Effects of Added CO2 and H2 on the Direct Decomposition of NO over BaMnO3-Based Perovskite Oxide

N2 yield on Ba0.8La0.2Mn0.8Mg0.2O3 decreased from 70% to 30% on the addition of 1% CO2, which is a much larger negative effect than that seen with O2. The CO2 negative effects are not permanent and this may result from the inhibition of NO adsorption. Co-feeding of H2 as a reductant is effective for...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the Chemical Society of Japan Vol. 81; no. 9; pp. 1175 - 1182
Main Authors Iwakuni, Hideharu, Shinmyou, Yusuke, Yano, Hiroaki, Goto, Kazuya, Matsumoto, Hiroshige, Ishihara, Tatsumi
Format Journal Article
LanguageEnglish
Published Tokyo The Chemical Society of Japan 15.09.2008
Chemical Society of Japan
Online AccessGet full text

Cover

Loading…
Abstract N2 yield on Ba0.8La0.2Mn0.8Mg0.2O3 decreased from 70% to 30% on the addition of 1% CO2, which is a much larger negative effect than that seen with O2. The CO2 negative effects are not permanent and this may result from the inhibition of NO adsorption. Co-feeding of H2 as a reductant is effective for increasing NO conversion. This suggests that the catalyst surface was covered with strongly adsorbed nitrate or nitride species which formed by adsorption of NO on oxygen formed by the decomposition of NO, and the removal of this surface species might be the most important step for the NO decomposition reaction. Co-feeding of H2 is also effective for increasing the NO decomposition activity in the presence of CO2. The reaction mechanism was studied by IR measurements which also revealed that the surface of the catalyst was covered with strongly bound nitrate species (NO3−). The addition of H2 to the reaction mixture is effective for NO3− removal and so accelerates the NO decomposition under coexistence of CO2.
AbstractList N2 yield on Ba0.8La0.2Mn0.8Mg0.2O3 decreased from 70% to 30% on the addition of 1% CO2, which is a much larger negative effect than that seen with O2. The CO2 negative effects are not permanent and this may result from the inhibition of NO adsorption. Co-feeding of H2 as a reductant is effective for increasing NO conversion. This suggests that the catalyst surface was covered with strongly adsorbed nitrate or nitride species which formed by adsorption of NO on oxygen formed by the decomposition of NO, and the removal of this surface species might be the most important step for the NO decomposition reaction. Co-feeding of H2 is also effective for increasing the NO decomposition activity in the presence of CO2. The reaction mechanism was studied by IR measurements which also revealed that the surface of the catalyst was covered with strongly bound nitrate species (NO3-). The addition of H2 to the reaction mixture is effective for NO3- removal and so accelerates the NO decomposition under coexistence of CO2.
Abstract N2 yield on Ba0.8La0.2Mn0.8Mg0.2O3 decreased from 70% to 30% on the addition of 1% CO2, which is a much larger negative effect than that seen with O2. The CO2 negative effects are not permanent and this may result from the inhibition of NO adsorption. Co-feeding of H2 as a reductant is effective for increasing NO conversion. This suggests that the catalyst surface was covered with strongly adsorbed nitrate or nitride species which formed by adsorption of NO on oxygen formed by the decomposition of NO, and the removal of this surface species might be the most important step for the NO decomposition reaction. Co-feeding of H2 is also effective for increasing the NO decomposition activity in the presence of CO2. The reaction mechanism was studied by IR measurements which also revealed that the surface of the catalyst was covered with strongly bound nitrate species (NO3−). The addition of H2 to the reaction mixture is effective for NO3− removal and so accelerates the NO decomposition under coexistence of CO2.
N2 yield on Ba0.8La0.2Mn0.8Mg0.2O3 decreased from 70% to 30% on the addition of 1% CO2, which is a much larger negative effect than that seen with O2. The CO2 negative effects are not permanent and this may result from the inhibition of NO adsorption. Co-feeding of H2 as a reductant is effective for increasing NO conversion. This suggests that the catalyst surface was covered with strongly adsorbed nitrate or nitride species which formed by adsorption of NO on oxygen formed by the decomposition of NO, and the removal of this surface species might be the most important step for the NO decomposition reaction. Co-feeding of H2 is also effective for increasing the NO decomposition activity in the presence of CO2. The reaction mechanism was studied by IR measurements which also revealed that the surface of the catalyst was covered with strongly bound nitrate species (NO3−). The addition of H2 to the reaction mixture is effective for NO3− removal and so accelerates the NO decomposition under coexistence of CO2.
Author Goto, Kazuya
Matsumoto, Hiroshige
Iwakuni, Hideharu
Ishihara, Tatsumi
Shinmyou, Yusuke
Yano, Hiroaki
Author_xml – sequence: 1
  givenname: Hideharu
  surname: Iwakuni
  fullname: Iwakuni, Hideharu
  organization: 1 Department of Applied Chemistry, Faculty of Engineering, Kyushu University
– sequence: 2
  givenname: Yusuke
  surname: Shinmyou
  fullname: Shinmyou, Yusuke
  organization: 1 Department of Applied Chemistry, Faculty of Engineering, Kyushu University
– sequence: 3
  givenname: Hiroaki
  surname: Yano
  fullname: Yano, Hiroaki
  organization: 1 Department of Applied Chemistry, Faculty of Engineering, Kyushu University
– sequence: 4
  givenname: Kazuya
  surname: Goto
  fullname: Goto, Kazuya
  organization: 1 Department of Applied Chemistry, Faculty of Engineering, Kyushu University
– sequence: 5
  givenname: Hiroshige
  surname: Matsumoto
  fullname: Matsumoto, Hiroshige
  organization: 1 Department of Applied Chemistry, Faculty of Engineering, Kyushu University
– sequence: 6
  givenname: Tatsumi
  surname: Ishihara
  fullname: Ishihara, Tatsumi
  organization: 1 Department of Applied Chemistry, Faculty of Engineering, Kyushu University
BookMark eNptkMtOwzAQRS1UJNrCjg-wxJYUv_Lwsi8oEhAWsA6OPVETaBzstKJ_j6t2wYLVaGbOnTu6IzRobQsIXVMyoUwkd6X2zSSjE0rT-AwNKRdZRBIuBmhICJERS1J-gUbeN6HNYiGH6GNZVaB7j22Fp8aAwfOcYdUavGLYtrhfA17ULiB4AdpuOuvrvg6LwL_k2O7A4Zl6bnMezZQP8ldwduc_6x5w_lMbuETnlfrycHWqY_R-v3ybr6Kn_OFxPn2KNGNZHyVcSqZYlUkaG5UoLcN_pZQxA2VimaYlVCAMTVNmKOeiTHTCw5THxABNNB-jm-PdztnvLfi-aOzWtcGyoCKWIhNEkEDdHintrPcOqqJz9Ua5fUFJcciwOGRYZLQ4ZBhwecLXsKl1OGZ1Df2-UZ1q_xj8p_0FE_p4Ag
CitedBy_id crossref_primary_10_1002_cctc_202000701
crossref_primary_10_3390_catal11050622
crossref_primary_10_1246_cl_2011_708
crossref_primary_10_1016_j_cattod_2014_05_047
crossref_primary_10_1246_bcsj_20110258
crossref_primary_10_1016_j_cattod_2021_03_011
crossref_primary_10_1039_D0CY02041A
crossref_primary_10_4236_msa_2012_310107
crossref_primary_10_1142_S0217979214502051
crossref_primary_10_1016_j_crci_2015_07_016
crossref_primary_10_1016_j_rser_2021_111916
crossref_primary_10_1016_j_commatsci_2010_11_027
crossref_primary_10_1007_s12648_017_1055_6
crossref_primary_10_1039_C8CY01114A
crossref_primary_10_1016_j_cej_2023_146005
crossref_primary_10_1007_s11595_018_1831_x
crossref_primary_10_1246_bcsj_20100360
crossref_primary_10_1016_j_catcom_2013_09_013
crossref_primary_10_1021_cr500032a
crossref_primary_10_1016_j_jcis_2009_02_022
crossref_primary_10_1016_j_cattod_2010_10_063
crossref_primary_10_1016_j_fuel_2023_127553
crossref_primary_10_1016_j_apcata_2012_02_047
crossref_primary_10_1016_j_mssp_2014_04_027
crossref_primary_10_1016_j_molcata_2013_11_033
crossref_primary_10_1080_10962247_2016_1158133
Cites_doi 10.1246/cl.1990.1
10.1016/j.apcatb.2007.02.020
10.1007/BF00771747
10.1016/S0166-9834(00)81548-1
10.1016/j.molcata.2005.02.015
10.4271/900496
10.1016/S0926-3373(03)00103-6
10.1006/jcat.2000.2846
10.1006/jcat.1998.2170
10.1006/jcat.1999.2648
10.1016/0926-3373(92)80050-A
10.1246/cl.1993.1295
10.1016/0926-3373(95)00067-4
10.1007/BF00763952
10.1016/S0926-3373(01)00312-5
10.1016/0926-3373(93)80027-B
10.1016/0926-3373(93)80049-J
10.1246/cl.1990.1069
10.1016/S0166-9834(00)84146-9
10.1039/C39900001094
10.1016/0926-3373(94)00047-6
10.1006/jcat.1996.0071
10.1016/0926-860X(92)85137-Z
10.1039/a800872h
10.1016/S0166-9834(00)83286-8
10.1016/j.molcata.2005.02.011
10.1246/cl.1993.229
10.1007/BF00807623
10.1016/0926-860X(92)80192-F
10.1107/S0567739476001551
10.1021/j100162a053
10.1016/S0021-9517(03)00265-3
10.1016/S0254-0584(02)00218-3
ContentType Journal Article
Copyright The Chemical Society of Japan
Copyright Japan Science and Technology Agency 2008
Copyright_xml – notice: The Chemical Society of Japan
– notice: Copyright Japan Science and Technology Agency 2008
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1246/bcsj.81.1175
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1348-0634
EndPage 1182
ExternalDocumentID 3130735821
10_1246_bcsj_81_1175
FullText_t_NoSnippeting true
GroupedDBID 02
08R
23N
53G
5GY
ABEFU
ABFLS
ABZEH
ACCUC
ACIWK
ACNCT
AENEX
AETEA
AFFNX
AIDUJ
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
F20
F5P
GX1
H~9
JSI
JSP
P0W
P2P
RAD
RJT
RZJ
SC5
TKC
TN5
TWZ
UPT
WH7
X
XPZ
ZE2
ZY4
-~X
0R~
6J9
6TJ
AAPXW
AAUAY
AAYXX
ABTAH
ABXVV
ACGFO
ADIPN
BCRHZ
CITATION
KOP
OJZSN
OK1
OWPYF
ROX
~02
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c228t-63992a2f8915da6ac9854b9952ead5977befe4d1772d1334b6c6377b350de16c3
ISSN 0009-2673
IngestDate Thu Oct 10 16:09:34 EDT 2024
Thu Sep 26 18:15:37 EDT 2024
Tue Jan 05 20:24:25 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c228t-63992a2f8915da6ac9854b9952ead5977befe4d1772d1334b6c6377b350de16c3
PQID 1459484040
PQPubID 1996365
PageCount 8
ParticipantIDs proquest_journals_1459484040
crossref_primary_10_1246_bcsj_81_1175
chemicalsocietyjapan_journals_10_1246_bcsj_81_1175
ProviderPackageCode RAD
PublicationCentury 2000
PublicationDate 2008-09-15
PublicationDateYYYYMMDD 2008-09-15
PublicationDate_xml – month: 09
  year: 2008
  text: 2008-09-15
  day: 15
PublicationDecade 2000
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Bulletin of the Chemical Society of Japan
PublicationTitleAlternate Bulletin of the Chemical Society of Japan
PublicationYear 2008
Publisher The Chemical Society of Japan
Chemical Society of Japan
Publisher_xml – name: The Chemical Society of Japan
– name: Chemical Society of Japan
References 16) W. Held, A. Koenig, T. Richter, L. Puppe, SAE Pap.1990, 900496.
21) H. Yasuda, N. Mizuno, M. Misono,J. Chem. Soc., Chem. Commun. 1990, 1094.
6) K. Yogo, M. Umeno, H. Watanabe, E. Kikuchi,Catal. Lett. 1993, 19, 131.
11) Y. Nishizaka, M. Misono,Chem. Lett. 1993, 1295.
24) M. A. Vannice, A. B. Walters, X. J. Zhang,J. Catal. 1996, 159, 119.
36) Phase Equilibria Diagrams (Ver. 3.1.0), American Ceramic Society, 1971, Vol. 3, Fig. 04176.
1) M. Iwamoto,Shokubai 1995, 37, 614.
10) Y. Li, J. N. Armor,Appl. Catal., B 1992, 1, L31.
34) R. Spinicci, A. Delmastro, S. Ronchetti, A. Tofanari,Mater. Chem. Phys. 2003, 78, 393.
20) H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito,Chem. Lett. 1990, 1069.
5) S. Sato, Y. Yu-u, H. Yahiro, N. Mizuno, M. Iwamoto,Appl. Catal. 1991, 70, L1.
29) J. Zhu, D. Xiao, J. Li, X. Yang, Y. Wu,J. Mol. Catal. A: Chem. 2005, 234, 99.
31) H. Iwakuni, Y. Shinmyou, H. Yano, H. Matsumoto, T. Ishihara,Appl. Catal., B 2007, 74, 299.
23) Y. F. Chang, J. G. McCarty,J. Catal. 1998, 178, 408.
12) A. Obuchi, A. Ohi, M. Nakamura, A. Ogata, K. Mizuno, H. Ohuchi,Appl. Catal., B 1993, 2, 71.
18) C. J. Bennett, P. S. Bennett, S. E. Golunski, J. W. Hayes, A. P. Walker,Appl. Catal., A 1992, 86, L1.
35) S. J. Huang, A. B. Walters, M. A. Vannice,J. Catal. 2000, 192, 29.
14) H. Iwakuni, A. Takami, K. Komatsu,Science and Technology in Catalysis 1998, Elsevier, 1999, p. 251.
3) H. Hamada,Shokubai 1991, 33, 320.
7) H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito, T. Yoshinari,Appl. Catal., A 1992, 88, L1.
17) H. Hamada, N. Matsubayashi, H. Shimada, Y. Kintaichi, T. Ito, A. Nishijima,Catal. Lett. 1990, 5, 189.
30) T. Ishihara, M. Ando, K. Sada, K. Takiishi, K. Yamada, H. Nishiguchi, Y. Takita,J. Catal. 2003, 220, 104.
32) C. Tofan, D. Klvana, J. Kirchnerova,Appl. Catal., B 2002, 36, 311.
8) M. Iwamoto, H. Yahiro, H. K. Shin, M. Watanabe, J. Guo, M. Konno, T. Chikahisa, T. Murayama,Appl. Catal., B 1994, 5, L1.
28) J. Zhu, D. Xiao, J. Li, X. Xie, X. Yang, Y. Wu,J. Mol. Catal. A: Chem. 2005, 233, 29.
33) Z. Liu, J. Hao, L. Fu, T. Zhu,Appl. Catal., B 2003, 44, 355.
9) K. Yogo, M. Ihara, I. Terasaki, E. Kikuchi,Chem. Lett. 1993, 229.
2) S. Kagawa, Y. Teraoka,Hyomen 1993, 31, 913.
13) M. Inaba, Y. Kintaichi, H. Hamada,Catal. Lett. 1996, 36, 223.
15) M. Iwamoto, H. Yahiro, S. Shundo, Y. Yu-u, N. Mizuno,Appl. Catal. 1991, 69, L15.
19) K. C. C. Kharas,Appl. Catal., B 1993, 2, 207.
26) Y. Teraoka, H. Fukuda, S. Kagawa,Chem. Lett. 1990, 1.
22) M. Iwamoto, H. Yahiro, K. Tanda, N. Mizuno, Y. Mine, S. Kagawa,J. Phys. Chem. 1991, 95, 3727.
4) H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito, M. Tabata,Appl. Catal. 1990, 64, L1.
38) R. D. Shannon,Acta Crystallogr., Sect. A 1976, 32, 751.
25) S. Xie, M. P. Rosynek, J. H. Lunsford,J. Catal. 1999, 188, 24.
37) Z. Zhao, X. Yang, Y. Wu,Appl. Catal., B 1996, 8, 281.
27) Y. Teraoka, T. Harada, S. Kagawa,J. Chem. Soc., Faraday Trans. 1998, 94, 1887.
2024012021010923400_r23
2024012021010923400_r22
2024012021010923400_r21
2024012021010923400_r20
2024012021010923400_r16
2024012021010923400_r38
2024012021010923400_r15
2024012021010923400_r37
2024012021010923400_r14
2024012021010923400_r36
2024012021010923400_r13
2024012021010923400_r35
2024012021010923400_r19
2024012021010923400_r18
2024012021010923400_r17
2024012021010923400_r30
2024012021010923400_r1
2024012021010923400_r2
2024012021010923400_r12
2024012021010923400_r34
2024012021010923400_r3
2024012021010923400_r11
2024012021010923400_r33
2024012021010923400_r4
2024012021010923400_r10
2024012021010923400_r32
2024012021010923400_r5
2024012021010923400_r31
2024012021010923400_r6
2024012021010923400_r7
2024012021010923400_r8
2024012021010923400_r9
2024012021010923400_r27
2024012021010923400_r26
2024012021010923400_r25
2024012021010923400_r24
2024012021010923400_r29
2024012021010923400_r28
References_xml – ident: 2024012021010923400_r14
– ident: 2024012021010923400_r26
  doi: 10.1246/cl.1990.1
– ident: 2024012021010923400_r31
  doi: 10.1016/j.apcatb.2007.02.020
– ident: 2024012021010923400_r6
  doi: 10.1007/BF00771747
– ident: 2024012021010923400_r4
  doi: 10.1016/S0166-9834(00)81548-1
– ident: 2024012021010923400_r29
  doi: 10.1016/j.molcata.2005.02.015
– ident: 2024012021010923400_r2
– ident: 2024012021010923400_r16
  doi: 10.4271/900496
– ident: 2024012021010923400_r33
  doi: 10.1016/S0926-3373(03)00103-6
– ident: 2024012021010923400_r35
  doi: 10.1006/jcat.2000.2846
– ident: 2024012021010923400_r23
  doi: 10.1006/jcat.1998.2170
– ident: 2024012021010923400_r25
  doi: 10.1006/jcat.1999.2648
– ident: 2024012021010923400_r10
  doi: 10.1016/0926-3373(92)80050-A
– ident: 2024012021010923400_r11
  doi: 10.1246/cl.1993.1295
– ident: 2024012021010923400_r37
  doi: 10.1016/0926-3373(95)00067-4
– ident: 2024012021010923400_r17
  doi: 10.1007/BF00763952
– ident: 2024012021010923400_r32
  doi: 10.1016/S0926-3373(01)00312-5
– ident: 2024012021010923400_r12
  doi: 10.1016/0926-3373(93)80027-B
– ident: 2024012021010923400_r19
  doi: 10.1016/0926-3373(93)80049-J
– ident: 2024012021010923400_r20
  doi: 10.1246/cl.1990.1069
– ident: 2024012021010923400_r5
  doi: 10.1016/S0166-9834(00)84146-9
– ident: 2024012021010923400_r21
  doi: 10.1039/C39900001094
– ident: 2024012021010923400_r8
  doi: 10.1016/0926-3373(94)00047-6
– ident: 2024012021010923400_r24
  doi: 10.1006/jcat.1996.0071
– ident: 2024012021010923400_r36
– ident: 2024012021010923400_r1
– ident: 2024012021010923400_r18
  doi: 10.1016/0926-860X(92)85137-Z
– ident: 2024012021010923400_r27
  doi: 10.1039/a800872h
– ident: 2024012021010923400_r3
– ident: 2024012021010923400_r15
  doi: 10.1016/S0166-9834(00)83286-8
– ident: 2024012021010923400_r28
  doi: 10.1016/j.molcata.2005.02.011
– ident: 2024012021010923400_r9
  doi: 10.1246/cl.1993.229
– ident: 2024012021010923400_r13
  doi: 10.1007/BF00807623
– ident: 2024012021010923400_r7
  doi: 10.1016/0926-860X(92)80192-F
– ident: 2024012021010923400_r38
  doi: 10.1107/S0567739476001551
– ident: 2024012021010923400_r22
  doi: 10.1021/j100162a053
– ident: 2024012021010923400_r30
  doi: 10.1016/S0021-9517(03)00265-3
– ident: 2024012021010923400_r34
  doi: 10.1016/S0254-0584(02)00218-3
SSID ssj0008549
Score 2.0424705
Snippet N2 yield on Ba0.8La0.2Mn0.8Mg0.2O3 decreased from 70% to 30% on the addition of 1% CO2, which is a much larger negative effect than that seen with O2. The CO2...
Abstract N2 yield on Ba0.8La0.2Mn0.8Mg0.2O3 decreased from 70% to 30% on the addition of 1% CO2, which is a much larger negative effect than that seen with O2....
SourceID proquest
crossref
chemicalsocietyjapan
SourceType Aggregation Database
Publisher
StartPage 1175
Title Effects of Added CO2 and H2 on the Direct Decomposition of NO over BaMnO3-Based Perovskite Oxide
URI http://dx.doi.org/10.1246/bcsj.81.1175
https://www.proquest.com/docview/1459484040
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcgAOCCiohYJ8gFOUsPEjmxzbVWFV1ObSSsspxI6jPkSCNpuW9j_xHxk7zktaEPQSrSzbyc58mbGdb2YQeu9TEWXBTLicS-YyIXNX-Iq5iighKRcy4zrA-fgkWJyxoyVfTia_Bqylei08ebcxruQ-WoU20KuOkv0PzXaTQgP8Bv3CFTQM13_S8WFPxtgHA5I585iYrwELYj8CWJMGZkVzxy1By5wSxI4mbzoH6XERU_cAnFmm6fDldaXPc53450U2Ygm1ebpbUkGXaaDlfUL7EXjeHmw36VVdNEWxYa7zdFV3xznnF8X327I29r-u6qsOXV9TUwocRqxKWNt27KDSVHtyvqR39W06OqkwtIomVtNrY93-_mytjY5cEjQFTjzVmGXKYLbAHntau92UerH4jAZGWGcfHTh0vYXa6CyIyZIsZHXphb7Xjxql39abJOiY6G5J6Ovk6PwBekjArmkG4edlzygKebvbav6AjbOA0R-HN3mCtqUVQ9VI4VJLYLwwGq8LzGLn9Bl6ancpeL-B3HM0UcUL9GjeFgfcRt8s9HCZYwM9DNDDAD28ILgsMCAEN9DDI-jp_icx1tDDQ-jhHnrYQO8lOvt0eDpfuLZYhysJCdeuXumSlORh5PMsDVIZgThEFHECtkonORQqVyzzYTeX-ZQyEciAQivl00z5gaSv0FZRFmoHYZXLmRJ0JiUXjE6ngsMI8Dwh7GXCLFC7iGwSYGLfzCrZpLNd9KEVb_KjSeTyh357rewHEzKd1YiBw3t9n3u_QY_792EPba1XtXoLa9m1eGcQ9BsfhaFw
link.rule.ids 315,783,787,27938,27939
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Added+CO2+and+H2+on+the+Direct+Decomposition+of+NO+over+BaMnO3-Based+Perovskite+Oxide&rft.jtitle=Bulletin+of+the+Chemical+Society+of+Japan&rft.au=Iwakuni%2C+Hideharu&rft.au=Shinmyou%2C+Yusuke&rft.au=Yano%2C+Hiroaki&rft.au=Goto%2C+Kazuya&rft.date=2008-09-15&rft.pub=The+Chemical+Society+of+Japan&rft.issn=0009-2673&rft.eissn=1348-0634&rft.volume=81&rft.issue=9&rft.spage=1175&rft.epage=1182&rft_id=info:doi/10.1246%2Fbcsj.81.1175&rft.externalDocID=10_1246_bcsj_81_1175
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2673&client=summon