Density functional theory meta-GGA + U study of water incorporation in the metal-organic framework material Cu-BTC
Water absorption in the metal-organic framework (MOF) material Cu-BTC, up to a concentration of 3.5 H2O per Cu ion, is studied via density functional theory at the meta-GGA + U level. The stable arrangements of water molecules show chains of hydrogen-bonded water molecules and a tendency to form clo...
Saved in:
Published in | The Journal of chemical physics Vol. 143; no. 2; p. 024701 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
14.07.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Water absorption in the metal-organic framework (MOF) material Cu-BTC, up to a concentration of 3.5 H2O per Cu ion, is studied via density functional theory at the meta-GGA + U level. The stable arrangements of water molecules show chains of hydrogen-bonded water molecules and a tendency to form closed cages at high concentration. Water clusters are stabilized primarily by a combination of water-water hydrogen bonding and Cu-water oxygen interactions. Stability is further enhanced by van der Waals interactions, electric field enhancement of water-water bonding, and hydrogen bonding of water to framework oxygens. We hypothesize that the tendency to form such stable clusters explains the particularly strong affinity of water to Cu-BTC and related MOFs with exposed metal sites. |
---|---|
AbstractList | Water absorption in the metal-organic framework (MOF) material Cu-BTC, up to a concentration of 3.5 H2O per Cu ion, is studied via density functional theory at the meta-GGA + U level. The stable arrangements of water molecules show chains of hydrogen-bonded water molecules and a tendency to form closed cages at high concentration. Water clusters are stabilized primarily by a combination of water-water hydrogen bonding and Cu-water oxygen interactions. Stability is further enhanced by van der Waals interactions, electric field enhancement of water-water bonding, and hydrogen bonding of water to framework oxygens. We hypothesize that the tendency to form such stable clusters explains the particularly strong affinity of water to Cu-BTC and related MOFs with exposed metal sites. Water absorption in the metal-organic framework (MOF) material Cu-BTC, up to a concentration of 3.5 H2O per Cu ion, is studied via density functional theory at the meta-GGA + U level. The stable arrangements of water molecules show chains of hydrogen-bonded water molecules and a tendency to form closed cages at high concentration. Water clusters are stabilized primarily by a combination of water-water hydrogen bonding and Cu-water oxygen interactions. Stability is further enhanced by van der Waals interactions, electric field enhancement of water-water bonding, and hydrogen bonding of water to framework oxygens. We hypothesize that the tendency to form such stable clusters explains the particularly strong affinity of water to Cu-BTC and related MOFs with exposed metal sites.Water absorption in the metal-organic framework (MOF) material Cu-BTC, up to a concentration of 3.5 H2O per Cu ion, is studied via density functional theory at the meta-GGA + U level. The stable arrangements of water molecules show chains of hydrogen-bonded water molecules and a tendency to form closed cages at high concentration. Water clusters are stabilized primarily by a combination of water-water hydrogen bonding and Cu-water oxygen interactions. Stability is further enhanced by van der Waals interactions, electric field enhancement of water-water bonding, and hydrogen bonding of water to framework oxygens. We hypothesize that the tendency to form such stable clusters explains the particularly strong affinity of water to Cu-BTC and related MOFs with exposed metal sites. |
Author | Cockayne, Eric Nelson, Eric B. |
Author_xml | – sequence: 1 givenname: Eric surname: Cockayne fullname: Cockayne, Eric – sequence: 2 givenname: Eric B. surname: Nelson fullname: Nelson, Eric B. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26178120$$D View this record in MEDLINE/PubMed |
BookMark | eNplkT1PwzAURS1UBOVj4A8gSywgFOrnpI49QoGChMQCs-U4NhiSuNiOUP89KW0XmJ6edM4d7j1Ao853BqETIFdAWD6Bq0LQvGCwg8ZAuMhKJsgIjQmhkAlG2D46iPGDEAIlLfbQPmVQcqBkjMKt6aJLS2z7TifnO9Xg9G58WOLWJJXN59f4Er_imPp6ib3F3yqZgF2nfVj4oFbK8K2cX6HJfHhTndPYBtWabx8-cbtS3BA867Obl9kR2rWqieZ4cw_R6_3dy-whe3qeP86unzJNKU8ZZ5bmuea8qiwzeSFUTWqVK275tK6ImTKqa6aLwpalMBXjnAnB6ryagq64EvkhOl_nLoL_6k1MsnVRm6ZRnfF9lMBESYngHAb07A_64fswdBElBVoAFCXhA3W6ofqqNbVcBNeqsJTbNgdgsgZ08DEGY6V26beiFJRrJBC52kuC3Ow1GBd_jG3of_YH-gCTOg |
CitedBy_id | crossref_primary_10_1021_acs_jpca_9b04013 crossref_primary_10_1038_s41524_022_00918_0 crossref_primary_10_1103_PhysRevB_102_054101 crossref_primary_10_1021_acs_jpcc_6b11692 crossref_primary_10_1002_adfm_202106474 crossref_primary_10_1021_acs_jpcc_0c11187 crossref_primary_10_1021_acs_jpcc_9b09910 crossref_primary_10_1017_S0885715619000587 crossref_primary_10_1021_acs_chemmater_9b03762 crossref_primary_10_1021_acssuschemeng_6b00080 crossref_primary_10_1038_s41467_021_22996_2 crossref_primary_10_1021_acs_chemrev_6b00626 |
Cites_doi | 10.1107/S0108768112005125 10.1002/jcc.20495 10.1021/je1002225 10.1021/jp206821f 10.1016/j.micromeso.2003.12.027 10.1557/mrs.2012.10 10.1039/c3cp53126k 10.1017/S0885715614001195 10.1021/jz101378z 10.1021/ja0570032 10.1103/PhysRevB.54.11169 10.1016/j.cplett.2013.09.049 10.1016/j.micromeso.2011.11.022 10.1021/jp806363w 10.1021/ja0660857 10.1126/science.283.5405.1148 10.1021/la102359q 10.1021/la3009514 10.1021/jp062723w 10.1021/jp311118x 10.1016/j.micromeso.2013.06.033 10.1063/1.481613 10.1021/cr2003272 10.1524/zkri.1977.145.5-6.412 10.1021/nl0341281 10.1103/PhysRevB.52.R5467 10.1039/f19757101127 10.1021/ja066098k 10.1063/1.4790861 10.1021/cm900049x 10.1107/S0108768112011226 10.1088/0957-4484/20/20/204025 10.1021/jp500324x 10.1021/ie202325p 10.1073/pnas.191266498 10.1021/jp110669p 10.1103/PhysRevB.84.035117 10.1021/jp7100094 10.1021/jp408034u 10.1103/PhysRevLett.100.136406 10.1063/1.2816565 10.1063/1.2173259 10.1021/jp4018037 |
ContentType | Journal Article |
Copyright | 2015 U.S. Government |
Copyright_xml | – notice: 2015 U.S. Government |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD H8D L7M 7X8 |
DOI | 10.1063/1.4923461 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 26178120 10_1063_1_4923461 |
Genre | Journal Article |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAGWI AAPUP AAYIH AAYXX ABJGX ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM ADMLS AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D-I DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 AAEUA CGR CUY CVF ECM EIF ESX NPM 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c228t-86f233c88bbf6e349ad0da3a8f85db0e562cd6c44f779eb6886996d3b51cb8a93 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Fri Jul 11 16:27:17 EDT 2025 Sun Jun 29 16:08:26 EDT 2025 Wed Feb 19 01:59:11 EST 2025 Thu Apr 24 23:05:02 EDT 2025 Tue Jul 01 04:15:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c228t-86f233c88bbf6e349ad0da3a8f85db0e562cd6c44f779eb6886996d3b51cb8a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26178120 |
PQID | 2124114708 |
PQPubID | 2050685 |
ParticipantIDs | proquest_miscellaneous_1697209881 proquest_journals_2124114708 pubmed_primary_26178120 crossref_citationtrail_10_1063_1_4923461 crossref_primary_10_1063_1_4923461 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-07-14 2015-Jul-14 20150714 |
PublicationDateYYYYMMDD | 2015-07-14 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2015 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | (2023072722530299200_c24) 2013; 117 (2023072722530299200_c6) 2004; 73 (2023072722530299200_c32) 2011; 84 (2023072722530299200_c31) 2008; 100 (2023072722530299200_c3) 1999; 283 (2023072722530299200_c46) 1975; 71 (2023072722530299200_c43) 2013; 52A (2023072722530299200_c10) 2007; 129 (2023072722530299200_c42) 2008; 128 (2023072722530299200_c44) 2013; 15 (2023072722530299200_c1) 2005; 127 (2023072722530299200_c19) 2013; 51 (2023072722530299200_c2) 2011; 112 (2023072722530299200_c12) 2010; 55 (2023072722530299200_c14) 2010; 26 (2023072722530299200_c37) 2008; 112 (2023072722530299200_c17) 2013; 117 (2023072722530299200_c25) 2013; 587 (2023072722530299200_c23) 2010; 1 (2023072722530299200_c15) 2012; 28 (2023072722530299200_c13) 2009; 21 (2023072722530299200_c36) 2012; 68 (2023072722530299200_c21) 2015; 30 (2023072722530299200_c39) 2013; 117 (2023072722530299200_c26) 1996; 54 (2023072722530299200_c16) 2012; 152 (2023072722530299200_c8) 2009; 20 (2023072722530299200_c18) 2012; 37 (2023072722530299200_c40) 2011; 115 (2023072722530299200_c48) 2013; 138 (2023072722530299200_c34) 1977; 145 (2023072722530299200_c41) 2006; 124 (2023072722530299200_c47) 2014; 118 (2023072722530299200_c28) 2006; 27 (2023072722530299200_c30) 2000; 112 (2023072722530299200_c33) 1995; 52 (2023072722530299200_c22) 2008; 112 2023072722530299200_c38 (2023072722530299200_c45) 2001; 98 (2023072722530299200_c4) 2003; 3 (2023072722530299200_c11) 2006; 110 (2023072722530299200_c35) 2012; 68 (2023072722530299200_c9) 2006; 128 (2023072722530299200_c20) 2013; 180 (2023072722530299200_c7) 2011; 115 |
References_xml | – volume: 68 start-page: 107 year: 2012 ident: 2023072722530299200_c36 publication-title: Acta Crystallogr., Sect. B doi: 10.1107/S0108768112005125 – volume: 27 start-page: 1787 year: 2006 ident: 2023072722530299200_c28 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 55 start-page: 3655 year: 2010 ident: 2023072722530299200_c12 publication-title: J. Chem. Eng. Data doi: 10.1021/je1002225 – volume: 115 start-page: 21521 year: 2011 ident: 2023072722530299200_c7 publication-title: J. Phys. Chem. C doi: 10.1021/jp206821f – volume: 73 start-page: 81 year: 2004 ident: 2023072722530299200_c6 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2003.12.027 – volume: 37 start-page: 431 year: 2012 ident: 2023072722530299200_c18 publication-title: MRS Bull. doi: 10.1557/mrs.2012.10 – volume: 15 start-page: 19049 year: 2013 ident: 2023072722530299200_c44 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp53126k – volume: 30 start-page: 2 year: 2015 ident: 2023072722530299200_c21 publication-title: Powder Diffr. doi: 10.1017/S0885715614001195 – volume: 1 start-page: 3354 year: 2010 ident: 2023072722530299200_c23 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz101378z – volume: 127 start-page: 17998 year: 2005 ident: 2023072722530299200_c1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0570032 – volume: 54 start-page: 11169 year: 1996 ident: 2023072722530299200_c26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 587 start-page: 7 year: 2013 ident: 2023072722530299200_c25 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2013.09.049 – volume: 152 start-page: 246 year: 2012 ident: 2023072722530299200_c16 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2011.11.022 – volume: 112 start-page: 15934 year: 2008 ident: 2023072722530299200_c22 publication-title: J. Phys. Chem. C doi: 10.1021/jp806363w – volume: 128 start-page: 15578 year: 2006 ident: 2023072722530299200_c9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0660857 – volume: 283 start-page: 1148 year: 1999 ident: 2023072722530299200_c3 publication-title: Science doi: 10.1126/science.283.5405.1148 – volume: 26 start-page: 14301 year: 2010 ident: 2023072722530299200_c14 publication-title: Langmuir doi: 10.1021/la102359q – volume: 28 start-page: 8064 year: 2012 ident: 2023072722530299200_c15 publication-title: Langmuir doi: 10.1021/la3009514 – volume: 110 start-page: 17776 year: 2006 ident: 2023072722530299200_c11 publication-title: J. Phys. Chem. B doi: 10.1021/jp062723w – volume: 117 start-page: 3383 year: 2013 ident: 2023072722530299200_c17 publication-title: J. Phys. Chem. C doi: 10.1021/jp311118x – volume: 180 start-page: 8 year: 2013 ident: 2023072722530299200_c20 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2013.06.033 – volume: 112 start-page: 9759 year: 2000 ident: 2023072722530299200_c30 publication-title: J. Chem. Phys. doi: 10.1063/1.481613 – volume: 112 start-page: 724 year: 2011 ident: 2023072722530299200_c2 publication-title: Chem. Rev. doi: 10.1021/cr2003272 – volume: 145 start-page: 412 year: 1977 ident: 2023072722530299200_c34 publication-title: Z. Kristallogr. doi: 10.1524/zkri.1977.145.5-6.412 – volume: 3 start-page: 713 year: 2003 ident: 2023072722530299200_c4 publication-title: Nano Lett. doi: 10.1021/nl0341281 – volume: 52 start-page: R5467 year: 1995 ident: 2023072722530299200_c33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.52.R5467 – volume: 71 start-page: 1127 year: 1975 ident: 2023072722530299200_c46 publication-title: J. Chem. Soc., Faraday Trans. 1 doi: 10.1039/f19757101127 – volume: 129 start-page: 1203 year: 2007 ident: 2023072722530299200_c10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja066098k – volume: 52A start-page: 1056 year: 2013 ident: 2023072722530299200_c43 publication-title: Indian J. Chem. – volume: 138 start-page: 074506 year: 2013 ident: 2023072722530299200_c48 publication-title: J. Chem. Phys. doi: 10.1063/1.4790861 – volume: 21 start-page: 1425 year: 2009 ident: 2023072722530299200_c13 publication-title: Chem. Mater. doi: 10.1021/cm900049x – volume: 68 start-page: 266 year: 2012 ident: 2023072722530299200_c35 publication-title: Acta Crystallogr., Sect. B doi: 10.1107/S0108768112011226 – volume: 20 start-page: 204025 year: 2009 ident: 2023072722530299200_c8 publication-title: Nanotechnology doi: 10.1088/0957-4484/20/20/204025 – volume: 118 start-page: 10989 year: 2014 ident: 2023072722530299200_c47 publication-title: J. Phys. Chem. C doi: 10.1021/jp500324x – volume: 51 start-page: 6513 year: 2013 ident: 2023072722530299200_c19 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie202325p – volume: 98 start-page: 10533 year: 2001 ident: 2023072722530299200_c45 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.191266498 – volume: 115 start-page: 3695 year: 2011 ident: 2023072722530299200_c40 publication-title: J. Phys. Chem. C doi: 10.1021/jp110669p – ident: 2023072722530299200_c38 – volume: 84 start-page: 035117 year: 2011 ident: 2023072722530299200_c32 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.035117 – volume: 112 start-page: 2678 year: 2008 ident: 2023072722530299200_c37 publication-title: J. Phys. Chem. C doi: 10.1021/jp7100094 – volume: 117 start-page: 20116 year: 2013 ident: 2023072722530299200_c39 publication-title: J. Phys. Chem. C doi: 10.1021/jp408034u – volume: 100 start-page: 136406 year: 2008 ident: 2023072722530299200_c31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.136406 – volume: 128 start-page: 034310 year: 2008 ident: 2023072722530299200_c42 publication-title: J. Chem. Phys. doi: 10.1063/1.2816565 – volume: 124 start-page: 094308 year: 2006 ident: 2023072722530299200_c41 publication-title: J. Chem. Phys. doi: 10.1063/1.2173259 – volume: 117 start-page: 14570 year: 2013 ident: 2023072722530299200_c24 publication-title: J. Phys. Chem. C doi: 10.1021/jp4018037 |
SSID | ssj0001724 |
Score | 2.2487338 |
Snippet | Water absorption in the metal-organic framework (MOF) material Cu-BTC, up to a concentration of 3.5 H2O per Cu ion, is studied via density functional theory at... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 024701 |
SubjectTerms | Adsorption Cages Chemical bonds Clusters Computer Simulation Copper Copper - chemistry Density functional theory Electromagnetic Phenomena Hydrogen Bonding Ions - chemistry Metal-organic frameworks Models, Chemical Organometallic Compounds - chemistry Oxygen - chemistry Physics Uranium Water - chemistry Water absorption |
Title | Density functional theory meta-GGA + U study of water incorporation in the metal-organic framework material Cu-BTC |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26178120 https://www.proquest.com/docview/2124114708 https://www.proquest.com/docview/1697209881 |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgVwguCJZXYUEGcUCqUpI4dZxjN_sS6i5IpFJvUfw6LS3abYXg1zMT20krirRwiVo3divP58nnqecbQt5rrXNhChWlUsdRphIWFQIWnhaKCW5jyzXGOy4u-fks-zQfz_tinG12yUqO1K-deSX_Y1VoA7tiluw_WLYbFBrgNdgXrmBhuN7Kxsd4-hyPXMLDKRwcb3PtsTB0E52dTcCyR8OZE5FFXvijQVFEVGRwAsYbJx2xy1XkqjypoQ2HtobfsAvG1ct1dFSVm2y2zytrGa0K4gMuXNKx9RJ8bvPThU7R7_YB6CAVia2-_rOPQCRjDG26zE_vNGNRRDl3ZT9HZkdb8LROkclDKt3wm8AUchfU-MOlA4fC6MIIleQyJ9y-LZt9-bk-nU2ndXUyr-6S_RT2C-Dw9ifHF9Ov3UMZeFrmci3czwoiU5x97IbepiZ_2W-0vKN6RB766aUTZ_3H5I5ZHJD7ZajTd0DufXGz_YRcezzQHg_U4YEGPNAhndEWDXRpaYsGuoUGeId96BYaaIcGGtBAHRqektnpSVWeR76mRqTSVKwiWH8pY0oIKS03LCsaHeuGNcKKsZaxATqsNFdZZvO8MJILwWFHrJkcJ0qKpmDPyN5iuTAvCJXKqgQLHDBpgArxxpo8N6mEzsAjMzsgH8J01soLzmPdk6u6PfjAWZ3UfuYH5F1363ensrLrpsNgk9ovwpsamFcGW_o8FgPytvsYLID_ezULs1zf1Akv8jQuhIAhnjtbdt-CBQmA48Yvb9H7FXnQw_-Q7K2u1-Y1UNKVfOPh9hsXlYzq |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Density+functional+theory+meta-GGA+%2B+U+study+of+water+incorporation+in+the+metal-organic+framework+material+Cu-BTC&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Cockayne%2C+Eric&rft.au=Nelson%2C+Eric+B&rft.date=2015-07-14&rft.issn=1089-7690&rft.eissn=1089-7690&rft.volume=143&rft.issue=2&rft.spage=024701&rft_id=info:doi/10.1063%2F1.4923461&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |