1_2_11_26_1
  article-title: Attention Is All You Need
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_11_23_1
  doi: 10.1007/s11432‐021‐3461‐9
– ident: e_1_2_11_9_1
  doi: 10.1109/tcsvt.2012.2221191
– ident: e_1_2_11_25_1
  doi: 10.1016/s0923‐5965(01)00024‐8
– ident: e_1_2_11_2_1
  doi: 10.1109/tcsvt.2022.3216713
– start-page: 13
  volume-title: 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT)
  year: 2020
  ident: e_1_2_11_22_1
  doi: 10.1109/ATIT50783.2020.9349289
– ident: e_1_2_11_51_1
– start-page: 7936
  volume-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13–19, 2020
  year: 2020
  ident: e_1_2_11_4_1
– volume-title: International Conference on Learning Representations
  year: 2021
  ident: e_1_2_11_21_1
– volume-title: International Conference on Learning Representations
  year: 2022
  ident: e_1_2_11_29_1
– volume-title: The Eleventh International Conference on Learning Representations
  year: 2023
  ident: e_1_2_11_18_1
– ident: e_1_2_11_52_1
  doi: 10.1109/CVPR42600.2020.00165
– volume-title: Neural Compression: From Information Theory to Applications – Workshop @ ICLR 2021
  year: 2021
  ident: e_1_2_11_30_1
– start-page: 471
  volume-title: 2022 IEEE International Conference on Image Processing (ICIP)
  year: 2022
  ident: e_1_2_11_36_1
  doi: 10.1109/ICIP46576.2022.9897508
– start-page: 523
  volume-title: Proceedings DCC 2000. Data Compression Conference
  year: 2000
  ident: e_1_2_11_8_1
  doi: 10.1109/DCC.2000.838192
– ident: e_1_2_11_6_1
  doi: 10.1109/tpami.2021.3065339
– start-page: 3055
  volume-title: ICASSP 2024 – 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
  year: 2024
  ident: e_1_2_11_19_1
– start-page: 2755
  volume-title: 2023 IEEE International Conference on Image Processing (ICIP)
  year: 2023
  ident: e_1_2_11_42_1
  doi: 10.1109/ICIP49359.2023.10222336
– start-page: 14771
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2021
  ident: e_1_2_11_28_1
– ident: e_1_2_11_7_1
  doi: 10.1109/30.125072
– start-page: 1
  year: 2022
  ident: e_1_2_11_43_1
  article-title: Q‐LIC: Quantizing Learned Image Compression With Channel Splitting
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– ident: e_1_2_11_53_1
– volume-title: International Conference on Learning Representations
  year: 2019
  ident: e_1_2_11_39_1
– start-page: 3359
  volume-title: 2020 IEEE International Conference on Image Processing (ICIP)
  year: 2020
  ident: e_1_2_11_41_1
  doi: 10.1109/ICIP40778.2020.9190805
– ident: e_1_2_11_49_1
  doi: 10.1109/CVPR.2018.00716
– ident: e_1_2_11_34_1
  doi: 10.1016/j.patcog.2020.107281
– ident: e_1_2_11_20_1
  doi: 10.1109/lsp.2020.3039932
SSID ssj0001999537
Score 2.2954462
SecondaryResourceType online_first
Snippet Neural image compression (NIC) has shown remarkable rate‐distortion (R‐D) efficiency. However, the considerable computational and spatial complexity of most...
SourceID crossref
SourceType Index Database
Title SFNIC: Hybrid Spatial‐Frequency Information for Lightweight Neural Image Compression
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oXLwYjRqfZBO9kSJsX6y3ihIwwAVQbqSPbcLBakiJwZM_wd_oL3Fmd2kb8YBeNs2m2zb7NbMzs983S8iVY0XQ73DDjqGx7JAZvu8yA34P4ULQjIsasi0GTmdsPUzsSX5mq1SXpEEtfP9VV_IfVKEPcEWV7B-QzR4KHXAN-EILCEO7EcbD9qDbwpi-s0ThVRXPF4a3ZgSG9lwRpZdVrTrKiIU9jMnfZFq0ivU5sOLGM9J30D4oamxS9FtbntdVhdCVEEJuMnSL5TzXc_S3vkzDoj0Ren2UKQJp555yCVpPEgr6i5xpoAUjM7DWeqDOSzA747Bq88VQ0wX-mrK1Yr1vzXhDsAIzHs5SVnOxbk6-RK225X-sXBmfUO6kW3yKY6dy7DYpM9fFjfuyd9fvDfO8G3jEtiylmn3Mqmqtxa_zlxf8lILDMdojuzpSoJ6CfZ9sieSAPErIb6gCnGrAvz4-M6hpAWoKV7QANVVQUwk1LUB9SMbt-1GrY-ijMYyQsWYKa5gVRwGPROiCAXbNwGR1M0AZsinADPuNZtQIGcebObe4qDth3AzMSIg6RyfUPCKl5CURx4Saceg2BGcxEhZZFPgwO5bJOAQKEcST_IRcriZi-qoqoEzX5_t0o7vOyE7-q5yTUjpfiAtw6tKgonGqyKTIN6pHTK0
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SFNIC%3A+Hybrid+Spatial%E2%80%90Frequency+Information+for+Lightweight+Neural+Image+Compression&rft.jtitle=CAAI+Transactions+on+Intelligence+Technology&rft.au=Bao%2C+Youneng&rft.au=Tan%2C+Wen&rft.au=Li%2C+Mu&rft.au=Chen%2C+Jiacong&rft.date=2025-07-01&rft.issn=2468-2322&rft.eissn=2468-2322&rft_id=info:doi/10.1049%2Fcit2.70034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_cit2_70034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-2322&client=summon