Penalty-enhanced error-redefinition RNN for time-varying QP problems with multiple constraints and robot arm applications

Time-varying quadratic programming (QP) problems with multiple constraints (i.e., equality and inequality constraints) arise in various applications, including the motion planning of robotic arms. To achieve an efficient and accurate solution for these optimization problems, this paper proposes a no...

Full description

Saved in:
Bibliographic Details
Published inNonlinear dynamics Vol. 113; no. 17; pp. 23259 - 23283
Main Authors Zhang, Tongyang, Yang, Song
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Nature B.V 01.09.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Time-varying quadratic programming (QP) problems with multiple constraints (i.e., equality and inequality constraints) arise in various applications, including the motion planning of robotic arms. To achieve an efficient and accurate solution for these optimization problems, this paper proposes a novel penalty-enhanced error-redefinition recurrent neural network (PERNN) model based on the zeroing neural dynamics formula. Unlike conventional ERNN-based methods, which are incapable of handling inequality constraints, the PERNN model employs a dynamically weighted penalty function to transform inequality constraints into penalty terms, thereby seamlessly integrating them into the optimization criterion. This approach guarantees the simultaneous satisfaction of both equality and inequality constraints while achieving a fast convergence rate. The global convergence and robustness of the PERNN model are rigorously proven and further validated via simulations. Subsequently, the PERNN model is applied to solve the motion planning problem for robot arms subject to multiple constraints. Furthermore, some application experiments involving three different robot arms are conducted to verify the effectiveness and anti-disturbance capacity of the proposed PERNN model, as well as the applicability to actual robotic systems. Comparative results demonstrate that the PERNN model outperforms other modern RNN-based solvers in terms of tracking accuracy, computational efficiency and time-varying disturbance suppression.
AbstractList Time-varying quadratic programming (QP) problems with multiple constraints (i.e., equality and inequality constraints) arise in various applications, including the motion planning of robotic arms. To achieve an efficient and accurate solution for these optimization problems, this paper proposes a novel penalty-enhanced error-redefinition recurrent neural network (PERNN) model based on the zeroing neural dynamics formula. Unlike conventional ERNN-based methods, which are incapable of handling inequality constraints, the PERNN model employs a dynamically weighted penalty function to transform inequality constraints into penalty terms, thereby seamlessly integrating them into the optimization criterion. This approach guarantees the simultaneous satisfaction of both equality and inequality constraints while achieving a fast convergence rate. The global convergence and robustness of the PERNN model are rigorously proven and further validated via simulations. Subsequently, the PERNN model is applied to solve the motion planning problem for robot arms subject to multiple constraints. Furthermore, some application experiments involving three different robot arms are conducted to verify the effectiveness and anti-disturbance capacity of the proposed PERNN model, as well as the applicability to actual robotic systems. Comparative results demonstrate that the PERNN model outperforms other modern RNN-based solvers in terms of tracking accuracy, computational efficiency and time-varying disturbance suppression.
Author Zhang, Tongyang
Yang, Song
Author_xml – sequence: 1
  givenname: Tongyang
  surname: Zhang
  fullname: Zhang, Tongyang
– sequence: 2
  givenname: Song
  surname: Yang
  fullname: Yang, Song
BookMark eNotkEtLAzEUhYNUsK3-AVcB19HkppmZLEV8QakPFLoLMcloZCYZk1Spv97Ryl3czcfhnG-GJiEGh9Axo6eM0vosM0ZrRigIwhhfSPK9h6ZM1JxAJdcTNKUSFoRKuj5As5zfKaUcaDNF23sXdFe2xIU3HYyz2KUUE0nOutYHX3wM-HG1wm1MuPjekU-dtj684od7PKT40rk-4y9f3nC_6YofOodNDLkk7UPJWAeLRyoWrFOP9TB03ujf0HyI9lvdZXf0_-fo-ery6eKGLO-uby_Ol8QANIXUVjTMgLBWuKZ1UoK12oClllWVaOTLomJCQC2EAS0dLLiBtqlqCw3XQrZ8jk52uWPbj43LRb3HTRpHZ8WBVyDFeCMFO8qkmHNyrRqS78epilH1q1jtFKtRsfpTrL75D14hc0w
Cites_doi 10.1016/j.irfa.2016.10.002
10.1109/TAC.2017.2696742
10.1109/TCYB.2021.3051261
10.1016/j.neucom.2025.129727
10.1007/s11071-024-10082-3
10.1016/j.cor.2021.105582
10.1007/s11071-016-2681-9
10.1016/j.jfranklin.2022.05.023
10.1016/j.isatra.2023.12.020
10.1007/s10589-019-00102-z
10.1049/cit2.12019
10.1109/TIE.2024.3406880
10.1109/TITS.2024.3384358
10.1016/j.eswa.2021.115445
10.1016/j.chaos.2024.114551
10.1109/LRA.2017.2723470
10.1109/TNNLS.2016.2574363
10.1109/TAC.2018.2810039
10.1016/j.ejcon.2024.101160
10.1016/j.neucom.2021.01.084
10.1109/TNNLS.2023.3270381
10.1109/TAC.2021.3090749
10.1109/TAC.2021.3128470
10.1016/j.ifacol.2019.06.108
10.1109/TSMC.2021.3137814
10.1109/TNNLS.2020.3009201
10.1109/TIE.2016.2590379
10.1016/j.apm.2010.11.056
10.1109/TCDS.2020.2979340
10.1109/TMECH.2018.2816963
10.1109/TCST.2012.2190142
10.1109/TSMC.2019.2930763
10.1109/TNNLS.2024.3351674
10.1109/TSTE.2018.2860901
10.1109/TSMC.2018.2866843
10.1016/j.epsr.2023.109213
10.1109/TNNLS.2018.2884543
10.1007/s00521-024-10100-w
10.1049/cit2.12192
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2025.
DBID AAYXX
CITATION
DOI 10.1007/s11071-025-11349-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 23283
ExternalDocumentID 10_1007_s11071_025_11349_z
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z8Z
ZMTXR
~A9
~EX
ID FETCH-LOGICAL-c228t-7d581c25dd5e8fe992ddac2d0d166589b461552755c2a9e243c2f867d283a59f3
ISSN 0924-090X
IngestDate Sat Aug 23 13:31:07 EDT 2025
Wed Aug 06 19:29:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c228t-7d581c25dd5e8fe992ddac2d0d166589b461552755c2a9e243c2f867d283a59f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3236295959
PQPubID 2043746
PageCount 25
ParticipantIDs proquest_journals_3236295959
crossref_primary_10_1007_s11071_025_11349_z
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Nonlinear dynamics
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References Z Avazzadeh (11349_CR37) 2011; 35
VN Katsikis (11349_CR3) 2022; 138
C Zhang (11349_CR4) 2018; 10
H Li (11349_CR20) 2024; 36
Z Zhang (11349_CR25) 2020; 32
L Cui (11349_CR17) 2024; 361
HK Khalil (11349_CR38) 2015
L Zheng (11349_CR23) 2021; 67
L Zheng (11349_CR24) 2024; 35
W Li (11349_CR6) 2019; 51
Y Kong (11349_CR22) 2021; 437
TL Nguyen (11349_CR32) 2025; 81
L Wu (11349_CR41) 2017; 2
Z Zhang (11349_CR21) 2018; 63
Z Zhang (11349_CR26) 2021; 52
Z Zhang (11349_CR28) 2020; 50
K Choi (11349_CR14) 2024; 25
S Li (11349_CR40) 2017; 28
G Cimini (11349_CR8) 2017; 62
A Gallarreta (11349_CR5) 2023; 218
L Lv (11349_CR15) 2022; 359
VB Peccin (11349_CR9) 2019; 52
Y Zhang (11349_CR2) 2016; 85
B Wang (11349_CR13) 2022; 52
F Xu (11349_CR27) 2018; 30
Z Tang (11349_CR31) 2025; 36
X Deng (11349_CR33) 2021; 183
11349_CR34
Z Zhang (11349_CR43) 2020; 13
11349_CR30
H Wen (11349_CR12) 2024; 146
L Xiao (11349_CR42) 2013; 21
S Park (11349_CR1) 2024; 112
L Jin (11349_CR18) 2016; 63
D Arnström (11349_CR7) 2022; 67
J Gondzio (11349_CR10) 2019; 74
R Boldanov (11349_CR11) 2016; 48
11349_CR39
X Zhang (11349_CR19) 2021; 6
W Li (11349_CR29) 2024
11349_CR35
G Wang (11349_CR16) 2023; 8
11349_CR36
References_xml – volume: 48
  start-page: 209
  year: 2016
  ident: 11349_CR11
  publication-title: Int. Rev. Financial Anal.
  doi: 10.1016/j.irfa.2016.10.002
– ident: 11349_CR39
– volume: 62
  start-page: 6094
  issue: 12
  year: 2017
  ident: 11349_CR8
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2017.2696742
– volume: 52
  start-page: 8781
  issue: 9
  year: 2021
  ident: 11349_CR26
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3051261
– ident: 11349_CR35
  doi: 10.1016/j.neucom.2025.129727
– volume: 112
  start-page: 20047
  issue: 22
  year: 2024
  ident: 11349_CR1
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-024-10082-3
– volume: 138
  year: 2022
  ident: 11349_CR3
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105582
– volume: 85
  start-page: 245
  issue: 1
  year: 2016
  ident: 11349_CR2
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-2681-9
– volume: 359
  start-page: 10849
  issue: 18
  year: 2022
  ident: 11349_CR15
  publication-title: J. Franklin Institute
  doi: 10.1016/j.jfranklin.2022.05.023
– volume: 146
  start-page: 42
  year: 2024
  ident: 11349_CR12
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2023.12.020
– volume: 74
  start-page: 93
  issue: 1
  year: 2019
  ident: 11349_CR10
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-019-00102-z
– volume: 6
  start-page: 394
  issue: 4
  year: 2021
  ident: 11349_CR19
  publication-title: CAAI Trans. Intel. Technol.
  doi: 10.1049/cit2.12019
– year: 2024
  ident: 11349_CR29
  publication-title: IEEE Trans. Ind. Electronics
  doi: 10.1109/TIE.2024.3406880
– volume: 25
  start-page: 12749
  issue: 9
  year: 2024
  ident: 11349_CR14
  publication-title: IEEE Trans. Intel. Trans. Syst.
  doi: 10.1109/TITS.2024.3384358
– volume-title: Lyapunov’s Stability Theory
  year: 2015
  ident: 11349_CR38
– volume: 183
  year: 2021
  ident: 11349_CR33
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2021.115445
– ident: 11349_CR34
  doi: 10.1016/j.chaos.2024.114551
– volume: 2
  start-page: 2174
  issue: 4
  year: 2017
  ident: 11349_CR41
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2017.2723470
– volume: 28
  start-page: 2243
  issue: 10
  year: 2017
  ident: 11349_CR40
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2574363
– volume: 63
  start-page: 4110
  issue: 12
  year: 2018
  ident: 11349_CR21
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2018.2810039
– volume: 81
  year: 2025
  ident: 11349_CR32
  publication-title: Eur. J. Control
  doi: 10.1016/j.ejcon.2024.101160
– volume: 437
  start-page: 238
  year: 2021
  ident: 11349_CR22
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.01.084
– volume: 35
  start-page: 13646
  issue: 10
  year: 2024
  ident: 11349_CR24
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2023.3270381
– volume: 67
  start-page: 2758
  issue: 6
  year: 2022
  ident: 11349_CR7
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2021.3090749
– volume: 67
  start-page: 6151
  issue: 11
  year: 2021
  ident: 11349_CR23
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2021.3128470
– volume: 52
  start-page: 480
  issue: 1
  year: 2019
  ident: 11349_CR9
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.06.108
– volume: 52
  start-page: 6109
  issue: 10
  year: 2022
  ident: 11349_CR13
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
  doi: 10.1109/TSMC.2021.3137814
– ident: 11349_CR36
– volume: 32
  start-page: 2993
  issue: 7
  year: 2020
  ident: 11349_CR25
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3009201
– volume: 63
  start-page: 6978
  issue: 11
  year: 2016
  ident: 11349_CR18
  publication-title: IEEE Trans. Ind. Electronics
  doi: 10.1109/TIE.2016.2590379
– volume: 35
  start-page: 2374
  issue: 5
  year: 2011
  ident: 11349_CR37
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2010.11.056
– volume: 13
  start-page: 465
  issue: 3
  year: 2020
  ident: 11349_CR43
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2020.2979340
– ident: 11349_CR30
  doi: 10.1109/TMECH.2018.2816963
– volume: 21
  start-page: 906
  issue: 3
  year: 2013
  ident: 11349_CR42
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2012.2190142
– volume: 51
  start-page: 4028
  issue: 7
  year: 2019
  ident: 11349_CR6
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
  doi: 10.1109/TSMC.2019.2930763
– volume: 36
  start-page: 3534
  issue: 2
  year: 2025
  ident: 11349_CR31
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2024.3351674
– volume: 10
  start-page: 1086
  issue: 3
  year: 2018
  ident: 11349_CR4
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2018.2860901
– volume: 50
  start-page: 5106
  issue: 12
  year: 2020
  ident: 11349_CR28
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
  doi: 10.1109/TSMC.2018.2866843
– volume: 218
  year: 2023
  ident: 11349_CR5
  publication-title: Electric Power Syst. Res.
  doi: 10.1016/j.epsr.2023.109213
– volume: 30
  start-page: 2346
  issue: 8
  year: 2018
  ident: 11349_CR27
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2884543
– volume: 36
  start-page: 18237
  issue: 29
  year: 2024
  ident: 11349_CR20
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-024-10100-w
– volume: 8
  start-page: 670
  issue: 3
  year: 2023
  ident: 11349_CR16
  publication-title: CAAI Trans. Intel. Technol.
  doi: 10.1049/cit2.12192
– volume: 361
  issue: 16
  year: 2024
  ident: 11349_CR17
  publication-title: J. Franklin Institute
SSID ssj0003208
Score 2.4359126
Snippet Time-varying quadratic programming (QP) problems with multiple constraints (i.e., equality and inequality constraints) arise in various applications, including...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 23259
SubjectTerms Accuracy
Adaptability
Algorithms
Constraints
Convergence
Efficiency
Energy consumption
Methods
Motion control
Motion planning
Neural networks
Optimization
Penalty function
Quadratic programming
Recurrent neural networks
Robot arms
Robot dynamics
Robotics
Robots
Signal processing
Title Penalty-enhanced error-redefinition RNN for time-varying QP problems with multiple constraints and robot arm applications
URI https://www.proquest.com/docview/3236295959
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuMCBjQFibCAfuEVGjRPn4zgh0IS0qkOt1Fvk2M-ww5IpC0gt_zzPsZOmHUgMRYoSK3pK8359X34fhLwXAkKVmpIhwxU6KJlmUim8TY2BiKcilbZQ-HKWXCzjLyuxmkx-jatL2vKD2vyxruR_uIpryFdbJfsAzg5EcQGvkb94Rg7j-Z94PAd8pF0zqL67jXxomrphDWgw11WXjBV8nc1cKuH1DbCfsunKmq7mgZ8k46vbhrxCZe1FOzaidc2b8am6DWRzE4y3uscm7cw125BNoN10-8FKH4LRi7r6tpZeR1oR0wepa7_mww5cDHlVQ_yQxzbIs3KKxEvPNGI8yVc74tXVmvY4SsfSMuK-HTj0926qzT25PvV1zuishsy-TWjbKrLNVov1O_d7ym1IOdy2Z7Y0CqRRdDSKzSPymKOPYcdfLPn5oMYj3o0zHH6nr7hydZf777Fr1ewq9c5SWRyRZ97FoOcOL8_JBKpjcujdDeqF-d0xeTrqRfmCrPfBRO-DiSKYKIKJjsFEr-a0BxO1YKI9mOgITBTBRDswUQQTHYPpJVl-_rT4eMH8XA6mOM9almqRhYoLrQVkBvKcay0V11MdJmjQ5mWcdI39hFBc5sDjSHGTJalG7kqRm-gVOajqCl4TmpkEpkpyWWYQm0zLOEcDXUcQq9CUkJ-QoP-uxa1rv1L8nZMn5Kz_9IX_m94VEUcbLRd4vHkQsVPyZIv7M3LQNj_gLRqgbfmuA8pv9CWHxA
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Penalty-enhanced+error-redefinition+RNN+for+time-varying+QP+problems+with+multiple+constraints+and+robot+arm+applications&rft.jtitle=Nonlinear+dynamics&rft.au=Zhang%2C+Tongyang&rft.au=Yang%2C+Song&rft.date=2025-09-01&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=113&rft.issue=17&rft.spage=23259&rft.epage=23283&rft_id=info:doi/10.1007%2Fs11071-025-11349-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11071_025_11349_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon