Density functional theory meta-GGA + U study of water incorporation in the metal-organic framework material Cu-BTC

Water absorption in the metal-organic framework (MOF) material Cu-BTC, up to a concentration of 3.5 H2O per Cu ion, is studied via density functional theory at the meta-GGA + U level. The stable arrangements of water molecules show chains of hydrogen-bonded water molecules and a tendency to form clo...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 143; no. 2; p. 024701
Main Authors Cockayne, Eric, Nelson, Eric B.
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 14.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Water absorption in the metal-organic framework (MOF) material Cu-BTC, up to a concentration of 3.5 H2O per Cu ion, is studied via density functional theory at the meta-GGA + U level. The stable arrangements of water molecules show chains of hydrogen-bonded water molecules and a tendency to form closed cages at high concentration. Water clusters are stabilized primarily by a combination of water-water hydrogen bonding and Cu-water oxygen interactions. Stability is further enhanced by van der Waals interactions, electric field enhancement of water-water bonding, and hydrogen bonding of water to framework oxygens. We hypothesize that the tendency to form such stable clusters explains the particularly strong affinity of water to Cu-BTC and related MOFs with exposed metal sites.
AbstractList Water absorption in the metal-organic framework (MOF) material Cu-BTC, up to a concentration of 3.5 H2O per Cu ion, is studied via density functional theory at the meta-GGA + U level. The stable arrangements of water molecules show chains of hydrogen-bonded water molecules and a tendency to form closed cages at high concentration. Water clusters are stabilized primarily by a combination of water-water hydrogen bonding and Cu-water oxygen interactions. Stability is further enhanced by van der Waals interactions, electric field enhancement of water-water bonding, and hydrogen bonding of water to framework oxygens. We hypothesize that the tendency to form such stable clusters explains the particularly strong affinity of water to Cu-BTC and related MOFs with exposed metal sites.
Water absorption in the metal-organic framework (MOF) material Cu-BTC, up to a concentration of 3.5 H2O per Cu ion, is studied via density functional theory at the meta-GGA + U level. The stable arrangements of water molecules show chains of hydrogen-bonded water molecules and a tendency to form closed cages at high concentration. Water clusters are stabilized primarily by a combination of water-water hydrogen bonding and Cu-water oxygen interactions. Stability is further enhanced by van der Waals interactions, electric field enhancement of water-water bonding, and hydrogen bonding of water to framework oxygens. We hypothesize that the tendency to form such stable clusters explains the particularly strong affinity of water to Cu-BTC and related MOFs with exposed metal sites.Water absorption in the metal-organic framework (MOF) material Cu-BTC, up to a concentration of 3.5 H2O per Cu ion, is studied via density functional theory at the meta-GGA + U level. The stable arrangements of water molecules show chains of hydrogen-bonded water molecules and a tendency to form closed cages at high concentration. Water clusters are stabilized primarily by a combination of water-water hydrogen bonding and Cu-water oxygen interactions. Stability is further enhanced by van der Waals interactions, electric field enhancement of water-water bonding, and hydrogen bonding of water to framework oxygens. We hypothesize that the tendency to form such stable clusters explains the particularly strong affinity of water to Cu-BTC and related MOFs with exposed metal sites.
Author Cockayne, Eric
Nelson, Eric B.
Author_xml – sequence: 1
  givenname: Eric
  surname: Cockayne
  fullname: Cockayne, Eric
– sequence: 2
  givenname: Eric B.
  surname: Nelson
  fullname: Nelson, Eric B.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26178120$$D View this record in MEDLINE/PubMed
BookMark eNplkT1PwzAURS1UBOVj4A8gSywgFOrnpI49QoGChMQCs-U4NhiSuNiOUP89KW0XmJ6edM4d7j1Ao853BqETIFdAWD6Bq0LQvGCwg8ZAuMhKJsgIjQmhkAlG2D46iPGDEAIlLfbQPmVQcqBkjMKt6aJLS2z7TifnO9Xg9G58WOLWJJXN59f4Er_imPp6ib3F3yqZgF2nfVj4oFbK8K2cX6HJfHhTndPYBtWabx8-cbtS3BA867Obl9kR2rWqieZ4cw_R6_3dy-whe3qeP86unzJNKU8ZZ5bmuea8qiwzeSFUTWqVK275tK6ImTKqa6aLwpalMBXjnAnB6ryagq64EvkhOl_nLoL_6k1MsnVRm6ZRnfF9lMBESYngHAb07A_64fswdBElBVoAFCXhA3W6ofqqNbVcBNeqsJTbNgdgsgZ08DEGY6V26beiFJRrJBC52kuC3Ow1GBd_jG3of_YH-gCTOg
CitedBy_id crossref_primary_10_1021_acs_jpca_9b04013
crossref_primary_10_1038_s41524_022_00918_0
crossref_primary_10_1103_PhysRevB_102_054101
crossref_primary_10_1021_acs_jpcc_6b11692
crossref_primary_10_1002_adfm_202106474
crossref_primary_10_1021_acs_jpcc_0c11187
crossref_primary_10_1021_acs_jpcc_9b09910
crossref_primary_10_1017_S0885715619000587
crossref_primary_10_1021_acs_chemmater_9b03762
crossref_primary_10_1021_acssuschemeng_6b00080
crossref_primary_10_1038_s41467_021_22996_2
crossref_primary_10_1021_acs_chemrev_6b00626
Cites_doi 10.1107/S0108768112005125
10.1002/jcc.20495
10.1021/je1002225
10.1021/jp206821f
10.1016/j.micromeso.2003.12.027
10.1557/mrs.2012.10
10.1039/c3cp53126k
10.1017/S0885715614001195
10.1021/jz101378z
10.1021/ja0570032
10.1103/PhysRevB.54.11169
10.1016/j.cplett.2013.09.049
10.1016/j.micromeso.2011.11.022
10.1021/jp806363w
10.1021/ja0660857
10.1126/science.283.5405.1148
10.1021/la102359q
10.1021/la3009514
10.1021/jp062723w
10.1021/jp311118x
10.1016/j.micromeso.2013.06.033
10.1063/1.481613
10.1021/cr2003272
10.1524/zkri.1977.145.5-6.412
10.1021/nl0341281
10.1103/PhysRevB.52.R5467
10.1039/f19757101127
10.1021/ja066098k
10.1063/1.4790861
10.1021/cm900049x
10.1107/S0108768112011226
10.1088/0957-4484/20/20/204025
10.1021/jp500324x
10.1021/ie202325p
10.1073/pnas.191266498
10.1021/jp110669p
10.1103/PhysRevB.84.035117
10.1021/jp7100094
10.1021/jp408034u
10.1103/PhysRevLett.100.136406
10.1063/1.2816565
10.1063/1.2173259
10.1021/jp4018037
ContentType Journal Article
Copyright 2015 U.S. Government
Copyright_xml – notice: 2015 U.S. Government
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
H8D
L7M
7X8
DOI 10.1063/1.4923461
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 26178120
10_1063_1_4923461
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
AAYXX
ABJGX
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D-I
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
AAEUA
CGR
CUY
CVF
ECM
EIF
ESX
NPM
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c228t-86f233c88bbf6e349ad0da3a8f85db0e562cd6c44f779eb6886996d3b51cb8a93
ISSN 0021-9606
1089-7690
IngestDate Fri Jul 11 16:27:17 EDT 2025
Sun Jun 29 16:08:26 EDT 2025
Wed Feb 19 01:59:11 EST 2025
Thu Apr 24 23:05:02 EDT 2025
Tue Jul 01 04:15:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c228t-86f233c88bbf6e349ad0da3a8f85db0e562cd6c44f779eb6886996d3b51cb8a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26178120
PQID 2124114708
PQPubID 2050685
ParticipantIDs proquest_miscellaneous_1697209881
proquest_journals_2124114708
pubmed_primary_26178120
crossref_citationtrail_10_1063_1_4923461
crossref_primary_10_1063_1_4923461
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-14
2015-Jul-14
20150714
PublicationDateYYYYMMDD 2015-07-14
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2015
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References (2023072722530299200_c24) 2013; 117
(2023072722530299200_c6) 2004; 73
(2023072722530299200_c32) 2011; 84
(2023072722530299200_c31) 2008; 100
(2023072722530299200_c3) 1999; 283
(2023072722530299200_c46) 1975; 71
(2023072722530299200_c43) 2013; 52A
(2023072722530299200_c10) 2007; 129
(2023072722530299200_c42) 2008; 128
(2023072722530299200_c44) 2013; 15
(2023072722530299200_c1) 2005; 127
(2023072722530299200_c19) 2013; 51
(2023072722530299200_c2) 2011; 112
(2023072722530299200_c12) 2010; 55
(2023072722530299200_c14) 2010; 26
(2023072722530299200_c37) 2008; 112
(2023072722530299200_c17) 2013; 117
(2023072722530299200_c25) 2013; 587
(2023072722530299200_c23) 2010; 1
(2023072722530299200_c15) 2012; 28
(2023072722530299200_c13) 2009; 21
(2023072722530299200_c36) 2012; 68
(2023072722530299200_c21) 2015; 30
(2023072722530299200_c39) 2013; 117
(2023072722530299200_c26) 1996; 54
(2023072722530299200_c16) 2012; 152
(2023072722530299200_c8) 2009; 20
(2023072722530299200_c18) 2012; 37
(2023072722530299200_c40) 2011; 115
(2023072722530299200_c48) 2013; 138
(2023072722530299200_c34) 1977; 145
(2023072722530299200_c41) 2006; 124
(2023072722530299200_c47) 2014; 118
(2023072722530299200_c28) 2006; 27
(2023072722530299200_c30) 2000; 112
(2023072722530299200_c33) 1995; 52
(2023072722530299200_c22) 2008; 112
2023072722530299200_c38
(2023072722530299200_c45) 2001; 98
(2023072722530299200_c4) 2003; 3
(2023072722530299200_c11) 2006; 110
(2023072722530299200_c35) 2012; 68
(2023072722530299200_c9) 2006; 128
(2023072722530299200_c20) 2013; 180
(2023072722530299200_c7) 2011; 115
References_xml – volume: 68
  start-page: 107
  year: 2012
  ident: 2023072722530299200_c36
  publication-title: Acta Crystallogr., Sect. B
  doi: 10.1107/S0108768112005125
– volume: 27
  start-page: 1787
  year: 2006
  ident: 2023072722530299200_c28
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 55
  start-page: 3655
  year: 2010
  ident: 2023072722530299200_c12
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je1002225
– volume: 115
  start-page: 21521
  year: 2011
  ident: 2023072722530299200_c7
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp206821f
– volume: 73
  start-page: 81
  year: 2004
  ident: 2023072722530299200_c6
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2003.12.027
– volume: 37
  start-page: 431
  year: 2012
  ident: 2023072722530299200_c18
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2012.10
– volume: 15
  start-page: 19049
  year: 2013
  ident: 2023072722530299200_c44
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp53126k
– volume: 30
  start-page: 2
  year: 2015
  ident: 2023072722530299200_c21
  publication-title: Powder Diffr.
  doi: 10.1017/S0885715614001195
– volume: 1
  start-page: 3354
  year: 2010
  ident: 2023072722530299200_c23
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz101378z
– volume: 127
  start-page: 17998
  year: 2005
  ident: 2023072722530299200_c1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0570032
– volume: 54
  start-page: 11169
  year: 1996
  ident: 2023072722530299200_c26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 587
  start-page: 7
  year: 2013
  ident: 2023072722530299200_c25
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2013.09.049
– volume: 152
  start-page: 246
  year: 2012
  ident: 2023072722530299200_c16
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2011.11.022
– volume: 112
  start-page: 15934
  year: 2008
  ident: 2023072722530299200_c22
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp806363w
– volume: 128
  start-page: 15578
  year: 2006
  ident: 2023072722530299200_c9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0660857
– volume: 283
  start-page: 1148
  year: 1999
  ident: 2023072722530299200_c3
  publication-title: Science
  doi: 10.1126/science.283.5405.1148
– volume: 26
  start-page: 14301
  year: 2010
  ident: 2023072722530299200_c14
  publication-title: Langmuir
  doi: 10.1021/la102359q
– volume: 28
  start-page: 8064
  year: 2012
  ident: 2023072722530299200_c15
  publication-title: Langmuir
  doi: 10.1021/la3009514
– volume: 110
  start-page: 17776
  year: 2006
  ident: 2023072722530299200_c11
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp062723w
– volume: 117
  start-page: 3383
  year: 2013
  ident: 2023072722530299200_c17
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp311118x
– volume: 180
  start-page: 8
  year: 2013
  ident: 2023072722530299200_c20
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2013.06.033
– volume: 112
  start-page: 9759
  year: 2000
  ident: 2023072722530299200_c30
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481613
– volume: 112
  start-page: 724
  year: 2011
  ident: 2023072722530299200_c2
  publication-title: Chem. Rev.
  doi: 10.1021/cr2003272
– volume: 145
  start-page: 412
  year: 1977
  ident: 2023072722530299200_c34
  publication-title: Z. Kristallogr.
  doi: 10.1524/zkri.1977.145.5-6.412
– volume: 3
  start-page: 713
  year: 2003
  ident: 2023072722530299200_c4
  publication-title: Nano Lett.
  doi: 10.1021/nl0341281
– volume: 52
  start-page: R5467
  year: 1995
  ident: 2023072722530299200_c33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.52.R5467
– volume: 71
  start-page: 1127
  year: 1975
  ident: 2023072722530299200_c46
  publication-title: J. Chem. Soc., Faraday Trans. 1
  doi: 10.1039/f19757101127
– volume: 129
  start-page: 1203
  year: 2007
  ident: 2023072722530299200_c10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja066098k
– volume: 52A
  start-page: 1056
  year: 2013
  ident: 2023072722530299200_c43
  publication-title: Indian J. Chem.
– volume: 138
  start-page: 074506
  year: 2013
  ident: 2023072722530299200_c48
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4790861
– volume: 21
  start-page: 1425
  year: 2009
  ident: 2023072722530299200_c13
  publication-title: Chem. Mater.
  doi: 10.1021/cm900049x
– volume: 68
  start-page: 266
  year: 2012
  ident: 2023072722530299200_c35
  publication-title: Acta Crystallogr., Sect. B
  doi: 10.1107/S0108768112011226
– volume: 20
  start-page: 204025
  year: 2009
  ident: 2023072722530299200_c8
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/20/204025
– volume: 118
  start-page: 10989
  year: 2014
  ident: 2023072722530299200_c47
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp500324x
– volume: 51
  start-page: 6513
  year: 2013
  ident: 2023072722530299200_c19
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie202325p
– volume: 98
  start-page: 10533
  year: 2001
  ident: 2023072722530299200_c45
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.191266498
– volume: 115
  start-page: 3695
  year: 2011
  ident: 2023072722530299200_c40
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp110669p
– ident: 2023072722530299200_c38
– volume: 84
  start-page: 035117
  year: 2011
  ident: 2023072722530299200_c32
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.035117
– volume: 112
  start-page: 2678
  year: 2008
  ident: 2023072722530299200_c37
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp7100094
– volume: 117
  start-page: 20116
  year: 2013
  ident: 2023072722530299200_c39
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp408034u
– volume: 100
  start-page: 136406
  year: 2008
  ident: 2023072722530299200_c31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.136406
– volume: 128
  start-page: 034310
  year: 2008
  ident: 2023072722530299200_c42
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2816565
– volume: 124
  start-page: 094308
  year: 2006
  ident: 2023072722530299200_c41
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2173259
– volume: 117
  start-page: 14570
  year: 2013
  ident: 2023072722530299200_c24
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4018037
SSID ssj0001724
Score 2.2487338
Snippet Water absorption in the metal-organic framework (MOF) material Cu-BTC, up to a concentration of 3.5 H2O per Cu ion, is studied via density functional theory at...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 024701
SubjectTerms Adsorption
Cages
Chemical bonds
Clusters
Computer Simulation
Copper
Copper - chemistry
Density functional theory
Electromagnetic Phenomena
Hydrogen Bonding
Ions - chemistry
Metal-organic frameworks
Models, Chemical
Organometallic Compounds - chemistry
Oxygen - chemistry
Physics
Uranium
Water - chemistry
Water absorption
Title Density functional theory meta-GGA + U study of water incorporation in the metal-organic framework material Cu-BTC
URI https://www.ncbi.nlm.nih.gov/pubmed/26178120
https://www.proquest.com/docview/2124114708
https://www.proquest.com/docview/1697209881
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgVwguCJZXYUEGcUCqUpI4dZxjN_sS6i5IpFJvUfw6LS3abYXg1zMT20krirRwiVo3divP58nnqecbQt5rrXNhChWlUsdRphIWFQIWnhaKCW5jyzXGOy4u-fks-zQfz_tinG12yUqO1K-deSX_Y1VoA7tiluw_WLYbFBrgNdgXrmBhuN7Kxsd4-hyPXMLDKRwcb3PtsTB0E52dTcCyR8OZE5FFXvijQVFEVGRwAsYbJx2xy1XkqjypoQ2HtobfsAvG1ct1dFSVm2y2zytrGa0K4gMuXNKx9RJ8bvPThU7R7_YB6CAVia2-_rOPQCRjDG26zE_vNGNRRDl3ZT9HZkdb8LROkclDKt3wm8AUchfU-MOlA4fC6MIIleQyJ9y-LZt9-bk-nU2ndXUyr-6S_RT2C-Dw9ifHF9Ov3UMZeFrmci3czwoiU5x97IbepiZ_2W-0vKN6RB766aUTZ_3H5I5ZHJD7ZajTd0DufXGz_YRcezzQHg_U4YEGPNAhndEWDXRpaYsGuoUGeId96BYaaIcGGtBAHRqektnpSVWeR76mRqTSVKwiWH8pY0oIKS03LCsaHeuGNcKKsZaxATqsNFdZZvO8MJILwWFHrJkcJ0qKpmDPyN5iuTAvCJXKqgQLHDBpgArxxpo8N6mEzsAjMzsgH8J01soLzmPdk6u6PfjAWZ3UfuYH5F1363ensrLrpsNgk9ovwpsamFcGW_o8FgPytvsYLID_ezULs1zf1Akv8jQuhIAhnjtbdt-CBQmA48Yvb9H7FXnQw_-Q7K2u1-Y1UNKVfOPh9hsXlYzq
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Density+functional+theory+meta-GGA+%2B+U+study+of+water+incorporation+in+the+metal-organic+framework+material+Cu-BTC&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Cockayne%2C+Eric&rft.au=Nelson%2C+Eric+B&rft.date=2015-07-14&rft.issn=1089-7690&rft.eissn=1089-7690&rft.volume=143&rft.issue=2&rft.spage=024701&rft_id=info:doi/10.1063%2F1.4923461&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon