A versatile door opening system with mobile manipulator through adaptive position-force control and reinforcement learning

The ability of robots to navigate through doors is crucial for their effective operation in indoor environments. Consequently, extensive research has been conducted to develop robots capable of opening specific doors. However, the diverse combinations of door handles and opening directions necessita...

Full description

Saved in:
Bibliographic Details
Published inRobotics and autonomous systems Vol. 180; p. 104760
Main Authors Kang, Gyuree, Seong, Hyunki, Lee, Daegyu, Shim, David Hyunchul
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ability of robots to navigate through doors is crucial for their effective operation in indoor environments. Consequently, extensive research has been conducted to develop robots capable of opening specific doors. However, the diverse combinations of door handles and opening directions necessitate a more versatile door opening system for robots to successfully operate in real-world environments. In this paper, we propose a mobile manipulator system that can autonomously open various doors without prior knowledge. By using convolutional neural networks, point cloud extraction techniques, and external force measurements during exploratory motion, we obtained information regarding handle types, poses, and door characteristics. Through two different approaches, adaptive position-force control and deep reinforcement learning, we successfully opened doors without precise trajectory or excessive external force. The adaptive position-force control method involves moving the end-effector in the direction of the door opening while responding compliantly to external forces, ensuring safety and manipulator workspace. Meanwhile, the deep reinforcement learning policy minimizes applied forces and eliminates unnecessary movements, enabling stable operation across doors with different poses and widths. The RL-based approach outperforms the adaptive position-force control method in terms of compensating for external forces, ensuring smooth motion, and achieving efficient speed. It reduces the maximum force required by 3.27 times and improves motion smoothness by 1.82 times. However, the non-learning-based adaptive position-force control method demonstrates more versatility in opening a wider range of doors, encompassing revolute doors with four distinct opening directions and varying widths. •Versatile mobile manipulator door opening system without prior knowledge.•Applicable to doors with various handle types and different kinematic constraints.•Adaptive position-force control-based and RL-based systems for adaptive door opening.•Extensive evaluation in real-world scenarios.
AbstractList The ability of robots to navigate through doors is crucial for their effective operation in indoor environments. Consequently, extensive research has been conducted to develop robots capable of opening specific doors. However, the diverse combinations of door handles and opening directions necessitate a more versatile door opening system for robots to successfully operate in real-world environments. In this paper, we propose a mobile manipulator system that can autonomously open various doors without prior knowledge. By using convolutional neural networks, point cloud extraction techniques, and external force measurements during exploratory motion, we obtained information regarding handle types, poses, and door characteristics. Through two different approaches, adaptive position-force control and deep reinforcement learning, we successfully opened doors without precise trajectory or excessive external force. The adaptive position-force control method involves moving the end-effector in the direction of the door opening while responding compliantly to external forces, ensuring safety and manipulator workspace. Meanwhile, the deep reinforcement learning policy minimizes applied forces and eliminates unnecessary movements, enabling stable operation across doors with different poses and widths. The RL-based approach outperforms the adaptive position-force control method in terms of compensating for external forces, ensuring smooth motion, and achieving efficient speed. It reduces the maximum force required by 3.27 times and improves motion smoothness by 1.82 times. However, the non-learning-based adaptive position-force control method demonstrates more versatility in opening a wider range of doors, encompassing revolute doors with four distinct opening directions and varying widths. •Versatile mobile manipulator door opening system without prior knowledge.•Applicable to doors with various handle types and different kinematic constraints.•Adaptive position-force control-based and RL-based systems for adaptive door opening.•Extensive evaluation in real-world scenarios.
ArticleNumber 104760
Author Shim, David Hyunchul
Seong, Hyunki
Lee, Daegyu
Kang, Gyuree
Author_xml – sequence: 1
  givenname: Gyuree
  orcidid: 0000-0001-7769-4651
  surname: Kang
  fullname: Kang, Gyuree
  email: fingb20@kaist.ac.kr
  organization: School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
– sequence: 2
  givenname: Hyunki
  orcidid: 0000-0002-7169-3006
  surname: Seong
  fullname: Seong, Hyunki
  email: hynkis@kaist.ac.kr
  organization: School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
– sequence: 3
  givenname: Daegyu
  orcidid: 0000-0002-9336-5759
  surname: Lee
  fullname: Lee, Daegyu
  email: lee.dk@etri.re.kr
  organization: Digital Convergence Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
– sequence: 4
  givenname: David Hyunchul
  orcidid: 0000-0002-1929-7022
  surname: Shim
  fullname: Shim, David Hyunchul
  email: hcshim@kaist.ac.kr
  organization: School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
BookMark eNp9kL9uwyAQhxlSqUnaJ-jCCzjFBtswdIii_pMidWlnBPicENlgAUmVPn3tpHOnk353393pW6CZ8w4QesjJKid59XhYBa99WhWkYGPC6orM0JyIIs84F-QWLWI8EEJoWdM5-lnjE4Soku0AN94H7Adw1u1wPMcEPf62aY97r6d-r5wdjp1K41jaB3_c7bFq1JDsCfDgo03Wu6z1wQA23qXgO6xcgwNYd0l7cAl3oMJ04Q7dtKqLcP9Xl-jr5flz85ZtP17fN-ttZoqCp4wJYirQvKQ5VC3ljLaa6YqSQgheNSAU1CyvuSG0YYIJrVuuSk5KwVjRaEKXiF73muBjDNDKIdhehbPMiZyUyYO8KJOTMnlVNlJPVwrG104WgozGgjPQ2AAmycbbf_lfqfR8_g
Cites_doi 10.1109/ICAR.2017.8023522
10.1109/IROS.2000.895316
10.1126/scirobotics.aax8177
10.1109/ITSC48978.2021.9564720
10.1109/LRA.2019.2927955
10.3390/s20030939
10.3390/s20205911
10.1109/ACCESS.2021.3120618
10.23919/IConAC.2019.8895183
10.1109/ICRA.2019.8793506
10.1016/j.tre.2022.102834
10.3390/robotics10010022
10.3390/app12105204
10.3390/app10196923
10.1007/s11370-021-00366-7
10.1109/ICRA48506.2021.9561858
10.1016/S0168-1699(00)00176-9
10.1109/TMECH.2012.2191301
10.1109/LRA.2021.3092685
10.1145/358669.358692
10.3390/app9020348
10.1109/ICRA.2017.7989385
10.1109/ICRA.2019.8793866
10.1109/CVPR52688.2022.00831
10.1177/0278364920987859
10.1109/ROBIO49542.2019.8961852
10.1109/ICRA.2019.8794127
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.robot.2024.104760
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_robot_2024_104760
S0921889024001441
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SCC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
UNMZH
WUQ
XPP
~G-
0SF
AAXKI
AAYXX
AFJKZ
CITATION
ID FETCH-LOGICAL-c228t-490c6eb8531e6f3843fb4b63029986de9ae74178c03d4949bbf8a58059442db03
IEDL.DBID AIKHN
ISSN 0921-8890
IngestDate Wed Oct 16 15:15:05 EDT 2024
Sat Aug 24 15:42:06 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Door opening robot
Deep reinforcement learning
Indoor robotics
Real-time autonomous system
Mobile manipulator
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c228t-490c6eb8531e6f3843fb4b63029986de9ae74178c03d4949bbf8a58059442db03
ORCID 0000-0002-1929-7022
0000-0001-7769-4651
0000-0002-9336-5759
0000-0002-7169-3006
OpenAccessLink https://arxiv.org/pdf/2307.04422
ParticipantIDs crossref_primary_10_1016_j_robot_2024_104760
elsevier_sciencedirect_doi_10_1016_j_robot_2024_104760
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Robotics and autonomous systems
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References L. Peterson, D. Austin, D. Kragic, High-level control of a mobile manipulator for door opening, in: Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000)(Cat. No. 00CH37113), Vol. 3, 2000, pp. 2333–2338.
Srinivas, Ramachandiran, Rajendran (b2) 2022; 165
Ahmad, Zhang, Liu (b7) 2012; 18
B. Nemec, L. Žlajpah, A. Ude, Door opening by joining reinforcement learning and intelligent control, in: 2017 18th International Conference on Advanced Robotics, ICAR, 2017, pp. 222–228.
(b38) 2021
Ma, Gao, Ding, Tao, Xia, Yu, Deng (b8) 2018
Minniti, Farshidian, Grandia, Hutter (b11) 2019; 4
Prianto, Kim, Park, Bae, Kim (b34) 2020; 20
Tanner, Kyriakopoulos, Krikelis (b3) 2001; 31
(b37) 2018
S. Gu, E. Holly, T. Lillicrap, S. Levine, Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates, in: 2017 IEEE International Conference on Robotics and Automation, ICRA, 2017, pp. 3389–3396.
Ibarz, Tan, Finn, Kalakrishnan, Pastor, Levine (b20) 2021; 40
Urakami, Hodgkinson, Carlin, Leu, Rigazio, Abbeel (b23) 2019
M. Stuede, K. Nuelle, S. Tappe, T. Ortmaier, Door opening and traversal with an industrial cartesian impedance controlled mobile robot, in: 2019 International Conference on Robotics and Automation, ICRA, 2019, pp. 966–972.
M. Yang, E. Yang, R. Zante, M. Post, X. Liu, Collaborative mobile industrial manipulator: a review of system architecture and applications, in: 2019 25th International Conference On Automation And Computing, ICAC, 2019, pp. 1–6.
Kindle, Furrer, Novkovic, Chung, Siegwart, Nieto (b16) 2020
J. Luo, E. Solowjow, C. Wen, J. Ojea, A. Agogino, A. Tamar, P. Abbeel, Reinforcement learning on variable impedance controller for high-precision robotic assembly, in: 2019 International Conference on Robotics and Automation, ICRA, 2019, pp. 3080–3087.
Wang, Wang, Zhao (b24) 2022; 12
T. Haarnoja, A. Zhou, P. Abbeel, S. Levine, Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor, in: International Conference On Machine Learning, 2018, pp. 1861–1870.
Beltran-Hernandez, Petit, Ramirez-Alpizar, Harada (b14) 2020; 10
Honerkamp, Welschehold, Valada (b17) 2021; 6
X. Lai, J. Liu, L. Jiang, L. Wang, H. Zhao, S. Liu, X. Qi, J. Jia, Stratified transformer for 3d point cloud segmentation, in: Proceedings of The IEEE/CVF Conference On Computer Vision And Pattern Recognition, 2022, pp. 8500–8509.
Lee, Kang, Kim, Shim (b1) 2021; 9
Fischler, Bolles (b28) 1981; 24
Haarnoja, Zhou, Hartikainen, Tucker, Ha, Tan, Kumar, Zhu, Gupta, Abbeel (b35) 2018
Ito, Yamamoto, Mori, Ogata (b25) 2022; 7
Fuchs, Song, Kaufmann, Scaramuzza, Duerr (b31) 2020
Wang, Zhang, Tian, Li, Wang, Lane, Petillot, Wang (b15) 2020; 20
Arduengo, Torras, Sentis (b10) 2021; 14
H. Seong, C. Jung, S. Lee, D. Shim, Learning to drive at unsignalized intersections using attention-based deep reinforcement learning, in: 2021 IEEE International Intelligent Transportation Systems Conference, ITSC, 2021, pp. 559–566.
Iriondo, Lazkano, Susperregi, Urain, Fernandez, Molina (b4) 2019; 9
C. Yang, J. Yang, X. Wang, B. Liang, Control of space flexible manipulator using soft actor-critic and random network distillation, in: 2019 IEEE International Conference on Robotics and Biomimetics, ROBIO, 2019, pp. 3019–3024.
C. Sun, J. Orbik, C. Devin, B. Yang, A. Gupta, G. Berseth, S. Levine, Fully autonomous real-world reinforcement learning with applications to mobile manipulation, in: Conference On Robot Learning, 2022, pp. 308–319.
Liu, Nageotte, Zanne, Mathelin, Dresp-Langley (b19) 2021; 10
S. Fujimoto, H. Hoof, D. Meger, Addressing function approximation error in actor-critic methods, in: International Conference On Machine Learning, 2018, pp. 1587–1596.
H. Liu, R. Soto, F. Xiao, Y. Lee, Yolactedge: Real-time instance segmentation on the edge, in: 2021 IEEE International Conference on Robotics and Automation, ICRA, 2021, pp. 9579–9585.
Lynch, Park (b29) 2017
T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. Ojea, E. Solowjow, S. Levine, Residual reinforcement learning for robot control, in: 2019 International Conference on Robotics and Automation, ICRA, 2019, pp. 6023–6029.
Prianto (10.1016/j.robot.2024.104760_b34) 2020; 20
10.1016/j.robot.2024.104760_b9
Srinivas (10.1016/j.robot.2024.104760_b2) 2022; 165
Ito (10.1016/j.robot.2024.104760_b25) 2022; 7
Ma (10.1016/j.robot.2024.104760_b8) 2018
10.1016/j.robot.2024.104760_b21
10.1016/j.robot.2024.104760_b22
Wang (10.1016/j.robot.2024.104760_b24) 2022; 12
10.1016/j.robot.2024.104760_b26
Lee (10.1016/j.robot.2024.104760_b1) 2021; 9
10.1016/j.robot.2024.104760_b27
(10.1016/j.robot.2024.104760_b38) 2021
Fischler (10.1016/j.robot.2024.104760_b28) 1981; 24
Kindle (10.1016/j.robot.2024.104760_b16) 2020
Lynch (10.1016/j.robot.2024.104760_b29) 2017
10.1016/j.robot.2024.104760_b6
Urakami (10.1016/j.robot.2024.104760_b23) 2019
10.1016/j.robot.2024.104760_b5
Arduengo (10.1016/j.robot.2024.104760_b10) 2021; 14
Ibarz (10.1016/j.robot.2024.104760_b20) 2021; 40
Fuchs (10.1016/j.robot.2024.104760_b31) 2020
Haarnoja (10.1016/j.robot.2024.104760_b35) 2018
(10.1016/j.robot.2024.104760_b37) 2018
Ahmad (10.1016/j.robot.2024.104760_b7) 2012; 18
10.1016/j.robot.2024.104760_b18
Tanner (10.1016/j.robot.2024.104760_b3) 2001; 31
10.1016/j.robot.2024.104760_b32
10.1016/j.robot.2024.104760_b33
10.1016/j.robot.2024.104760_b12
10.1016/j.robot.2024.104760_b13
10.1016/j.robot.2024.104760_b36
Liu (10.1016/j.robot.2024.104760_b19) 2021; 10
Minniti (10.1016/j.robot.2024.104760_b11) 2019; 4
Iriondo (10.1016/j.robot.2024.104760_b4) 2019; 9
Beltran-Hernandez (10.1016/j.robot.2024.104760_b14) 2020; 10
Wang (10.1016/j.robot.2024.104760_b15) 2020; 20
Honerkamp (10.1016/j.robot.2024.104760_b17) 2021; 6
10.1016/j.robot.2024.104760_b30
References_xml – volume: 18
  start-page: 833
  year: 2012
  end-page: 844
  ident: b7
  article-title: Multiple working mode control of door opening with a mobile modular and reconfigurable robot
  publication-title: IEEE/ASME Trans. Mechatron.
  contributor:
    fullname: Liu
– year: 2019
  ident: b23
  article-title: Doorgym: A scalable door opening environment and baseline agent
  contributor:
    fullname: Abbeel
– volume: 4
  start-page: 3687
  year: 2019
  end-page: 3694
  ident: b11
  article-title: Whole-body mpc for a dynamically stable mobile manipulator
  publication-title: IEEE Robot. Autom. Lett.
  contributor:
    fullname: Hutter
– year: 2018
  ident: b35
  article-title: Soft actor-critic algorithms and applications
  contributor:
    fullname: Abbeel
– volume: 24
  start-page: 381
  year: 1981
  end-page: 395
  ident: b28
  article-title: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography
  publication-title: Commun. ACM
  contributor:
    fullname: Bolles
– volume: 165
  year: 2022
  ident: b2
  article-title: Autonomous robot-driven deliveries: A review of recent developments and future directions
  publication-title: Transp. Res. E: Logist. Transp. Rev.
  contributor:
    fullname: Rajendran
– year: 2018
  ident: b37
  article-title: Kinovarobotics ros_kortex. GitHub Repository
– volume: 9
  start-page: 348
  year: 2019
  ident: b4
  article-title: Pick and place operations in logistics using a mobile manipulator controlled with deep reinforcement learning
  publication-title: Appl. Sci.
  contributor:
    fullname: Molina
– volume: 6
  start-page: 6289
  year: 2021
  end-page: 6296
  ident: b17
  article-title: Learning kinematic feasibility for mobile manipulation through deep reinforcement learning
  publication-title: IEEE Robot. Autom. Lett.
  contributor:
    fullname: Valada
– volume: 20
  start-page: 939
  year: 2020
  ident: b15
  article-title: Learning mobile manipulation through deep reinforcement learning
  publication-title: Sensors
  contributor:
    fullname: Wang
– year: 2018
  ident: b8
  article-title: Optimal energy consumption for mobile manipulators executing door opening task
  publication-title: Mathematical Problems In Engineering
  contributor:
    fullname: Deng
– volume: 40
  start-page: 698
  year: 2021
  end-page: 721
  ident: b20
  article-title: How to train your robot with deep reinforcement learning: lessons we have learned
  publication-title: Int. J. Robot. Res.
  contributor:
    fullname: Levine
– volume: 12
  start-page: 5204
  year: 2022
  ident: b24
  article-title: Research on door opening operation of mobile robotic arm based on reinforcement learning
  publication-title: Appl. Sci.
  contributor:
    fullname: Zhao
– volume: 10
  start-page: 6923
  year: 2020
  ident: b14
  article-title: Variable compliance control for robotic peg-in-hole assembly: A deep-reinforcement-learning approach
  publication-title: Appl. Sci.
  contributor:
    fullname: Harada
– year: 2020
  ident: b16
  article-title: Whole-body control of a mobile manipulator using end-to-end reinforcement learning
  contributor:
    fullname: Nieto
– volume: 9
  start-page: 141981
  year: 2021
  end-page: 141998
  ident: b1
  article-title: Assistive delivery robot application for real-world postal services
  publication-title: IEEE Access
  contributor:
    fullname: Shim
– volume: 20
  start-page: 5911
  year: 2020
  ident: b34
  article-title: Path planning for multi-arm manipulators using deep reinforcement learning: Soft actor–critic with hindsight experience replay
  publication-title: Sensors
  contributor:
    fullname: Kim
– volume: 7
  year: 2022
  ident: b25
  article-title: Efficient multitask learning with an embodied predictive model for door opening and entry with whole-body control
  publication-title: Sci. Robot.
  contributor:
    fullname: Ogata
– volume: 31
  start-page: 91
  year: 2001
  end-page: 105
  ident: b3
  article-title: Advanced agricultural robots: kinematics and dynamics of multiple mobile manipulators handling non-rigid material
  publication-title: Comput. Electron. Agricult.
  contributor:
    fullname: Krikelis
– year: 2020
  ident: b31
  article-title: Super-human performance in gran turismo sport using deep reinforcement learning
  contributor:
    fullname: Duerr
– year: 2017
  ident: b29
  article-title: Modern Robotics
  contributor:
    fullname: Park
– year: 2021
  ident: b38
  article-title: omorobot omo_r1. GitHub Repository
– volume: 14
  start-page: 409
  year: 2021
  end-page: 425
  ident: b10
  article-title: Robust and adaptive door operation with a mobile robot
  publication-title: Intell. Serv. Robot.
  contributor:
    fullname: Sentis
– volume: 10
  start-page: 22
  year: 2021
  ident: b19
  article-title: Deep reinforcement learning for the control of robotic manipulation: a focussed mini-review
  publication-title: Robotics
  contributor:
    fullname: Dresp-Langley
– ident: 10.1016/j.robot.2024.104760_b22
  doi: 10.1109/ICAR.2017.8023522
– ident: 10.1016/j.robot.2024.104760_b6
  doi: 10.1109/IROS.2000.895316
– volume: 7
  year: 2022
  ident: 10.1016/j.robot.2024.104760_b25
  article-title: Efficient multitask learning with an embodied predictive model for door opening and entry with whole-body control
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aax8177
  contributor:
    fullname: Ito
– year: 2018
  ident: 10.1016/j.robot.2024.104760_b8
  article-title: Optimal energy consumption for mobile manipulators executing door opening task
  contributor:
    fullname: Ma
– year: 2018
  ident: 10.1016/j.robot.2024.104760_b35
  contributor:
    fullname: Haarnoja
– ident: 10.1016/j.robot.2024.104760_b32
  doi: 10.1109/ITSC48978.2021.9564720
– volume: 4
  start-page: 3687
  year: 2019
  ident: 10.1016/j.robot.2024.104760_b11
  article-title: Whole-body mpc for a dynamically stable mobile manipulator
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2927955
  contributor:
    fullname: Minniti
– volume: 20
  start-page: 939
  year: 2020
  ident: 10.1016/j.robot.2024.104760_b15
  article-title: Learning mobile manipulation through deep reinforcement learning
  publication-title: Sensors
  doi: 10.3390/s20030939
  contributor:
    fullname: Wang
– year: 2019
  ident: 10.1016/j.robot.2024.104760_b23
  contributor:
    fullname: Urakami
– volume: 20
  start-page: 5911
  year: 2020
  ident: 10.1016/j.robot.2024.104760_b34
  article-title: Path planning for multi-arm manipulators using deep reinforcement learning: Soft actor–critic with hindsight experience replay
  publication-title: Sensors
  doi: 10.3390/s20205911
  contributor:
    fullname: Prianto
– volume: 9
  start-page: 141981
  year: 2021
  ident: 10.1016/j.robot.2024.104760_b1
  article-title: Assistive delivery robot application for real-world postal services
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3120618
  contributor:
    fullname: Lee
– ident: 10.1016/j.robot.2024.104760_b5
  doi: 10.23919/IConAC.2019.8895183
– ident: 10.1016/j.robot.2024.104760_b12
  doi: 10.1109/ICRA.2019.8793506
– volume: 165
  year: 2022
  ident: 10.1016/j.robot.2024.104760_b2
  article-title: Autonomous robot-driven deliveries: A review of recent developments and future directions
  publication-title: Transp. Res. E: Logist. Transp. Rev.
  doi: 10.1016/j.tre.2022.102834
  contributor:
    fullname: Srinivas
– volume: 10
  start-page: 22
  year: 2021
  ident: 10.1016/j.robot.2024.104760_b19
  article-title: Deep reinforcement learning for the control of robotic manipulation: a focussed mini-review
  publication-title: Robotics
  doi: 10.3390/robotics10010022
  contributor:
    fullname: Liu
– year: 2020
  ident: 10.1016/j.robot.2024.104760_b31
  contributor:
    fullname: Fuchs
– volume: 12
  start-page: 5204
  year: 2022
  ident: 10.1016/j.robot.2024.104760_b24
  article-title: Research on door opening operation of mobile robotic arm based on reinforcement learning
  publication-title: Appl. Sci.
  doi: 10.3390/app12105204
  contributor:
    fullname: Wang
– volume: 10
  start-page: 6923
  year: 2020
  ident: 10.1016/j.robot.2024.104760_b14
  article-title: Variable compliance control for robotic peg-in-hole assembly: A deep-reinforcement-learning approach
  publication-title: Appl. Sci.
  doi: 10.3390/app10196923
  contributor:
    fullname: Beltran-Hernandez
– ident: 10.1016/j.robot.2024.104760_b18
– volume: 14
  start-page: 409
  year: 2021
  ident: 10.1016/j.robot.2024.104760_b10
  article-title: Robust and adaptive door operation with a mobile robot
  publication-title: Intell. Serv. Robot.
  doi: 10.1007/s11370-021-00366-7
  contributor:
    fullname: Arduengo
– year: 2018
  ident: 10.1016/j.robot.2024.104760_b37
– ident: 10.1016/j.robot.2024.104760_b27
  doi: 10.1109/ICRA48506.2021.9561858
– volume: 31
  start-page: 91
  year: 2001
  ident: 10.1016/j.robot.2024.104760_b3
  article-title: Advanced agricultural robots: kinematics and dynamics of multiple mobile manipulators handling non-rigid material
  publication-title: Comput. Electron. Agricult.
  doi: 10.1016/S0168-1699(00)00176-9
  contributor:
    fullname: Tanner
– year: 2017
  ident: 10.1016/j.robot.2024.104760_b29
  contributor:
    fullname: Lynch
– ident: 10.1016/j.robot.2024.104760_b30
– volume: 18
  start-page: 833
  year: 2012
  ident: 10.1016/j.robot.2024.104760_b7
  article-title: Multiple working mode control of door opening with a mobile modular and reconfigurable robot
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2012.2191301
  contributor:
    fullname: Ahmad
– volume: 6
  start-page: 6289
  year: 2021
  ident: 10.1016/j.robot.2024.104760_b17
  article-title: Learning kinematic feasibility for mobile manipulation through deep reinforcement learning
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3092685
  contributor:
    fullname: Honerkamp
– volume: 24
  start-page: 381
  year: 1981
  ident: 10.1016/j.robot.2024.104760_b28
  article-title: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography
  publication-title: Commun. ACM
  doi: 10.1145/358669.358692
  contributor:
    fullname: Fischler
– volume: 9
  start-page: 348
  year: 2019
  ident: 10.1016/j.robot.2024.104760_b4
  article-title: Pick and place operations in logistics using a mobile manipulator controlled with deep reinforcement learning
  publication-title: Appl. Sci.
  doi: 10.3390/app9020348
  contributor:
    fullname: Iriondo
– ident: 10.1016/j.robot.2024.104760_b21
  doi: 10.1109/ICRA.2017.7989385
– ident: 10.1016/j.robot.2024.104760_b9
  doi: 10.1109/ICRA.2019.8793866
– ident: 10.1016/j.robot.2024.104760_b26
  doi: 10.1109/CVPR52688.2022.00831
– volume: 40
  start-page: 698
  year: 2021
  ident: 10.1016/j.robot.2024.104760_b20
  article-title: How to train your robot with deep reinforcement learning: lessons we have learned
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364920987859
  contributor:
    fullname: Ibarz
– ident: 10.1016/j.robot.2024.104760_b36
– ident: 10.1016/j.robot.2024.104760_b33
  doi: 10.1109/ROBIO49542.2019.8961852
– year: 2020
  ident: 10.1016/j.robot.2024.104760_b16
  contributor:
    fullname: Kindle
– year: 2021
  ident: 10.1016/j.robot.2024.104760_b38
– ident: 10.1016/j.robot.2024.104760_b13
  doi: 10.1109/ICRA.2019.8794127
SSID ssj0003573
Score 2.4672673
Snippet The ability of robots to navigate through doors is crucial for their effective operation in indoor environments. Consequently, extensive research has been...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 104760
SubjectTerms Deep reinforcement learning
Door opening robot
Indoor robotics
Mobile manipulator
Real-time autonomous system
Title A versatile door opening system with mobile manipulator through adaptive position-force control and reinforcement learning
URI https://dx.doi.org/10.1016/j.robot.2024.104760
Volume 180
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71scCAeIryqDwwEuomjmuPVQUqVOoAVHSL4thBRZBUVVkY-O34HAcVCTGwJErsk6Iv0d3Z9-U7gAvRzwc8C3VgF8g6YLk9SM1ZEEuhNDexCY1jW0z5eMbu5vG8AaP6XxikVXrfX_l05639nZ5Hs7dcLHoPVNrwhGUyRt2yoAltG44Ya0F7eDsZT78dchRXhWY7P0CDWnzI0bxWpSqRUxkyLHcOnFTlLwFqI-jc7MKOzxbJsHqgPWiYYh-2NzQED-BjSJBZYQF-NUSX5YpgQyw7RCqRZoI7reStVDiOYheuYZed5jv0kFSnS_R5pOZvBTaPzQzxJHaSFpqsjBNYzdxeIvGdJp4PYXZz_TgaB76hQpCFoVgHTNKMG2UjdN_wPBIsyhVTPKI2JgmujUyNTTAGIqORRtUapXKRxgIlXVioFY2OoFWUhTkGInKhDNWSCgt5bkLphO2lzFKudaTTDlzWKCbLSjcjqQllL4kDPUHQkwr0DvAa6eTH60-sZ__L8OS_hqewhVcVL-8MWuvVuzm3-cVadaF59dnv-q8Iz5P7p8kXNxrTlg
link.rule.ids 315,786,790,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGYAB8SnKpwdGTN3Ece2xqkAFShdaqZsVxw4qgqSqysLAb8fnOKJIiIElQ-4sRS_R3dn38g6hS9HJuzyLDHEbZENY7i7ScEYSKbThNrGR9WyLER9M2P00mTZQv_4XBmiVIfZXMd1H63CnHdBsz2ez9hOVLj1Bm4xRvy1YQ-tQDQCv6_rzm-cRJ1Wb2XkTcK-lhzzJa1HqEhiVEYNmZ9cLVf6SnlZSzu0O2g61Iu5Vj7OLGrbYQ1srCoL76KOHgVfh4H212JTlAsM4LGfClUQzhnNW_FZqsIPUhR_X5dzCfB6cmnQOEQ_X7C3iqtjM4kBhx2lh8MJ6edXMnyTiMGfi-QBNbm_G_QEJ4xRIFkViSZikGbfa5eeO5XksWJxrpnlMXUYS3FiZWldedEVGYwOaNVrnIk0ECLqwyGgaH6JmURb2CGGRC22pkVSwDsttJL2svZRZyo2JTdpCVzWKal6pZqiaTvaiPOgKQFcV6C3Ea6TVj5evXFz_a-HxfxdeoI3B-HGohnejhxO0CZaKoXeKmsvFuz1zlcZSn_sv6Qt_e9LI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+versatile+door+opening+system+with+mobile+manipulator+through+adaptive+position-force+control+and+reinforcement+learning&rft.jtitle=Robotics+and+autonomous+systems&rft.au=Kang%2C+Gyuree&rft.au=Seong%2C+Hyunki&rft.au=Lee%2C+Daegyu&rft.au=Shim%2C+David+Hyunchul&rft.date=2024-10-01&rft.pub=Elsevier+B.V&rft.issn=0921-8890&rft.volume=180&rft_id=info:doi/10.1016%2Fj.robot.2024.104760&rft.externalDocID=S0921889024001441
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8890&client=summon