On Metric Choice in Dimension Reduction for Fréchet Regression
Fréchet regression is becoming a mainstay in modern data analysis for analysing non‐traditional data types belonging to general metric spaces. This novel regression method is especially useful in the analysis of complex health data such as continuous monitoring and imaging data. Fréchet regression u...
Saved in:
Published in | International statistical review |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
05.05.2025
|
Online Access | Get full text |
ISSN | 0306-7734 1751-5823 |
DOI | 10.1111/insr.12615 |
Cover
Abstract | Fréchet regression is becoming a mainstay in modern data analysis for analysing non‐traditional data types belonging to general metric spaces. This novel regression method is especially useful in the analysis of complex health data such as continuous monitoring and imaging data. Fréchet regression utilises the pairwise distances between the random objects, which makes the choice of metric crucial in the estimation. In this paper, existing dimension reduction methods for Fréchet regression are reviewed, and the effect of metric choice on the estimation of the dimension reduction subspace is explored for the regression between random responses and Euclidean predictors. An extensive numerical study illustrate how different metrics affect the central and central mean space estimators. Two real applications involving analysis of brain connectivity networks of subjects with and without Parkinson's disease and an analysis of the distributions of glycaemia based on continuous glucose monitoring data are provided, to demonstrate how metric choice can influence findings in real applications. |
---|---|
AbstractList | Fréchet regression is becoming a mainstay in modern data analysis for analysing non‐traditional data types belonging to general metric spaces. This novel regression method is especially useful in the analysis of complex health data such as continuous monitoring and imaging data. Fréchet regression utilises the pairwise distances between the random objects, which makes the choice of metric crucial in the estimation. In this paper, existing dimension reduction methods for Fréchet regression are reviewed, and the effect of metric choice on the estimation of the dimension reduction subspace is explored for the regression between random responses and Euclidean predictors. An extensive numerical study illustrate how different metrics affect the central and central mean space estimators. Two real applications involving analysis of brain connectivity networks of subjects with and without Parkinson's disease and an analysis of the distributions of glycaemia based on continuous glucose monitoring data are provided, to demonstrate how metric choice can influence findings in real applications. |
Author | Koomson, Obed Soale, Abdul‐Nasah Chen, Siyu Ma, Congli |
Author_xml | – sequence: 1 givenname: Abdul‐Nasah orcidid: 0000-0003-2093-7645 surname: Soale fullname: Soale, Abdul‐Nasah organization: Department of Mathematics, Applied Mathematics, and Statistics Case Western Reserve University Cleveland Ohio USA – sequence: 2 givenname: Congli surname: Ma fullname: Ma, Congli organization: Department of Mathematics, Applied Mathematics, and Statistics Case Western Reserve University Cleveland Ohio USA – sequence: 3 givenname: Siyu surname: Chen fullname: Chen, Siyu organization: Department of Mathematics, Applied Mathematics, and Statistics Case Western Reserve University Cleveland Ohio USA – sequence: 4 givenname: Obed surname: Koomson fullname: Koomson, Obed organization: Department of Biostatistics, Data Science, & Epidemiology Augusta University Georgia USA |
BookMark | eNotj81KAzEcxINUcFu9-AQ5C6n_fGdPIqtVoVIQPS-bbGIjNivJevCRfA5frF11LjMMw8BvjmZpSB6hcwpLetBlTCUvKVNUHqGKakmJNIzPUAUcFNGaixM0L-UNADgzokJXm4Qf_Zijw812iM7jmPBN3PlU4pDwk-8_3TilMGS8yj_fbuvHQ_2afZkWp-g4dO_Fn_37Ar2sbp-be7Le3D0012viGDMjkdoaDQGE51ayYGoaauUVd1aZznGqBdO2721XKwjWBQHK9qYG1UsjnQC-QBd_vy4PpWQf2o8cd13-aim0E3o7obe_6HwP8WJOoA |
Cites_doi | 10.1214/17-AOS1624 10.1198/016214508000000445 10.1016/j.jmva.2008.01.006 10.1080/01621459.2023.2277406 10.1371/journal.pone.0188196 10.1371/journal.pone.0225817 10.1109/GlobalSIP.2013.6736904 10.1201/9781315119427 10.1080/01621459.2014.887012 10.1214/aos/1032526955 10.1145/2634274.2634277 10.1016/j.jmva.2022.105032 10.1080/01621459.1996.10476968 10.1093/biomet/asac012 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1111/insr.12615 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 1751-5823 |
ExternalDocumentID | 10_1111_insr_12615 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1OC 29J 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5RE 5VS 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AABCJ AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDBF ABEML ABFAN ABIVO ABJNI ABLJU ABPVW ABYWD ACAHQ ACCZN ACGFO ACGFS ACIWK ACMTB ACNCT ACPOU ACSCC ACTMH ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AELLO AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFVYC AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR AKBRZ ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ESX F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZ~ IX1 J0M JAA K48 L7B LATKE LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TN5 UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 ZZTAW ~02 ~IA ~WT |
ID | FETCH-LOGICAL-c228t-57b870f04e3b52f891f96e63cb68ac317427bddba960fbcf406bd8906d585c403 |
ISSN | 0306-7734 |
IngestDate | Tue Aug 05 12:08:34 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c228t-57b870f04e3b52f891f96e63cb68ac317427bddba960fbcf406bd8906d585c403 |
ORCID | 0000-0003-2093-7645 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/insr.12615 |
ParticipantIDs | crossref_primary_10_1111_insr_12615 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-05 |
PublicationDateYYYYMMDD | 2025-05-05 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | International statistical review |
PublicationYear | 2025 |
References | e_1_2_8_17_1 Irpino A. (e_1_2_8_8_1) 2007; 1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_15_1 Qi Zhang L.X. (e_1_2_8_14_1) 2024; 119 e_1_2_8_16_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1 |
References_xml | – ident: e_1_2_8_5_1 – ident: e_1_2_8_13_1 doi: 10.1214/17-AOS1624 – ident: e_1_2_8_11_1 doi: 10.1198/016214508000000445 – ident: e_1_2_8_18_1 doi: 10.1016/j.jmva.2008.01.006 – volume: 119 start-page: 2733 issue: 548 year: 2024 ident: e_1_2_8_14_1 article-title: Dimension reduction for Fréchet regression publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2023.2277406 – ident: e_1_2_8_17_1 – volume: 1 start-page: 99 year: 2007 ident: e_1_2_8_8_1 article-title: Optimal histogram representation of large data sets: Fisher vs piecewise linear approximations publication-title: Revue des nouvelles technol. de l'inform. – ident: e_1_2_8_2_1 doi: 10.1371/journal.pone.0188196 – ident: e_1_2_8_3_1 doi: 10.1371/journal.pone.0225817 – ident: e_1_2_8_7_1 doi: 10.1109/GlobalSIP.2013.6736904 – ident: e_1_2_8_10_1 doi: 10.1201/9781315119427 – ident: e_1_2_8_16_1 doi: 10.1080/01621459.2014.887012 – ident: e_1_2_8_20_1 doi: 10.1214/aos/1032526955 – ident: e_1_2_8_15_1 doi: 10.1145/2634274.2634277 – ident: e_1_2_8_12_1 – ident: e_1_2_8_6_1 doi: 10.1016/j.jmva.2022.105032 – ident: e_1_2_8_4_1 doi: 10.1080/01621459.1996.10476968 – ident: e_1_2_8_9_1 – ident: e_1_2_8_19_1 doi: 10.1093/biomet/asac012 |
SSID | ssj0003284 |
Score | 2.3747172 |
SecondaryResourceType | online_first |
Snippet | Fréchet regression is becoming a mainstay in modern data analysis for analysing non‐traditional data types belonging to general metric spaces. This novel... |
SourceID | crossref |
SourceType | Index Database |
Title | On Metric Choice in Dimension Reduction for Fréchet Regression |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5cLr2IK-4M6E1SmmUmyUmkWoqgBdtCb6VvMtGCpNLloP_I3-Ef882SxQ3USxiGpk3ma958b_tCyGnIhOcHLHSEG0sn8Ll0YqmFIIEBcCTNurfq5pa3-8H1gA3yd7Xb7pI51MXLt30l_0EV5xBX1SX7B2SLL8UJHCO-eESE8fgrjDsq0aIk9s-aDxN84lXw4lLJ9asQGK5cYqRhdSlhy-bEESRViHxv6l-zKjn9GB1UrUZaxVlL_1czCN2JLUK-gGTxWJRL3I5mZXD5RpPS5kR1CZclBMbGdcfPi8LQI3G3TV8dsI1WNgjhMV3yxyq2Cj0PJOo2LimNLQ2Z67DItBP_YKnH2Wxad9GLY-V-lOfgP21TRfFg7raoc4f63GWy6oWhydLflephvhcZ9TB7bVadVhVylb9b4SMVYtFbJ2vWI6AXBt4NsiSzTVLr5qs_2yLnnYwanKnBmY4zWuBMC5wp4kxb07dXhTEtMd4m_dZVr9l27IsvHOF50dxhIaAZTRuB9IF5aRS7acwl9wXwaCSQ8QVeCEkCI3Q_UxApkjJIorjBE3T-RNDwd8hKNsnkLqHAcC7iuOfhQycTHKQSkJQK3hCuD2KPnOS3P3wy-ibDrwu8_6tPHZBa-d84JCvz6UIeIWWbw7EG5h3B7UDU |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Metric+Choice+in+Dimension+Reduction+for+Fr%C3%A9chet+Regression&rft.jtitle=International+statistical+review&rft.au=Soale%2C+Abdul%E2%80%90Nasah&rft.au=Ma%2C+Congli&rft.au=Chen%2C+Siyu&rft.au=Koomson%2C+Obed&rft.date=2025-05-05&rft.issn=0306-7734&rft.eissn=1751-5823&rft_id=info:doi/10.1111%2Finsr.12615&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_insr_12615 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-7734&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-7734&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-7734&client=summon |