Penalty-enhanced error-redefinition RNN for time-varying QP problems with multiple constraints and robot arm applications
Time-varying quadratic programming (QP) problems with multiple constraints (i.e., equality and inequality constraints) arise in various applications, including the motion planning of robotic arms. To achieve an efficient and accurate solution for these optimization problems, this paper proposes a no...
Saved in:
Published in | Nonlinear dynamics Vol. 113; no. 17; pp. 23259 - 23283 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Nature B.V
01.09.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Time-varying quadratic programming (QP) problems with multiple constraints (i.e., equality and inequality constraints) arise in various applications, including the motion planning of robotic arms. To achieve an efficient and accurate solution for these optimization problems, this paper proposes a novel penalty-enhanced error-redefinition recurrent neural network (PERNN) model based on the zeroing neural dynamics formula. Unlike conventional ERNN-based methods, which are incapable of handling inequality constraints, the PERNN model employs a dynamically weighted penalty function to transform inequality constraints into penalty terms, thereby seamlessly integrating them into the optimization criterion. This approach guarantees the simultaneous satisfaction of both equality and inequality constraints while achieving a fast convergence rate. The global convergence and robustness of the PERNN model are rigorously proven and further validated via simulations. Subsequently, the PERNN model is applied to solve the motion planning problem for robot arms subject to multiple constraints. Furthermore, some application experiments involving three different robot arms are conducted to verify the effectiveness and anti-disturbance capacity of the proposed PERNN model, as well as the applicability to actual robotic systems. Comparative results demonstrate that the PERNN model outperforms other modern RNN-based solvers in terms of tracking accuracy, computational efficiency and time-varying disturbance suppression. |
---|---|
AbstractList | Time-varying quadratic programming (QP) problems with multiple constraints (i.e., equality and inequality constraints) arise in various applications, including the motion planning of robotic arms. To achieve an efficient and accurate solution for these optimization problems, this paper proposes a novel penalty-enhanced error-redefinition recurrent neural network (PERNN) model based on the zeroing neural dynamics formula. Unlike conventional ERNN-based methods, which are incapable of handling inequality constraints, the PERNN model employs a dynamically weighted penalty function to transform inequality constraints into penalty terms, thereby seamlessly integrating them into the optimization criterion. This approach guarantees the simultaneous satisfaction of both equality and inequality constraints while achieving a fast convergence rate. The global convergence and robustness of the PERNN model are rigorously proven and further validated via simulations. Subsequently, the PERNN model is applied to solve the motion planning problem for robot arms subject to multiple constraints. Furthermore, some application experiments involving three different robot arms are conducted to verify the effectiveness and anti-disturbance capacity of the proposed PERNN model, as well as the applicability to actual robotic systems. Comparative results demonstrate that the PERNN model outperforms other modern RNN-based solvers in terms of tracking accuracy, computational efficiency and time-varying disturbance suppression. |
Author | Zhang, Tongyang Yang, Song |
Author_xml | – sequence: 1 givenname: Tongyang surname: Zhang fullname: Zhang, Tongyang – sequence: 2 givenname: Song surname: Yang fullname: Yang, Song |
BookMark | eNotkEtLAzEUhYNUsK3-AVcB19HkppmZLEV8QakPFLoLMcloZCYZk1Spv97Ryl3czcfhnG-GJiEGh9Axo6eM0vosM0ZrRigIwhhfSPK9h6ZM1JxAJdcTNKUSFoRKuj5As5zfKaUcaDNF23sXdFe2xIU3HYyz2KUUE0nOutYHX3wM-HG1wm1MuPjekU-dtj684od7PKT40rk-4y9f3nC_6YofOodNDLkk7UPJWAeLRyoWrFOP9TB03ujf0HyI9lvdZXf0_-fo-ery6eKGLO-uby_Ol8QANIXUVjTMgLBWuKZ1UoK12oClllWVaOTLomJCQC2EAS0dLLiBtqlqCw3XQrZ8jk52uWPbj43LRb3HTRpHZ8WBVyDFeCMFO8qkmHNyrRqS78epilH1q1jtFKtRsfpTrL75D14hc0w |
Cites_doi | 10.1016/j.irfa.2016.10.002 10.1109/TAC.2017.2696742 10.1109/TCYB.2021.3051261 10.1016/j.neucom.2025.129727 10.1007/s11071-024-10082-3 10.1016/j.cor.2021.105582 10.1007/s11071-016-2681-9 10.1016/j.jfranklin.2022.05.023 10.1016/j.isatra.2023.12.020 10.1007/s10589-019-00102-z 10.1049/cit2.12019 10.1109/TIE.2024.3406880 10.1109/TITS.2024.3384358 10.1016/j.eswa.2021.115445 10.1016/j.chaos.2024.114551 10.1109/LRA.2017.2723470 10.1109/TNNLS.2016.2574363 10.1109/TAC.2018.2810039 10.1016/j.ejcon.2024.101160 10.1016/j.neucom.2021.01.084 10.1109/TNNLS.2023.3270381 10.1109/TAC.2021.3090749 10.1109/TAC.2021.3128470 10.1016/j.ifacol.2019.06.108 10.1109/TSMC.2021.3137814 10.1109/TNNLS.2020.3009201 10.1109/TIE.2016.2590379 10.1016/j.apm.2010.11.056 10.1109/TCDS.2020.2979340 10.1109/TMECH.2018.2816963 10.1109/TCST.2012.2190142 10.1109/TSMC.2019.2930763 10.1109/TNNLS.2024.3351674 10.1109/TSTE.2018.2860901 10.1109/TSMC.2018.2866843 10.1016/j.epsr.2023.109213 10.1109/TNNLS.2018.2884543 10.1007/s00521-024-10100-w 10.1049/cit2.12192 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2025. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11071-025-11349-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1573-269X |
EndPage | 23283 |
ExternalDocumentID | 10_1007_s11071_025_11349_z |
GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PHGZM PHGZT PQGLB PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z8Z ZMTXR ~A9 ~EX |
ID | FETCH-LOGICAL-c228t-7d581c25dd5e8fe992ddac2d0d166589b461552755c2a9e243c2f867d283a59f3 |
ISSN | 0924-090X |
IngestDate | Sat Aug 23 13:31:07 EDT 2025 Wed Aug 06 19:29:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c228t-7d581c25dd5e8fe992ddac2d0d166589b461552755c2a9e243c2f867d283a59f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3236295959 |
PQPubID | 2043746 |
PageCount | 25 |
ParticipantIDs | proquest_journals_3236295959 crossref_primary_10_1007_s11071_025_11349_z |
PublicationCentury | 2000 |
PublicationDate | 2025-09-01 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Nonlinear dynamics |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | Z Avazzadeh (11349_CR37) 2011; 35 VN Katsikis (11349_CR3) 2022; 138 C Zhang (11349_CR4) 2018; 10 H Li (11349_CR20) 2024; 36 Z Zhang (11349_CR25) 2020; 32 L Cui (11349_CR17) 2024; 361 HK Khalil (11349_CR38) 2015 L Zheng (11349_CR23) 2021; 67 L Zheng (11349_CR24) 2024; 35 W Li (11349_CR6) 2019; 51 Y Kong (11349_CR22) 2021; 437 TL Nguyen (11349_CR32) 2025; 81 L Wu (11349_CR41) 2017; 2 Z Zhang (11349_CR21) 2018; 63 Z Zhang (11349_CR26) 2021; 52 Z Zhang (11349_CR28) 2020; 50 K Choi (11349_CR14) 2024; 25 S Li (11349_CR40) 2017; 28 G Cimini (11349_CR8) 2017; 62 A Gallarreta (11349_CR5) 2023; 218 L Lv (11349_CR15) 2022; 359 VB Peccin (11349_CR9) 2019; 52 Y Zhang (11349_CR2) 2016; 85 B Wang (11349_CR13) 2022; 52 F Xu (11349_CR27) 2018; 30 Z Tang (11349_CR31) 2025; 36 X Deng (11349_CR33) 2021; 183 11349_CR34 Z Zhang (11349_CR43) 2020; 13 11349_CR30 H Wen (11349_CR12) 2024; 146 L Xiao (11349_CR42) 2013; 21 S Park (11349_CR1) 2024; 112 L Jin (11349_CR18) 2016; 63 D Arnström (11349_CR7) 2022; 67 J Gondzio (11349_CR10) 2019; 74 R Boldanov (11349_CR11) 2016; 48 11349_CR39 X Zhang (11349_CR19) 2021; 6 W Li (11349_CR29) 2024 11349_CR35 G Wang (11349_CR16) 2023; 8 11349_CR36 |
References_xml | – volume: 48 start-page: 209 year: 2016 ident: 11349_CR11 publication-title: Int. Rev. Financial Anal. doi: 10.1016/j.irfa.2016.10.002 – ident: 11349_CR39 – volume: 62 start-page: 6094 issue: 12 year: 2017 ident: 11349_CR8 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2017.2696742 – volume: 52 start-page: 8781 issue: 9 year: 2021 ident: 11349_CR26 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3051261 – ident: 11349_CR35 doi: 10.1016/j.neucom.2025.129727 – volume: 112 start-page: 20047 issue: 22 year: 2024 ident: 11349_CR1 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-024-10082-3 – volume: 138 year: 2022 ident: 11349_CR3 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2021.105582 – volume: 85 start-page: 245 issue: 1 year: 2016 ident: 11349_CR2 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-2681-9 – volume: 359 start-page: 10849 issue: 18 year: 2022 ident: 11349_CR15 publication-title: J. Franklin Institute doi: 10.1016/j.jfranklin.2022.05.023 – volume: 146 start-page: 42 year: 2024 ident: 11349_CR12 publication-title: ISA Trans. doi: 10.1016/j.isatra.2023.12.020 – volume: 74 start-page: 93 issue: 1 year: 2019 ident: 11349_CR10 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-019-00102-z – volume: 6 start-page: 394 issue: 4 year: 2021 ident: 11349_CR19 publication-title: CAAI Trans. Intel. Technol. doi: 10.1049/cit2.12019 – year: 2024 ident: 11349_CR29 publication-title: IEEE Trans. Ind. Electronics doi: 10.1109/TIE.2024.3406880 – volume: 25 start-page: 12749 issue: 9 year: 2024 ident: 11349_CR14 publication-title: IEEE Trans. Intel. Trans. Syst. doi: 10.1109/TITS.2024.3384358 – volume-title: Lyapunov’s Stability Theory year: 2015 ident: 11349_CR38 – volume: 183 year: 2021 ident: 11349_CR33 publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2021.115445 – ident: 11349_CR34 doi: 10.1016/j.chaos.2024.114551 – volume: 2 start-page: 2174 issue: 4 year: 2017 ident: 11349_CR41 publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2017.2723470 – volume: 28 start-page: 2243 issue: 10 year: 2017 ident: 11349_CR40 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2574363 – volume: 63 start-page: 4110 issue: 12 year: 2018 ident: 11349_CR21 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2018.2810039 – volume: 81 year: 2025 ident: 11349_CR32 publication-title: Eur. J. Control doi: 10.1016/j.ejcon.2024.101160 – volume: 437 start-page: 238 year: 2021 ident: 11349_CR22 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.01.084 – volume: 35 start-page: 13646 issue: 10 year: 2024 ident: 11349_CR24 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2023.3270381 – volume: 67 start-page: 2758 issue: 6 year: 2022 ident: 11349_CR7 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2021.3090749 – volume: 67 start-page: 6151 issue: 11 year: 2021 ident: 11349_CR23 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2021.3128470 – volume: 52 start-page: 480 issue: 1 year: 2019 ident: 11349_CR9 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2019.06.108 – volume: 52 start-page: 6109 issue: 10 year: 2022 ident: 11349_CR13 publication-title: IEEE Trans. Syst. Man Cybern.: Syst. doi: 10.1109/TSMC.2021.3137814 – ident: 11349_CR36 – volume: 32 start-page: 2993 issue: 7 year: 2020 ident: 11349_CR25 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3009201 – volume: 63 start-page: 6978 issue: 11 year: 2016 ident: 11349_CR18 publication-title: IEEE Trans. Ind. Electronics doi: 10.1109/TIE.2016.2590379 – volume: 35 start-page: 2374 issue: 5 year: 2011 ident: 11349_CR37 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2010.11.056 – volume: 13 start-page: 465 issue: 3 year: 2020 ident: 11349_CR43 publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2020.2979340 – ident: 11349_CR30 doi: 10.1109/TMECH.2018.2816963 – volume: 21 start-page: 906 issue: 3 year: 2013 ident: 11349_CR42 publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2012.2190142 – volume: 51 start-page: 4028 issue: 7 year: 2019 ident: 11349_CR6 publication-title: IEEE Trans. Syst. Man Cybern.: Syst. doi: 10.1109/TSMC.2019.2930763 – volume: 36 start-page: 3534 issue: 2 year: 2025 ident: 11349_CR31 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2024.3351674 – volume: 10 start-page: 1086 issue: 3 year: 2018 ident: 11349_CR4 publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2018.2860901 – volume: 50 start-page: 5106 issue: 12 year: 2020 ident: 11349_CR28 publication-title: IEEE Trans. Syst. Man Cybern.: Syst. doi: 10.1109/TSMC.2018.2866843 – volume: 218 year: 2023 ident: 11349_CR5 publication-title: Electric Power Syst. Res. doi: 10.1016/j.epsr.2023.109213 – volume: 30 start-page: 2346 issue: 8 year: 2018 ident: 11349_CR27 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2884543 – volume: 36 start-page: 18237 issue: 29 year: 2024 ident: 11349_CR20 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-024-10100-w – volume: 8 start-page: 670 issue: 3 year: 2023 ident: 11349_CR16 publication-title: CAAI Trans. Intel. Technol. doi: 10.1049/cit2.12192 – volume: 361 issue: 16 year: 2024 ident: 11349_CR17 publication-title: J. Franklin Institute |
SSID | ssj0003208 |
Score | 2.4359126 |
Snippet | Time-varying quadratic programming (QP) problems with multiple constraints (i.e., equality and inequality constraints) arise in various applications, including... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 23259 |
SubjectTerms | Accuracy Adaptability Algorithms Constraints Convergence Efficiency Energy consumption Methods Motion control Motion planning Neural networks Optimization Penalty function Quadratic programming Recurrent neural networks Robot arms Robot dynamics Robotics Robots Signal processing |
Title | Penalty-enhanced error-redefinition RNN for time-varying QP problems with multiple constraints and robot arm applications |
URI | https://www.proquest.com/docview/3236295959 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuMCBjQFibCAfuEVGjRPn4zgh0IS0qkOt1Fvk2M-ww5IpC0gt_zzPsZOmHUgMRYoSK3pK8359X34fhLwXAkKVmpIhwxU6KJlmUim8TY2BiKcilbZQ-HKWXCzjLyuxmkx-jatL2vKD2vyxruR_uIpryFdbJfsAzg5EcQGvkb94Rg7j-Z94PAd8pF0zqL67jXxomrphDWgw11WXjBV8nc1cKuH1DbCfsunKmq7mgZ8k46vbhrxCZe1FOzaidc2b8am6DWRzE4y3uscm7cw125BNoN10-8FKH4LRi7r6tpZeR1oR0wepa7_mww5cDHlVQ_yQxzbIs3KKxEvPNGI8yVc74tXVmvY4SsfSMuK-HTj0926qzT25PvV1zuishsy-TWjbKrLNVov1O_d7ym1IOdy2Z7Y0CqRRdDSKzSPymKOPYcdfLPn5oMYj3o0zHH6nr7hydZf777Fr1ewq9c5SWRyRZ97FoOcOL8_JBKpjcujdDeqF-d0xeTrqRfmCrPfBRO-DiSKYKIKJjsFEr-a0BxO1YKI9mOgITBTBRDswUQQTHYPpJVl-_rT4eMH8XA6mOM9almqRhYoLrQVkBvKcay0V11MdJmjQ5mWcdI39hFBc5sDjSHGTJalG7kqRm-gVOajqCl4TmpkEpkpyWWYQm0zLOEcDXUcQq9CUkJ-QoP-uxa1rv1L8nZMn5Kz_9IX_m94VEUcbLRd4vHkQsVPyZIv7M3LQNj_gLRqgbfmuA8pv9CWHxA |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Penalty-enhanced+error-redefinition+RNN+for+time-varying+QP+problems+with+multiple+constraints+and+robot+arm+applications&rft.jtitle=Nonlinear+dynamics&rft.au=Zhang%2C+Tongyang&rft.au=Yang%2C+Song&rft.date=2025-09-01&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=113&rft.issue=17&rft.spage=23259&rft.epage=23283&rft_id=info:doi/10.1007%2Fs11071-025-11349-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11071_025_11349_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |