Effects of Added CO2 and H2 on the Direct Decomposition of NO over BaMnO3-Based Perovskite Oxide
N2 yield on Ba0.8La0.2Mn0.8Mg0.2O3 decreased from 70% to 30% on the addition of 1% CO2, which is a much larger negative effect than that seen with O2. The CO2 negative effects are not permanent and this may result from the inhibition of NO adsorption. Co-feeding of H2 as a reductant is effective for...
Saved in:
Published in | Bulletin of the Chemical Society of Japan Vol. 81; no. 9; pp. 1175 - 1182 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
The Chemical Society of Japan
15.09.2008
Chemical Society of Japan |
Online Access | Get full text |
Cover
Loading…
Abstract | N2 yield on Ba0.8La0.2Mn0.8Mg0.2O3 decreased from 70% to 30% on the addition of 1% CO2, which is a much larger negative effect than that seen with O2. The CO2 negative effects are not permanent and this may result from the inhibition of NO adsorption. Co-feeding of H2 as a reductant is effective for increasing NO conversion. This suggests that the catalyst surface was covered with strongly adsorbed nitrate or nitride species which formed by adsorption of NO on oxygen formed by the decomposition of NO, and the removal of this surface species might be the most important step for the NO decomposition reaction. Co-feeding of H2 is also effective for increasing the NO decomposition activity in the presence of CO2. The reaction mechanism was studied by IR measurements which also revealed that the surface of the catalyst was covered with strongly bound nitrate species (NO3−). The addition of H2 to the reaction mixture is effective for NO3− removal and so accelerates the NO decomposition under coexistence of CO2. |
---|---|
AbstractList | N2 yield on Ba0.8La0.2Mn0.8Mg0.2O3 decreased from 70% to 30% on the addition of 1% CO2, which is a much larger negative effect than that seen with O2. The CO2 negative effects are not permanent and this may result from the inhibition of NO adsorption. Co-feeding of H2 as a reductant is effective for increasing NO conversion. This suggests that the catalyst surface was covered with strongly adsorbed nitrate or nitride species which formed by adsorption of NO on oxygen formed by the decomposition of NO, and the removal of this surface species might be the most important step for the NO decomposition reaction. Co-feeding of H2 is also effective for increasing the NO decomposition activity in the presence of CO2. The reaction mechanism was studied by IR measurements which also revealed that the surface of the catalyst was covered with strongly bound nitrate species (NO3-). The addition of H2 to the reaction mixture is effective for NO3- removal and so accelerates the NO decomposition under coexistence of CO2. Abstract N2 yield on Ba0.8La0.2Mn0.8Mg0.2O3 decreased from 70% to 30% on the addition of 1% CO2, which is a much larger negative effect than that seen with O2. The CO2 negative effects are not permanent and this may result from the inhibition of NO adsorption. Co-feeding of H2 as a reductant is effective for increasing NO conversion. This suggests that the catalyst surface was covered with strongly adsorbed nitrate or nitride species which formed by adsorption of NO on oxygen formed by the decomposition of NO, and the removal of this surface species might be the most important step for the NO decomposition reaction. Co-feeding of H2 is also effective for increasing the NO decomposition activity in the presence of CO2. The reaction mechanism was studied by IR measurements which also revealed that the surface of the catalyst was covered with strongly bound nitrate species (NO3−). The addition of H2 to the reaction mixture is effective for NO3− removal and so accelerates the NO decomposition under coexistence of CO2. N2 yield on Ba0.8La0.2Mn0.8Mg0.2O3 decreased from 70% to 30% on the addition of 1% CO2, which is a much larger negative effect than that seen with O2. The CO2 negative effects are not permanent and this may result from the inhibition of NO adsorption. Co-feeding of H2 as a reductant is effective for increasing NO conversion. This suggests that the catalyst surface was covered with strongly adsorbed nitrate or nitride species which formed by adsorption of NO on oxygen formed by the decomposition of NO, and the removal of this surface species might be the most important step for the NO decomposition reaction. Co-feeding of H2 is also effective for increasing the NO decomposition activity in the presence of CO2. The reaction mechanism was studied by IR measurements which also revealed that the surface of the catalyst was covered with strongly bound nitrate species (NO3−). The addition of H2 to the reaction mixture is effective for NO3− removal and so accelerates the NO decomposition under coexistence of CO2. |
Author | Goto, Kazuya Matsumoto, Hiroshige Iwakuni, Hideharu Ishihara, Tatsumi Shinmyou, Yusuke Yano, Hiroaki |
Author_xml | – sequence: 1 givenname: Hideharu surname: Iwakuni fullname: Iwakuni, Hideharu organization: 1 Department of Applied Chemistry, Faculty of Engineering, Kyushu University – sequence: 2 givenname: Yusuke surname: Shinmyou fullname: Shinmyou, Yusuke organization: 1 Department of Applied Chemistry, Faculty of Engineering, Kyushu University – sequence: 3 givenname: Hiroaki surname: Yano fullname: Yano, Hiroaki organization: 1 Department of Applied Chemistry, Faculty of Engineering, Kyushu University – sequence: 4 givenname: Kazuya surname: Goto fullname: Goto, Kazuya organization: 1 Department of Applied Chemistry, Faculty of Engineering, Kyushu University – sequence: 5 givenname: Hiroshige surname: Matsumoto fullname: Matsumoto, Hiroshige organization: 1 Department of Applied Chemistry, Faculty of Engineering, Kyushu University – sequence: 6 givenname: Tatsumi surname: Ishihara fullname: Ishihara, Tatsumi organization: 1 Department of Applied Chemistry, Faculty of Engineering, Kyushu University |
BookMark | eNptkMtOwzAQRS1UJNrCjg-wxJYUv_Lwsi8oEhAWsA6OPVETaBzstKJ_j6t2wYLVaGbOnTu6IzRobQsIXVMyoUwkd6X2zSSjE0rT-AwNKRdZRBIuBmhICJERS1J-gUbeN6HNYiGH6GNZVaB7j22Fp8aAwfOcYdUavGLYtrhfA17ULiB4AdpuOuvrvg6LwL_k2O7A4Zl6bnMezZQP8ldwduc_6x5w_lMbuETnlfrycHWqY_R-v3ybr6Kn_OFxPn2KNGNZHyVcSqZYlUkaG5UoLcN_pZQxA2VimaYlVCAMTVNmKOeiTHTCw5THxABNNB-jm-PdztnvLfi-aOzWtcGyoCKWIhNEkEDdHintrPcOqqJz9Ua5fUFJcciwOGRYZLQ4ZBhwecLXsKl1OGZ1Df2-UZ1q_xj8p_0FE_p4Ag |
CitedBy_id | crossref_primary_10_1002_cctc_202000701 crossref_primary_10_3390_catal11050622 crossref_primary_10_1246_cl_2011_708 crossref_primary_10_1016_j_cattod_2014_05_047 crossref_primary_10_1246_bcsj_20110258 crossref_primary_10_1016_j_cattod_2021_03_011 crossref_primary_10_1039_D0CY02041A crossref_primary_10_4236_msa_2012_310107 crossref_primary_10_1142_S0217979214502051 crossref_primary_10_1016_j_crci_2015_07_016 crossref_primary_10_1016_j_rser_2021_111916 crossref_primary_10_1016_j_commatsci_2010_11_027 crossref_primary_10_1007_s12648_017_1055_6 crossref_primary_10_1039_C8CY01114A crossref_primary_10_1016_j_cej_2023_146005 crossref_primary_10_1007_s11595_018_1831_x crossref_primary_10_1246_bcsj_20100360 crossref_primary_10_1016_j_catcom_2013_09_013 crossref_primary_10_1021_cr500032a crossref_primary_10_1016_j_jcis_2009_02_022 crossref_primary_10_1016_j_cattod_2010_10_063 crossref_primary_10_1016_j_fuel_2023_127553 crossref_primary_10_1016_j_apcata_2012_02_047 crossref_primary_10_1016_j_mssp_2014_04_027 crossref_primary_10_1016_j_molcata_2013_11_033 crossref_primary_10_1080_10962247_2016_1158133 |
Cites_doi | 10.1246/cl.1990.1 10.1016/j.apcatb.2007.02.020 10.1007/BF00771747 10.1016/S0166-9834(00)81548-1 10.1016/j.molcata.2005.02.015 10.4271/900496 10.1016/S0926-3373(03)00103-6 10.1006/jcat.2000.2846 10.1006/jcat.1998.2170 10.1006/jcat.1999.2648 10.1016/0926-3373(92)80050-A 10.1246/cl.1993.1295 10.1016/0926-3373(95)00067-4 10.1007/BF00763952 10.1016/S0926-3373(01)00312-5 10.1016/0926-3373(93)80027-B 10.1016/0926-3373(93)80049-J 10.1246/cl.1990.1069 10.1016/S0166-9834(00)84146-9 10.1039/C39900001094 10.1016/0926-3373(94)00047-6 10.1006/jcat.1996.0071 10.1016/0926-860X(92)85137-Z 10.1039/a800872h 10.1016/S0166-9834(00)83286-8 10.1016/j.molcata.2005.02.011 10.1246/cl.1993.229 10.1007/BF00807623 10.1016/0926-860X(92)80192-F 10.1107/S0567739476001551 10.1021/j100162a053 10.1016/S0021-9517(03)00265-3 10.1016/S0254-0584(02)00218-3 |
ContentType | Journal Article |
Copyright | The Chemical Society of Japan Copyright Japan Science and Technology Agency 2008 |
Copyright_xml | – notice: The Chemical Society of Japan – notice: Copyright Japan Science and Technology Agency 2008 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1246/bcsj.81.1175 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1348-0634 |
EndPage | 1182 |
ExternalDocumentID | 3130735821 10_1246_bcsj_81_1175 |
FullText_t_NoSnippeting | true |
GroupedDBID | 02 08R 23N 53G 5GY ABEFU ABFLS ABZEH ACCUC ACIWK ACNCT AENEX AETEA AFFNX AIDUJ ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD F20 F5P GX1 H~9 JSI JSP P0W P2P RAD RJT RZJ SC5 TKC TN5 TWZ UPT WH7 X XPZ ZE2 ZY4 -~X 0R~ 6J9 6TJ AAPXW AAUAY AAYXX ABTAH ABXVV ACGFO ADIPN BCRHZ CITATION KOP OJZSN OK1 OWPYF ROX ~02 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c228t-63992a2f8915da6ac9854b9952ead5977befe4d1772d1334b6c6377b350de16c3 |
ISSN | 0009-2673 |
IngestDate | Thu Oct 10 16:09:34 EDT 2024 Thu Sep 26 18:15:37 EDT 2024 Tue Jan 05 20:24:25 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c228t-63992a2f8915da6ac9854b9952ead5977befe4d1772d1334b6c6377b350de16c3 |
PQID | 1459484040 |
PQPubID | 1996365 |
PageCount | 8 |
ParticipantIDs | proquest_journals_1459484040 crossref_primary_10_1246_bcsj_81_1175 chemicalsocietyjapan_journals_10_1246_bcsj_81_1175 |
ProviderPackageCode | RAD |
PublicationCentury | 2000 |
PublicationDate | 2008-09-15 |
PublicationDateYYYYMMDD | 2008-09-15 |
PublicationDate_xml | – month: 09 year: 2008 text: 2008-09-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Bulletin of the Chemical Society of Japan |
PublicationTitleAlternate | Bulletin of the Chemical Society of Japan |
PublicationYear | 2008 |
Publisher | The Chemical Society of Japan Chemical Society of Japan |
Publisher_xml | – name: The Chemical Society of Japan – name: Chemical Society of Japan |
References | 16)
W. Held, A. Koenig, T. Richter, L. Puppe, SAE Pap.1990, 900496. 21) H. Yasuda, N. Mizuno, M. Misono,J. Chem. Soc., Chem. Commun. 1990, 1094. 6) K. Yogo, M. Umeno, H. Watanabe, E. Kikuchi,Catal. Lett. 1993, 19, 131. 11) Y. Nishizaka, M. Misono,Chem. Lett. 1993, 1295. 24) M. A. Vannice, A. B. Walters, X. J. Zhang,J. Catal. 1996, 159, 119. 36) Phase Equilibria Diagrams (Ver. 3.1.0), American Ceramic Society, 1971, Vol. 3, Fig. 04176. 1) M. Iwamoto,Shokubai 1995, 37, 614. 10) Y. Li, J. N. Armor,Appl. Catal., B 1992, 1, L31. 34) R. Spinicci, A. Delmastro, S. Ronchetti, A. Tofanari,Mater. Chem. Phys. 2003, 78, 393. 20) H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito,Chem. Lett. 1990, 1069. 5) S. Sato, Y. Yu-u, H. Yahiro, N. Mizuno, M. Iwamoto,Appl. Catal. 1991, 70, L1. 29) J. Zhu, D. Xiao, J. Li, X. Yang, Y. Wu,J. Mol. Catal. A: Chem. 2005, 234, 99. 31) H. Iwakuni, Y. Shinmyou, H. Yano, H. Matsumoto, T. Ishihara,Appl. Catal., B 2007, 74, 299. 23) Y. F. Chang, J. G. McCarty,J. Catal. 1998, 178, 408. 12) A. Obuchi, A. Ohi, M. Nakamura, A. Ogata, K. Mizuno, H. Ohuchi,Appl. Catal., B 1993, 2, 71. 18) C. J. Bennett, P. S. Bennett, S. E. Golunski, J. W. Hayes, A. P. Walker,Appl. Catal., A 1992, 86, L1. 35) S. J. Huang, A. B. Walters, M. A. Vannice,J. Catal. 2000, 192, 29. 14) H. Iwakuni, A. Takami, K. Komatsu,Science and Technology in Catalysis 1998, Elsevier, 1999, p. 251. 3) H. Hamada,Shokubai 1991, 33, 320. 7) H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito, T. Yoshinari,Appl. Catal., A 1992, 88, L1. 17) H. Hamada, N. Matsubayashi, H. Shimada, Y. Kintaichi, T. Ito, A. Nishijima,Catal. Lett. 1990, 5, 189. 30) T. Ishihara, M. Ando, K. Sada, K. Takiishi, K. Yamada, H. Nishiguchi, Y. Takita,J. Catal. 2003, 220, 104. 32) C. Tofan, D. Klvana, J. Kirchnerova,Appl. Catal., B 2002, 36, 311. 8) M. Iwamoto, H. Yahiro, H. K. Shin, M. Watanabe, J. Guo, M. Konno, T. Chikahisa, T. Murayama,Appl. Catal., B 1994, 5, L1. 28) J. Zhu, D. Xiao, J. Li, X. Xie, X. Yang, Y. Wu,J. Mol. Catal. A: Chem. 2005, 233, 29. 33) Z. Liu, J. Hao, L. Fu, T. Zhu,Appl. Catal., B 2003, 44, 355. 9) K. Yogo, M. Ihara, I. Terasaki, E. Kikuchi,Chem. Lett. 1993, 229. 2) S. Kagawa, Y. Teraoka,Hyomen 1993, 31, 913. 13) M. Inaba, Y. Kintaichi, H. Hamada,Catal. Lett. 1996, 36, 223. 15) M. Iwamoto, H. Yahiro, S. Shundo, Y. Yu-u, N. Mizuno,Appl. Catal. 1991, 69, L15. 19) K. C. C. Kharas,Appl. Catal., B 1993, 2, 207. 26) Y. Teraoka, H. Fukuda, S. Kagawa,Chem. Lett. 1990, 1. 22) M. Iwamoto, H. Yahiro, K. Tanda, N. Mizuno, Y. Mine, S. Kagawa,J. Phys. Chem. 1991, 95, 3727. 4) H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito, M. Tabata,Appl. Catal. 1990, 64, L1. 38) R. D. Shannon,Acta Crystallogr., Sect. A 1976, 32, 751. 25) S. Xie, M. P. Rosynek, J. H. Lunsford,J. Catal. 1999, 188, 24. 37) Z. Zhao, X. Yang, Y. Wu,Appl. Catal., B 1996, 8, 281. 27) Y. Teraoka, T. Harada, S. Kagawa,J. Chem. Soc., Faraday Trans. 1998, 94, 1887. 2024012021010923400_r23 2024012021010923400_r22 2024012021010923400_r21 2024012021010923400_r20 2024012021010923400_r16 2024012021010923400_r38 2024012021010923400_r15 2024012021010923400_r37 2024012021010923400_r14 2024012021010923400_r36 2024012021010923400_r13 2024012021010923400_r35 2024012021010923400_r19 2024012021010923400_r18 2024012021010923400_r17 2024012021010923400_r30 2024012021010923400_r1 2024012021010923400_r2 2024012021010923400_r12 2024012021010923400_r34 2024012021010923400_r3 2024012021010923400_r11 2024012021010923400_r33 2024012021010923400_r4 2024012021010923400_r10 2024012021010923400_r32 2024012021010923400_r5 2024012021010923400_r31 2024012021010923400_r6 2024012021010923400_r7 2024012021010923400_r8 2024012021010923400_r9 2024012021010923400_r27 2024012021010923400_r26 2024012021010923400_r25 2024012021010923400_r24 2024012021010923400_r29 2024012021010923400_r28 |
References_xml | – ident: 2024012021010923400_r14 – ident: 2024012021010923400_r26 doi: 10.1246/cl.1990.1 – ident: 2024012021010923400_r31 doi: 10.1016/j.apcatb.2007.02.020 – ident: 2024012021010923400_r6 doi: 10.1007/BF00771747 – ident: 2024012021010923400_r4 doi: 10.1016/S0166-9834(00)81548-1 – ident: 2024012021010923400_r29 doi: 10.1016/j.molcata.2005.02.015 – ident: 2024012021010923400_r2 – ident: 2024012021010923400_r16 doi: 10.4271/900496 – ident: 2024012021010923400_r33 doi: 10.1016/S0926-3373(03)00103-6 – ident: 2024012021010923400_r35 doi: 10.1006/jcat.2000.2846 – ident: 2024012021010923400_r23 doi: 10.1006/jcat.1998.2170 – ident: 2024012021010923400_r25 doi: 10.1006/jcat.1999.2648 – ident: 2024012021010923400_r10 doi: 10.1016/0926-3373(92)80050-A – ident: 2024012021010923400_r11 doi: 10.1246/cl.1993.1295 – ident: 2024012021010923400_r37 doi: 10.1016/0926-3373(95)00067-4 – ident: 2024012021010923400_r17 doi: 10.1007/BF00763952 – ident: 2024012021010923400_r32 doi: 10.1016/S0926-3373(01)00312-5 – ident: 2024012021010923400_r12 doi: 10.1016/0926-3373(93)80027-B – ident: 2024012021010923400_r19 doi: 10.1016/0926-3373(93)80049-J – ident: 2024012021010923400_r20 doi: 10.1246/cl.1990.1069 – ident: 2024012021010923400_r5 doi: 10.1016/S0166-9834(00)84146-9 – ident: 2024012021010923400_r21 doi: 10.1039/C39900001094 – ident: 2024012021010923400_r8 doi: 10.1016/0926-3373(94)00047-6 – ident: 2024012021010923400_r24 doi: 10.1006/jcat.1996.0071 – ident: 2024012021010923400_r36 – ident: 2024012021010923400_r1 – ident: 2024012021010923400_r18 doi: 10.1016/0926-860X(92)85137-Z – ident: 2024012021010923400_r27 doi: 10.1039/a800872h – ident: 2024012021010923400_r3 – ident: 2024012021010923400_r15 doi: 10.1016/S0166-9834(00)83286-8 – ident: 2024012021010923400_r28 doi: 10.1016/j.molcata.2005.02.011 – ident: 2024012021010923400_r9 doi: 10.1246/cl.1993.229 – ident: 2024012021010923400_r13 doi: 10.1007/BF00807623 – ident: 2024012021010923400_r7 doi: 10.1016/0926-860X(92)80192-F – ident: 2024012021010923400_r38 doi: 10.1107/S0567739476001551 – ident: 2024012021010923400_r22 doi: 10.1021/j100162a053 – ident: 2024012021010923400_r30 doi: 10.1016/S0021-9517(03)00265-3 – ident: 2024012021010923400_r34 doi: 10.1016/S0254-0584(02)00218-3 |
SSID | ssj0008549 |
Score | 2.0424705 |
Snippet | N2 yield on Ba0.8La0.2Mn0.8Mg0.2O3 decreased from 70% to 30% on the addition of 1% CO2, which is a much larger negative effect than that seen with O2. The CO2... Abstract N2 yield on Ba0.8La0.2Mn0.8Mg0.2O3 decreased from 70% to 30% on the addition of 1% CO2, which is a much larger negative effect than that seen with O2.... |
SourceID | proquest crossref chemicalsocietyjapan |
SourceType | Aggregation Database Publisher |
StartPage | 1175 |
Title | Effects of Added CO2 and H2 on the Direct Decomposition of NO over BaMnO3-Based Perovskite Oxide |
URI | http://dx.doi.org/10.1246/bcsj.81.1175 https://www.proquest.com/docview/1459484040 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcgAOCCiohYJ8gFOUsPEjmxzbVWFV1ObSSsspxI6jPkSCNpuW9j_xHxk7zktaEPQSrSzbyc58mbGdb2YQeu9TEWXBTLicS-YyIXNX-Iq5iighKRcy4zrA-fgkWJyxoyVfTia_Bqylei08ebcxruQ-WoU20KuOkv0PzXaTQgP8Bv3CFTQM13_S8WFPxtgHA5I585iYrwELYj8CWJMGZkVzxy1By5wSxI4mbzoH6XERU_cAnFmm6fDldaXPc53450U2Ygm1ebpbUkGXaaDlfUL7EXjeHmw36VVdNEWxYa7zdFV3xznnF8X327I29r-u6qsOXV9TUwocRqxKWNt27KDSVHtyvqR39W06OqkwtIomVtNrY93-_mytjY5cEjQFTjzVmGXKYLbAHntau92UerH4jAZGWGcfHTh0vYXa6CyIyZIsZHXphb7Xjxql39abJOiY6G5J6Ovk6PwBekjArmkG4edlzygKebvbav6AjbOA0R-HN3mCtqUVQ9VI4VJLYLwwGq8LzGLn9Bl6ancpeL-B3HM0UcUL9GjeFgfcRt8s9HCZYwM9DNDDAD28ILgsMCAEN9DDI-jp_icx1tDDQ-jhHnrYQO8lOvt0eDpfuLZYhysJCdeuXumSlORh5PMsDVIZgThEFHECtkonORQqVyzzYTeX-ZQyEciAQivl00z5gaSv0FZRFmoHYZXLmRJ0JiUXjE6ngsMI8Dwh7GXCLFC7iGwSYGLfzCrZpLNd9KEVb_KjSeTyh357rewHEzKd1YiBw3t9n3u_QY_792EPba1XtXoLa9m1eGcQ9BsfhaFw |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Added+CO2+and+H2+on+the+Direct+Decomposition+of+NO+over+BaMnO3-Based+Perovskite+Oxide&rft.jtitle=Bulletin+of+the+Chemical+Society+of+Japan&rft.au=Iwakuni%2C+Hideharu&rft.au=Shinmyou%2C+Yusuke&rft.au=Yano%2C+Hiroaki&rft.au=Goto%2C+Kazuya&rft.date=2008-09-15&rft.pub=The+Chemical+Society+of+Japan&rft.issn=0009-2673&rft.eissn=1348-0634&rft.volume=81&rft.issue=9&rft.spage=1175&rft.epage=1182&rft_id=info:doi/10.1246%2Fbcsj.81.1175&rft.externalDocID=10_1246_bcsj_81_1175 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2673&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2673&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2673&client=summon |