On Metric Choice in Dimension Reduction for Fréchet Regression

Fréchet regression is becoming a mainstay in modern data analysis for analysing non‐traditional data types belonging to general metric spaces. This novel regression method is especially useful in the analysis of complex health data such as continuous monitoring and imaging data. Fréchet regression u...

Full description

Saved in:
Bibliographic Details
Published inInternational statistical review
Main Authors Soale, Abdul‐Nasah, Ma, Congli, Chen, Siyu, Koomson, Obed
Format Journal Article
LanguageEnglish
Published 05.05.2025
Online AccessGet full text
ISSN0306-7734
1751-5823
DOI10.1111/insr.12615

Cover

Abstract Fréchet regression is becoming a mainstay in modern data analysis for analysing non‐traditional data types belonging to general metric spaces. This novel regression method is especially useful in the analysis of complex health data such as continuous monitoring and imaging data. Fréchet regression utilises the pairwise distances between the random objects, which makes the choice of metric crucial in the estimation. In this paper, existing dimension reduction methods for Fréchet regression are reviewed, and the effect of metric choice on the estimation of the dimension reduction subspace is explored for the regression between random responses and Euclidean predictors. An extensive numerical study illustrate how different metrics affect the central and central mean space estimators. Two real applications involving analysis of brain connectivity networks of subjects with and without Parkinson's disease and an analysis of the distributions of glycaemia based on continuous glucose monitoring data are provided, to demonstrate how metric choice can influence findings in real applications.
AbstractList Fréchet regression is becoming a mainstay in modern data analysis for analysing non‐traditional data types belonging to general metric spaces. This novel regression method is especially useful in the analysis of complex health data such as continuous monitoring and imaging data. Fréchet regression utilises the pairwise distances between the random objects, which makes the choice of metric crucial in the estimation. In this paper, existing dimension reduction methods for Fréchet regression are reviewed, and the effect of metric choice on the estimation of the dimension reduction subspace is explored for the regression between random responses and Euclidean predictors. An extensive numerical study illustrate how different metrics affect the central and central mean space estimators. Two real applications involving analysis of brain connectivity networks of subjects with and without Parkinson's disease and an analysis of the distributions of glycaemia based on continuous glucose monitoring data are provided, to demonstrate how metric choice can influence findings in real applications.
Author Koomson, Obed
Soale, Abdul‐Nasah
Chen, Siyu
Ma, Congli
Author_xml – sequence: 1
  givenname: Abdul‐Nasah
  orcidid: 0000-0003-2093-7645
  surname: Soale
  fullname: Soale, Abdul‐Nasah
  organization: Department of Mathematics, Applied Mathematics, and Statistics Case Western Reserve University Cleveland Ohio USA
– sequence: 2
  givenname: Congli
  surname: Ma
  fullname: Ma, Congli
  organization: Department of Mathematics, Applied Mathematics, and Statistics Case Western Reserve University Cleveland Ohio USA
– sequence: 3
  givenname: Siyu
  surname: Chen
  fullname: Chen, Siyu
  organization: Department of Mathematics, Applied Mathematics, and Statistics Case Western Reserve University Cleveland Ohio USA
– sequence: 4
  givenname: Obed
  surname: Koomson
  fullname: Koomson, Obed
  organization: Department of Biostatistics, Data Science, & Epidemiology Augusta University Georgia USA
BookMark eNotj81KAzEcxINUcFu9-AQ5C6n_fGdPIqtVoVIQPS-bbGIjNivJevCRfA5frF11LjMMw8BvjmZpSB6hcwpLetBlTCUvKVNUHqGKakmJNIzPUAUcFNGaixM0L-UNADgzokJXm4Qf_Zijw812iM7jmPBN3PlU4pDwk-8_3TilMGS8yj_fbuvHQ_2afZkWp-g4dO_Fn_37Ar2sbp-be7Le3D0012viGDMjkdoaDQGE51ayYGoaauUVd1aZznGqBdO2721XKwjWBQHK9qYG1UsjnQC-QBd_vy4PpWQf2o8cd13-aim0E3o7obe_6HwP8WJOoA
Cites_doi 10.1214/17-AOS1624
10.1198/016214508000000445
10.1016/j.jmva.2008.01.006
10.1080/01621459.2023.2277406
10.1371/journal.pone.0188196
10.1371/journal.pone.0225817
10.1109/GlobalSIP.2013.6736904
10.1201/9781315119427
10.1080/01621459.2014.887012
10.1214/aos/1032526955
10.1145/2634274.2634277
10.1016/j.jmva.2022.105032
10.1080/01621459.1996.10476968
10.1093/biomet/asac012
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1111/insr.12615
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1751-5823
ExternalDocumentID 10_1111_insr_12615
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1OC
29J
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5RE
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AABCJ
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABFAN
ABIVO
ABJNI
ABLJU
ABPVW
ABYWD
ACAHQ
ACCZN
ACGFO
ACGFS
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AELLO
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFVYC
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
AKBRZ
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ESX
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZ~
IX1
J0M
JAA
K48
L7B
LATKE
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
ZZTAW
~02
~IA
~WT
ID FETCH-LOGICAL-c228t-57b870f04e3b52f891f96e63cb68ac317427bddba960fbcf406bd8906d585c403
ISSN 0306-7734
IngestDate Tue Aug 05 12:08:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c228t-57b870f04e3b52f891f96e63cb68ac317427bddba960fbcf406bd8906d585c403
ORCID 0000-0003-2093-7645
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/insr.12615
ParticipantIDs crossref_primary_10_1111_insr_12615
PublicationCentury 2000
PublicationDate 2025-05-05
PublicationDateYYYYMMDD 2025-05-05
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-05
  day: 05
PublicationDecade 2020
PublicationTitle International statistical review
PublicationYear 2025
References e_1_2_8_17_1
Irpino A. (e_1_2_8_8_1) 2007; 1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_15_1
Qi Zhang L.X. (e_1_2_8_14_1) 2024; 119
e_1_2_8_16_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – ident: e_1_2_8_5_1
– ident: e_1_2_8_13_1
  doi: 10.1214/17-AOS1624
– ident: e_1_2_8_11_1
  doi: 10.1198/016214508000000445
– ident: e_1_2_8_18_1
  doi: 10.1016/j.jmva.2008.01.006
– volume: 119
  start-page: 2733
  issue: 548
  year: 2024
  ident: e_1_2_8_14_1
  article-title: Dimension reduction for Fréchet regression
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2023.2277406
– ident: e_1_2_8_17_1
– volume: 1
  start-page: 99
  year: 2007
  ident: e_1_2_8_8_1
  article-title: Optimal histogram representation of large data sets: Fisher vs piecewise linear approximations
  publication-title: Revue des nouvelles technol. de l'inform.
– ident: e_1_2_8_2_1
  doi: 10.1371/journal.pone.0188196
– ident: e_1_2_8_3_1
  doi: 10.1371/journal.pone.0225817
– ident: e_1_2_8_7_1
  doi: 10.1109/GlobalSIP.2013.6736904
– ident: e_1_2_8_10_1
  doi: 10.1201/9781315119427
– ident: e_1_2_8_16_1
  doi: 10.1080/01621459.2014.887012
– ident: e_1_2_8_20_1
  doi: 10.1214/aos/1032526955
– ident: e_1_2_8_15_1
  doi: 10.1145/2634274.2634277
– ident: e_1_2_8_12_1
– ident: e_1_2_8_6_1
  doi: 10.1016/j.jmva.2022.105032
– ident: e_1_2_8_4_1
  doi: 10.1080/01621459.1996.10476968
– ident: e_1_2_8_9_1
– ident: e_1_2_8_19_1
  doi: 10.1093/biomet/asac012
SSID ssj0003284
Score 2.3747172
SecondaryResourceType online_first
Snippet Fréchet regression is becoming a mainstay in modern data analysis for analysing non‐traditional data types belonging to general metric spaces. This novel...
SourceID crossref
SourceType Index Database
Title On Metric Choice in Dimension Reduction for Fréchet Regression
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5cLr2IK-4M6E1SmmUmyUmkWoqgBdtCb6VvMtGCpNLloP_I3-Ef882SxQ3USxiGpk3ma958b_tCyGnIhOcHLHSEG0sn8Ll0YqmFIIEBcCTNurfq5pa3-8H1gA3yd7Xb7pI51MXLt30l_0EV5xBX1SX7B2SLL8UJHCO-eESE8fgrjDsq0aIk9s-aDxN84lXw4lLJ9asQGK5cYqRhdSlhy-bEESRViHxv6l-zKjn9GB1UrUZaxVlL_1czCN2JLUK-gGTxWJRL3I5mZXD5RpPS5kR1CZclBMbGdcfPi8LQI3G3TV8dsI1WNgjhMV3yxyq2Cj0PJOo2LimNLQ2Z67DItBP_YKnH2Wxad9GLY-V-lOfgP21TRfFg7raoc4f63GWy6oWhydLflephvhcZ9TB7bVadVhVylb9b4SMVYtFbJ2vWI6AXBt4NsiSzTVLr5qs_2yLnnYwanKnBmY4zWuBMC5wp4kxb07dXhTEtMd4m_dZVr9l27IsvHOF50dxhIaAZTRuB9IF5aRS7acwl9wXwaCSQ8QVeCEkCI3Q_UxApkjJIorjBE3T-RNDwd8hKNsnkLqHAcC7iuOfhQycTHKQSkJQK3hCuD2KPnOS3P3wy-ibDrwu8_6tPHZBa-d84JCvz6UIeIWWbw7EG5h3B7UDU
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Metric+Choice+in+Dimension+Reduction+for+Fr%C3%A9chet+Regression&rft.jtitle=International+statistical+review&rft.au=Soale%2C+Abdul%E2%80%90Nasah&rft.au=Ma%2C+Congli&rft.au=Chen%2C+Siyu&rft.au=Koomson%2C+Obed&rft.date=2025-05-05&rft.issn=0306-7734&rft.eissn=1751-5823&rft_id=info:doi/10.1111%2Finsr.12615&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_insr_12615
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-7734&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-7734&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-7734&client=summon