SFNIC: Hybrid Spatial‐Frequency Information for Lightweight Neural Image Compression
Neural image compression (NIC) has shown remarkable rate‐distortion (R‐D) efficiency. However, the considerable computational and spatial complexity of most NIC methods presents deployment challenges on resource‐constrained devices. We introduce a lightweight neural image compression framework desig...
Saved in:
Published in | CAAI Transactions on Intelligence Technology |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
01.07.2025
|
Online Access | Get full text |
ISSN | 2468-2322 2468-2322 |
DOI | 10.1049/cit2.70034 |
Cover
Abstract | Neural image compression (NIC) has shown remarkable rate‐distortion (R‐D) efficiency. However, the considerable computational and spatial complexity of most NIC methods presents deployment challenges on resource‐constrained devices. We introduce a lightweight neural image compression framework designed to efficiently process both local and global information. In this framework, the convolutional branch extracts local information, whereas the frequency domain branch extracts global information. To capture global information without the high computational costs of dense pixel operations, such as attention mechanisms, Fourier transform is employed. This approach allows for the manipulation of global information in the frequency domain. Additionally, we employ feature shift operations as a strategy to acquire large receptive fields without any computational cost, thus circumventing the need for large kernel convolution. Our framework achieves a superior balance between rate‐distortion performance and complexity. On varying resolution sets, our method not only achieves rate‐distortion (R‐D) performance on par with versatile video coding (VVC) intra and other state‐of‐the‐art (SOTA) NIC methods but also exhibits the lowest computational requirements, with approximately 200 KMACs/pixel. The code will be available at https://github.com/baoyu2020/SFNIC . |
---|---|
AbstractList | Neural image compression (NIC) has shown remarkable rate‐distortion (R‐D) efficiency. However, the considerable computational and spatial complexity of most NIC methods presents deployment challenges on resource‐constrained devices. We introduce a lightweight neural image compression framework designed to efficiently process both local and global information. In this framework, the convolutional branch extracts local information, whereas the frequency domain branch extracts global information. To capture global information without the high computational costs of dense pixel operations, such as attention mechanisms, Fourier transform is employed. This approach allows for the manipulation of global information in the frequency domain. Additionally, we employ feature shift operations as a strategy to acquire large receptive fields without any computational cost, thus circumventing the need for large kernel convolution. Our framework achieves a superior balance between rate‐distortion performance and complexity. On varying resolution sets, our method not only achieves rate‐distortion (R‐D) performance on par with versatile video coding (VVC) intra and other state‐of‐the‐art (SOTA) NIC methods but also exhibits the lowest computational requirements, with approximately 200 KMACs/pixel. The code will be available at https://github.com/baoyu2020/SFNIC . |
Author | Chen, Jiacong Tan, Wen Mao, Qingyu Li, Mu Liang, Yongsheng Bao, Youneng |
Author_xml | – sequence: 1 givenname: Youneng orcidid: 0000-0003-3781-6938 surname: Bao fullname: Bao, Youneng organization: Harbin Institute of Technology Shenzhen China – sequence: 2 givenname: Wen orcidid: 0000-0001-8560-7554 surname: Tan fullname: Tan, Wen organization: Harbin Institute of Technology Shenzhen China – sequence: 3 givenname: Mu surname: Li fullname: Li, Mu organization: Harbin Institute of Technology Shenzhen China – sequence: 4 givenname: Jiacong surname: Chen fullname: Chen, Jiacong organization: Shenzhen University Shenzhen China, College of Big Data and Internet Shenzhen Technology University Shenzhen China – sequence: 5 givenname: Qingyu surname: Mao fullname: Mao, Qingyu organization: Shenzhen University Shenzhen China – sequence: 6 givenname: Yongsheng surname: Liang fullname: Liang, Yongsheng organization: Harbin Institute of Technology Shenzhen China, College of Big Data and Internet Shenzhen Technology University Shenzhen China |
BookMark | eNpNkEtOwzAYhC1UJErphhN4jZTy-9HEZociSiNVZVFgGznOnxKUF3Yq1B1H4IychARYsJkZjUaz-M7JpGkbJOSSwYKB1Ne27PkiAhDyhEy5DFXABeeTf_mMzL1_BQCmtV6KaEqed6ttEt_Q9TFzZU53nelLU319fK4cvh2wsUeaNEXr6qFvGzokuin3L_07jkq3eHCmoklt9kjjtu4cej8ML8hpYSqP8z-fkafV3WO8DjYP90l8uwks56oPVCSLPNM52kgpiEQmOIhM8SUTCJIbpnJmuR7HWkuNENpCZSJHBA2hFGJGrn5_rWu9d1iknStr444pg3SEko5Q0h8o4htFRlb- |
Cites_doi | 10.1109/CVPR52688.2022.01697 10.1109/ICIP49359.2023.10222822 10.1109/ICIP40778.2020.9190935 10.1117/12.19537 10.1109/TCSVT.2023.3323015 10.1145/3524273.3532906 10.1109/tcsvt.2021.3101953 10.1109/ICASSP40776.2020.9053102 10.1109/CVPR52688.2022.00563 10.1109/WACV57701.2024.00427 10.1109/CVPR.2017.195 10.1109/ICIP46576.2022.9897854 10.1016/j.sigpro.2023.109128 10.1007/s11432‐021‐3461‐9 10.1109/tcsvt.2012.2221191 10.1016/s0923‐5965(01)00024‐8 10.1109/tcsvt.2022.3216713 10.1109/ATIT50783.2020.9349289 10.1109/CVPR42600.2020.00165 10.1109/ICIP46576.2022.9897508 10.1109/DCC.2000.838192 10.1109/tpami.2021.3065339 10.1109/ICIP49359.2023.10222336 10.1109/30.125072 10.1109/ICIP40778.2020.9190805 10.1109/CVPR.2018.00716 10.1016/j.patcog.2020.107281 10.1109/lsp.2020.3039932 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1049/cit2.70034 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2468-2322 |
ExternalDocumentID | 10_1049_cit2_70034 |
GroupedDBID | 0R~ 1OC 24P AAEDW AAHJG AAJGR AALRI AAMMB AAXUO AAYWO AAYXX ABMAC ABQXS ACCMX ACESK ACGFS ACVFH ACXQS ADBBV ADCNI ADMLS ADVLN AEFGJ AEUPX AEXQZ AFKRA AFPUW AGXDD AIDQK AIDYY AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS ALUQN AMRAJ ARAPS ARCSS AVUZU BCNDV BENPR BGLVJ CCPQU CITATION EBS EJD FDB GROUPED_DOAJ HCIFZ IAO ICD IDLOA ITC K7- M41 M43 O9- OK1 PHGZM PHGZT PIMPY PQGLB PUEGO ROL RUI SSZ WIN |
ID | FETCH-LOGICAL-c228t-874fdb9dec788073b3203b82513e042a18d1c29c2289949e06cf8b3dee0906433 |
ISSN | 2468-2322 |
IngestDate | Wed Sep 10 04:47:01 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c228t-874fdb9dec788073b3203b82513e042a18d1c29c2289949e06cf8b3dee0906433 |
ORCID | 0000-0001-8560-7554 0000-0003-3781-6938 |
OpenAccessLink | https://doi.org/10.1049/cit2.70034 |
ParticipantIDs | crossref_primary_10_1049_cit2_70034 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | CAAI Transactions on Intelligence Technology |
PublicationYear | 2025 |
References | Vaswani A. (e_1_2_11_26_1) 2017; 30 Guo‐Hua W. (e_1_2_11_18_1) 2023 e_1_2_11_32_1 e_1_2_11_51_1 e_1_2_11_13_1 Kim H. (e_1_2_11_33_1) 2024 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_6_1 e_1_2_11_48_1 e_1_2_11_2_1 Le H. (e_1_2_11_45_1) 2022 Wallace G. K. (e_1_2_11_24_1) 1990 Zhu Y. (e_1_2_11_29_1) 2022 Chen W. (e_1_2_11_38_1) 2023 Ballé J. (e_1_2_11_11_1) 2018 Luo C. (e_1_2_11_27_1) 2023 e_1_2_11_20_1 e_1_2_11_47_1 Qin P. (e_1_2_11_19_1) 2024 e_1_2_11_15_1 Luo A. (e_1_2_11_37_1) 2022 Ballé J. (e_1_2_11_39_1) 2019 Cheng Z. (e_1_2_11_4_1) 2020 Dosovitskiy A. (e_1_2_11_21_1) 2021 Jeon G.‐W. (e_1_2_11_42_1) 2023 Kim J.‐H. (e_1_2_11_35_1) 2020 Yin S. (e_1_2_11_36_1) 2022 e_1_2_11_10_1 e_1_2_11_52_1 Minnen D. (e_1_2_11_12_1) 2018 e_1_2_11_54_1 e_1_2_11_7_1 Dupont E. (e_1_2_11_30_1) 2021 e_1_2_11_5_1 e_1_2_11_3_1 Li F. (e_1_2_11_22_1) 2020 e_1_2_11_49_1 Xie Y. (e_1_2_11_14_1) 2021 Strümpler Y. (e_1_2_11_31_1) 2022 Tan M. (e_1_2_11_50_1) 2019 Sun H. (e_1_2_11_43_1) 2022 Shi J. (e_1_2_11_44_1) 2023; 34 Marcellin M. W. (e_1_2_11_8_1) 2000 Sun H. (e_1_2_11_41_1) 2020 e_1_2_11_46_1 Liu J. (e_1_2_11_17_1) 2023 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_16_1 He D. (e_1_2_11_28_1) 2021 |
References_xml | – start-page: 6105 volume-title: International Conference on Machine Learning year: 2019 ident: e_1_2_11_50_1 – ident: e_1_2_11_16_1 – ident: e_1_2_11_15_1 doi: 10.1109/CVPR52688.2022.01697 – start-page: 1 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2023 ident: e_1_2_11_17_1 – ident: e_1_2_11_47_1 – start-page: 9347 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2024 ident: e_1_2_11_33_1 – start-page: 162 volume-title: Proceedings of the ACM International Conference on Multimedia year: 2021 ident: e_1_2_11_14_1 – start-page: 3464 volume-title: 2023 IEEE International Conference on Image Processing (ICIP) year: 2023 ident: e_1_2_11_38_1 doi: 10.1109/ICIP49359.2023.10222822 – start-page: 10794 volume-title: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3–8, 2018, Montréal, Canada year: 2018 ident: e_1_2_11_12_1 – ident: e_1_2_11_40_1 – ident: e_1_2_11_32_1 – ident: e_1_2_11_13_1 doi: 10.1109/ICIP40778.2020.9190935 – start-page: 220 volume-title: Image Processing Algorithms and Techniques year: 1990 ident: e_1_2_11_24_1 doi: 10.1117/12.19537 – ident: e_1_2_11_54_1 – volume: 34 start-page: 3082 year: 2023 ident: e_1_2_11_44_1 article-title: Rate‐Distortion Optimized Post‐Training Quantization for Learned Image Compression publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2023.3323015 – start-page: 324 volume-title: Proceedings of the 13th ACM Multimedia Systems Conference year: 2022 ident: e_1_2_11_45_1 doi: 10.1145/3524273.3532906 – volume-title: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada year: 2018 ident: e_1_2_11_11_1 – ident: e_1_2_11_10_1 doi: 10.1109/tcsvt.2021.3101953 – start-page: 2063 volume-title: ICASSP 2020‐2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) year: 2020 ident: e_1_2_11_35_1 doi: 10.1109/ICASSP40776.2020.9053102 – ident: e_1_2_11_5_1 doi: 10.1109/CVPR52688.2022.00563 – ident: e_1_2_11_46_1 doi: 10.1109/WACV57701.2024.00427 – start-page: 53 volume-title: Chinese Conference on Pattern Recognition and Computer Vision (PRCV) year: 2023 ident: e_1_2_11_27_1 – ident: e_1_2_11_48_1 doi: 10.1109/CVPR.2017.195 – start-page: 3061 volume-title: 2022 IEEE International Conference on Image Processing (ICIP) year: 2022 ident: e_1_2_11_37_1 doi: 10.1109/ICIP46576.2022.9897854 – start-page: 74 volume-title: European Conference on Computer Vision year: 2022 ident: e_1_2_11_31_1 – ident: e_1_2_11_3_1 doi: 10.1016/j.sigpro.2023.109128 – volume: 30 year: 2017 ident: e_1_2_11_26_1 article-title: Attention Is All You Need publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_11_23_1 doi: 10.1007/s11432‐021‐3461‐9 – ident: e_1_2_11_9_1 doi: 10.1109/tcsvt.2012.2221191 – ident: e_1_2_11_25_1 doi: 10.1016/s0923‐5965(01)00024‐8 – ident: e_1_2_11_2_1 doi: 10.1109/tcsvt.2022.3216713 – start-page: 13 volume-title: 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT) year: 2020 ident: e_1_2_11_22_1 doi: 10.1109/ATIT50783.2020.9349289 – ident: e_1_2_11_51_1 – start-page: 7936 volume-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13–19, 2020 year: 2020 ident: e_1_2_11_4_1 – volume-title: International Conference on Learning Representations year: 2021 ident: e_1_2_11_21_1 – volume-title: International Conference on Learning Representations year: 2022 ident: e_1_2_11_29_1 – volume-title: The Eleventh International Conference on Learning Representations year: 2023 ident: e_1_2_11_18_1 – ident: e_1_2_11_52_1 doi: 10.1109/CVPR42600.2020.00165 – volume-title: Neural Compression: From Information Theory to Applications – Workshop @ ICLR 2021 year: 2021 ident: e_1_2_11_30_1 – start-page: 471 volume-title: 2022 IEEE International Conference on Image Processing (ICIP) year: 2022 ident: e_1_2_11_36_1 doi: 10.1109/ICIP46576.2022.9897508 – start-page: 523 volume-title: Proceedings DCC 2000. Data Compression Conference year: 2000 ident: e_1_2_11_8_1 doi: 10.1109/DCC.2000.838192 – ident: e_1_2_11_6_1 doi: 10.1109/tpami.2021.3065339 – start-page: 3055 volume-title: ICASSP 2024 – 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) year: 2024 ident: e_1_2_11_19_1 – start-page: 2755 volume-title: 2023 IEEE International Conference on Image Processing (ICIP) year: 2023 ident: e_1_2_11_42_1 doi: 10.1109/ICIP49359.2023.10222336 – start-page: 14771 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) year: 2021 ident: e_1_2_11_28_1 – ident: e_1_2_11_7_1 doi: 10.1109/30.125072 – start-page: 1 year: 2022 ident: e_1_2_11_43_1 article-title: Q‐LIC: Quantizing Learned Image Compression With Channel Splitting publication-title: IEEE Transactions on Circuits and Systems for Video Technology – ident: e_1_2_11_53_1 – volume-title: International Conference on Learning Representations year: 2019 ident: e_1_2_11_39_1 – start-page: 3359 volume-title: 2020 IEEE International Conference on Image Processing (ICIP) year: 2020 ident: e_1_2_11_41_1 doi: 10.1109/ICIP40778.2020.9190805 – ident: e_1_2_11_49_1 doi: 10.1109/CVPR.2018.00716 – ident: e_1_2_11_34_1 doi: 10.1016/j.patcog.2020.107281 – ident: e_1_2_11_20_1 doi: 10.1109/lsp.2020.3039932 |
SSID | ssj0001999537 |
Score | 2.2954462 |
SecondaryResourceType | online_first |
Snippet | Neural image compression (NIC) has shown remarkable rate‐distortion (R‐D) efficiency. However, the considerable computational and spatial complexity of most... |
SourceID | crossref |
SourceType | Index Database |
Title | SFNIC: Hybrid Spatial‐Frequency Information for Lightweight Neural Image Compression |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oXLwYjRqfZBO9kSJsX6y3ihIwwAVQbqSPbcLBakiJwZM_wd_oL3Fmd2kb8YBeNs2m2zb7NbMzs983S8iVY0XQ73DDjqGx7JAZvu8yA34P4ULQjIsasi0GTmdsPUzsSX5mq1SXpEEtfP9VV_IfVKEPcEWV7B-QzR4KHXAN-EILCEO7EcbD9qDbwpi-s0ThVRXPF4a3ZgSG9lwRpZdVrTrKiIU9jMnfZFq0ivU5sOLGM9J30D4oamxS9FtbntdVhdCVEEJuMnSL5TzXc_S3vkzDoj0Ren2UKQJp555yCVpPEgr6i5xpoAUjM7DWeqDOSzA747Bq88VQ0wX-mrK1Yr1vzXhDsAIzHs5SVnOxbk6-RK225X-sXBmfUO6kW3yKY6dy7DYpM9fFjfuyd9fvDfO8G3jEtiylmn3Mqmqtxa_zlxf8lILDMdojuzpSoJ6CfZ9sieSAPErIb6gCnGrAvz4-M6hpAWoKV7QANVVQUwk1LUB9SMbt-1GrY-ijMYyQsWYKa5gVRwGPROiCAXbNwGR1M0AZsinADPuNZtQIGcebObe4qDth3AzMSIg6RyfUPCKl5CURx4Saceg2BGcxEhZZFPgwO5bJOAQKEcST_IRcriZi-qoqoEzX5_t0o7vOyE7-q5yTUjpfiAtw6tKgonGqyKTIN6pHTK0 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SFNIC%3A+Hybrid+Spatial%E2%80%90Frequency+Information+for+Lightweight+Neural+Image+Compression&rft.jtitle=CAAI+Transactions+on+Intelligence+Technology&rft.au=Bao%2C+Youneng&rft.au=Tan%2C+Wen&rft.au=Li%2C+Mu&rft.au=Chen%2C+Jiacong&rft.date=2025-07-01&rft.issn=2468-2322&rft.eissn=2468-2322&rft_id=info:doi/10.1049%2Fcit2.70034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_cit2_70034 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-2322&client=summon |