Optimal channels selection based on ABC-SVM in Parkinson′s disease detection using short-time resting state EEG

Parkinson’s disease (PD) poses a detection challenge due to its concealed nature and the long-term data collection for subjects. This study proposes a PD detection method based on the artificial bee colony and support vector machine (ABC-SVM), which can select the optimal channels with short-time re...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of supercomputing Vol. 81; no. 8
Main Authors Zhang, Xiaodan, Zhang, Lu, Xu, Kemeng, Yang, Yuyu, Zhao, Rui, She, Yichong
Format Journal Article
LanguageEnglish
Published New York Springer Nature B.V 06.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Parkinson’s disease (PD) poses a detection challenge due to its concealed nature and the long-term data collection for subjects. This study proposes a PD detection method based on the artificial bee colony and support vector machine (ABC-SVM), which can select the optimal channels with short-time resting-state electroencephalography (EEG) data. Power spectral density (PSD) and differential entropy (DE) are extracted from the data, followed by an evaluation of various time intervals and channels to ascertain the most effective ones. Subsequently, ABC-SVM is proposed to select the optimal channels and get the detection results. The University of New Mexico (UNM) dataset and University of Iowa (UI) dataset are employed in the paper; the results demonstrate that the average accuracy achieved by the two datasets based on their optimal channels is 99.96% and 93.99%. Overall, we use about half of raw data to get better detection results and improve subject comfort significantly.
AbstractList Parkinson’s disease (PD) poses a detection challenge due to its concealed nature and the long-term data collection for subjects. This study proposes a PD detection method based on the artificial bee colony and support vector machine (ABC-SVM), which can select the optimal channels with short-time resting-state electroencephalography (EEG) data. Power spectral density (PSD) and differential entropy (DE) are extracted from the data, followed by an evaluation of various time intervals and channels to ascertain the most effective ones. Subsequently, ABC-SVM is proposed to select the optimal channels and get the detection results. The University of New Mexico (UNM) dataset and University of Iowa (UI) dataset are employed in the paper; the results demonstrate that the average accuracy achieved by the two datasets based on their optimal channels is 99.96% and 93.99%. Overall, we use about half of raw data to get better detection results and improve subject comfort significantly.
ArticleNumber 977
Author She, Yichong
Xu, Kemeng
Zhang, Lu
Zhang, Xiaodan
Zhao, Rui
Yang, Yuyu
Author_xml – sequence: 1
  givenname: Xiaodan
  surname: Zhang
  fullname: Zhang, Xiaodan
– sequence: 2
  givenname: Lu
  surname: Zhang
  fullname: Zhang, Lu
– sequence: 3
  givenname: Kemeng
  surname: Xu
  fullname: Xu, Kemeng
– sequence: 4
  givenname: Yuyu
  surname: Yang
  fullname: Yang, Yuyu
– sequence: 5
  givenname: Rui
  surname: Zhao
  fullname: Zhao, Rui
– sequence: 6
  givenname: Yichong
  surname: She
  fullname: She, Yichong
BookMark eNpNkM1OAjEUhRuDiYC-gKsmrqv9m-nMEgmiCQYTf7ZNp3NHBrEDbUlw5zP5SD6JVVi4uic355578g1Qz3UOEDpn9JJRqq4CY5wrQnlGqJI5I7sj1GeZEoTKQvb-6RM0CGFJKZVCiT7azNexfTcrbBfGOVgFHGAFNradw5UJUOMkRtdj8vhyj1uHH4x_a13o3PfnV8B1GyCZcA3xcLMNrXvFYdH5SFIwYA8h_q2iiYAnk-kpOm7MKsDZYQ7R883kaXxLZvPp3Xg0I5bzIhJBc1kqBnlmC2qN5ZmsbWN4URWlZJXJa07LxgrJgPPaSGVlrqqaCwsNSNaIIbrY5659t9mmFnrZbb1LL7XgLM8ykZUiufjeZX0XgodGr33i4T80o_oXrd6j1Qmt_kOrd-IHi09v_g
Cites_doi 10.3233/jpd-212787
10.1145/3397161
10.3389/fneur.2022.758452
10.1007/s10548-025-01106-1
10.1093/brain/awz141
10.3389/fpsyt.2022.830819
10.3390/diagnostics13101769
10.1007/s42835-021-00727-3
10.1016/j.parkreldis.2013.09.025
10.1111/cns.14149
10.1007/s12031-025-02329-4
10.1007/s42235-023-00478-z
10.1016/j.parkreldis.2021.04.023
10.3390/en13102531
10.1016/j.bspc.2024.107142
10.1016/j.neurobiolaging.2015.01.016
10.1016/j.bspc.2017.06.015
10.1109/JBHI.2023.3235040
10.3389/fneur.2023.1273458
10.1016/j.bspc.2023.105872
10.1080/13682199.2023.2200060
10.1016/j.parkreldis.2022.01.011
10.1016/j.clinph.2021.06.002
10.3389/fneur.2023.972210
10.1002/mdc3.13597
10.1155/2021/6693206
10.3233/jpd-201973
10.1007/s40120-019-00169-0
10.3389/fneur.2023.1259772
10.1109/ACCESS.2024.3520482
10.1007/s11250-023-03501-x
10.1109/EMBC40787.2023.10340700
10.1016/j.clinph.2023.03.363
10.31128/AJGP-07-21-6093
10.1016/j.bspc.2022.104116
10.3390/diagnostics13172816
10.1016/j.eswa.2025.126503
10.1109/tbme.2023.3250355
10.1007/s10072-021-05381-1
10.3390/diagnostics12051033
10.3390/s24144634
10.3389/fneur.2023.1101650
10.3389/fnagi.2022.973310
10.1016/j.neunet.2020.06.018
10.1016/j.parkreldis.2020.08.001
ContentType Journal Article
Copyright Copyright Springer Nature B.V. 2025
Copyright_xml – notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1007/s11227-025-07461-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
ExternalDocumentID 10_1007_s11227_025_07461_x
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CITATION
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAP
EBLON
EBS
EIOEI
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCJ
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
ZMTXR
~EX
ABRTQ
ACUHS
ID FETCH-LOGICAL-c228t-3064971e65c80cac254dcfa28b8941ba6d209fc341e22da47c467bd23cefe41f3
ISSN 1573-0484
0920-8542
IngestDate Fri Jul 25 09:29:01 EDT 2025
Thu Jul 03 08:32:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c228t-3064971e65c80cac254dcfa28b8941ba6d209fc341e22da47c467bd23cefe41f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3216553593
PQPubID 2043774
ParticipantIDs proquest_journals_3216553593
crossref_primary_10_1007_s11227_025_07461_x
PublicationCentury 2000
PublicationDate 2025-06-06
PublicationDateYYYYMMDD 2025-06-06
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-06
  day: 06
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Journal of supercomputing
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References HL Li (7461_CR38) 2021; 21
I Suuronen (7461_CR44) 2023; 27
J Michels (7461_CR6) 2022; 12
JM Janssen Daalen (7461_CR15) 2023; 10
S Yao (7461_CR18) 2022; 13
MS d’Alencar (7461_CR7) 2023; 14
7461_CR28
F Han (7461_CR39) 2020; 13
L Molcho (7461_CR19) 2023; 14
MF Karakas (7461_CR24) 2023; 13
Z Chen (7461_CR14) 2023; 29
G Archana (7461_CR33) 2025; 13
FR Gao (7461_CR41) 2021
M Elkharadly (7461_CR35) 2025; 100
U Smailovic (7461_CR16) 2019; 8
F Chen (7461_CR2) 2022; 14
V Carroll (7461_CR9) 2021; 50
V Kaasinen (7461_CR13) 2015; 36
J Li (7461_CR25) 2024; 91
S Avvaru (7461_CR23) 2023; 70
SAA Shah (7461_CR43) 2020; 130
M Aljalal (7461_CR22) 2022; 12
HY Wu (7461_CR45) 2024; 24
S-B Lee (7461_CR21) 2022; 95
AM Ali (7461_CR31) 2023; 13
AM Lavezzi (7461_CR1) 2023; 14
K Szewczyk-Krolikowski (7461_CR12) 2014; 20
Y Wang (7461_CR37) 2017; 38
M Bange (7461_CR5) 2021; 132
TDC Costa (7461_CR17) 2022; 13
RX Luo (7461_CR40) 2021; 16
HAG Teive (7461_CR4) 2021; 42
M Javidnia (7461_CR8) 2020; 10
MF Anjum (7461_CR20) 2020; 79
R D’Alessandro (7461_CR10) 2021; 87
P Chawla (7461_CR29) 2023; 79
NG Pozzi (7461_CR3) 2019; 142
F Iqbal (7461_CR42) 2023; 55
MK Dharani (7461_CR32) 2024; 72
T Dokeroglu (7461_CR36) 2025; 270
LY Feng (7461_CR34) 2024; 21
KG Heimrich (7461_CR11) 2023; 14
S Jain (7461_CR30) 2025; 38
A Jaramillo-Jimenez (7461_CR27) 2023; 151
N Shirisha (7461_CR26) 2025; 75
References_xml – volume: 12
  start-page: 905
  issue: 3
  year: 2022
  ident: 7461_CR6
  publication-title: J Parkinsons Disease
  doi: 10.3233/jpd-212787
– volume: 21
  start-page: 1
  issue: 3
  year: 2021
  ident: 7461_CR38
  publication-title: ACM Trans Internet Technol
  doi: 10.1145/3397161
– volume: 13
  year: 2022
  ident: 7461_CR17
  publication-title: Front Neurol
  doi: 10.3389/fneur.2022.758452
– volume: 38
  start-page: 33
  issue: 3
  year: 2025
  ident: 7461_CR30
  publication-title: Brain Topogr
  doi: 10.1007/s10548-025-01106-1
– volume: 142
  start-page: 2037
  year: 2019
  ident: 7461_CR3
  publication-title: Brain
  doi: 10.1093/brain/awz141
– volume: 13
  year: 2022
  ident: 7461_CR18
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2022.830819
– volume: 13
  start-page: 1769
  issue: 10
  year: 2023
  ident: 7461_CR24
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13101769
– volume: 16
  start-page: 2191
  issue: 4
  year: 2021
  ident: 7461_CR40
  publication-title: J Electr Eng Technol
  doi: 10.1007/s42835-021-00727-3
– volume: 20
  start-page: 99
  issue: 1
  year: 2014
  ident: 7461_CR12
  publication-title: Parkinsonism Relat Disord
  doi: 10.1016/j.parkreldis.2013.09.025
– volume: 29
  start-page: 1907
  issue: 7
  year: 2023
  ident: 7461_CR14
  publication-title: Cns Neurosci Therapeutics
  doi: 10.1111/cns.14149
– volume: 75
  start-page: 36
  issue: 1
  year: 2025
  ident: 7461_CR26
  publication-title: J Mol Neurosci
  doi: 10.1007/s12031-025-02329-4
– volume: 21
  start-page: 1003
  issue: 2
  year: 2024
  ident: 7461_CR34
  publication-title: J Bionic Eng
  doi: 10.1007/s42235-023-00478-z
– volume: 87
  start-page: 137
  year: 2021
  ident: 7461_CR10
  publication-title: Parkinsonism Relat Disord
  doi: 10.1016/j.parkreldis.2021.04.023
– volume: 13
  start-page: 2531
  issue: 10
  year: 2020
  ident: 7461_CR39
  publication-title: Energies
  doi: 10.3390/en13102531
– volume: 100
  year: 2025
  ident: 7461_CR35
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2024.107142
– volume: 36
  start-page: 1757
  issue: 4
  year: 2015
  ident: 7461_CR13
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2015.01.016
– volume: 38
  start-page: 400
  year: 2017
  ident: 7461_CR37
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2017.06.015
– volume: 27
  start-page: 3740
  issue: 8
  year: 2023
  ident: 7461_CR44
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2023.3235040
– volume: 14
  start-page: 1273458
  year: 2023
  ident: 7461_CR19
  publication-title: Front Neurol
  doi: 10.3389/fneur.2023.1273458
– volume: 91
  year: 2024
  ident: 7461_CR25
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.105872
– volume: 72
  start-page: 167
  issue: 2
  year: 2024
  ident: 7461_CR32
  publication-title: Imaging Sci J
  doi: 10.1080/13682199.2023.2200060
– volume: 95
  start-page: 77
  year: 2022
  ident: 7461_CR21
  publication-title: Parkinsonism Relat Disord
  doi: 10.1016/j.parkreldis.2022.01.011
– volume: 132
  start-page: 2255
  issue: 9
  year: 2021
  ident: 7461_CR5
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2021.06.002
– volume: 14
  year: 2023
  ident: 7461_CR11
  publication-title: Front Neurol
  doi: 10.3389/fneur.2023.972210
– volume: 10
  start-page: 151
  issue: 1
  year: 2023
  ident: 7461_CR15
  publication-title: Mov Disord Clin Pract
  doi: 10.1002/mdc3.13597
– year: 2021
  ident: 7461_CR41
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2021/6693206
– volume: 10
  start-page: 1239
  issue: 3
  year: 2020
  ident: 7461_CR8
  publication-title: J Parkinsons Disease
  doi: 10.3233/jpd-201973
– volume: 8
  start-page: 37
  issue: SUPPL 2
  year: 2019
  ident: 7461_CR16
  publication-title: Neurol Ther
  doi: 10.1007/s40120-019-00169-0
– volume: 14
  start-page: 1259772
  year: 2023
  ident: 7461_CR1
  publication-title: Front Neurol
  doi: 10.3389/fneur.2023.1259772
– volume: 13
  start-page: 2546
  year: 2025
  ident: 7461_CR33
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3520482
– volume: 55
  start-page: 86
  issue: 2
  year: 2023
  ident: 7461_CR42
  publication-title: Trop Anim Health Prod
  doi: 10.1007/s11250-023-03501-x
– ident: 7461_CR28
  doi: 10.1109/EMBC40787.2023.10340700
– volume: 151
  start-page: 28
  year: 2023
  ident: 7461_CR27
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2023.03.363
– volume: 50
  start-page: 812
  issue: 11
  year: 2021
  ident: 7461_CR9
  publication-title: Aust J Gen Pract
  doi: 10.31128/AJGP-07-21-6093
– volume: 79
  year: 2023
  ident: 7461_CR29
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.104116
– volume: 13
  start-page: 2816
  issue: 17
  year: 2023
  ident: 7461_CR31
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13172816
– volume: 270
  year: 2025
  ident: 7461_CR36
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2025.126503
– volume: 70
  start-page: 2475
  issue: 8
  year: 2023
  ident: 7461_CR23
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/tbme.2023.3250355
– volume: 42
  start-page: 5413
  issue: 12
  year: 2021
  ident: 7461_CR4
  publication-title: Neurol Sci
  doi: 10.1007/s10072-021-05381-1
– volume: 12
  start-page: 1033
  issue: 5
  year: 2022
  ident: 7461_CR22
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12051033
– volume: 24
  start-page: 4634
  issue: 14
  year: 2024
  ident: 7461_CR45
  publication-title: SENSORS
  doi: 10.3390/s24144634
– volume: 14
  start-page: 1101650
  year: 2023
  ident: 7461_CR7
  publication-title: Front Neurol
  doi: 10.3389/fneur.2023.1101650
– volume: 14
  year: 2022
  ident: 7461_CR2
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2022.973310
– volume: 130
  start-page: 75
  year: 2020
  ident: 7461_CR43
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2020.06.018
– volume: 79
  start-page: 79
  year: 2020
  ident: 7461_CR20
  publication-title: Parkinsonism Relat Disord
  doi: 10.1016/j.parkreldis.2020.08.001
SSID ssj0004373
Score 2.3759072
Snippet Parkinson’s disease (PD) poses a detection challenge due to its concealed nature and the long-term data collection for subjects. This study proposes a PD...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Channels
Data collection
Datasets
Parkinson's disease
Power spectral density
Support vector machines
Swarm intelligence
Title Optimal channels selection based on ABC-SVM in Parkinson′s disease detection using short-time resting state EEG
URI https://www.proquest.com/docview/3216553593
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZW7YULb0ShIB-4RUaJ4zjOcbfaUiFaDrRoe4ocP9Qeui1NIgEnjvwefhK_hLHjPFotEuUSRVYyiTJfZsbj-TwIvdEilpQXCaFSM8KkMKTiTBObQ2xNU8uFdiu6h0f84IS9X2Wr2eznpGqpbaq36vtGXsn_aBXGQK-OJXsHzQ5CYQDOQb9wBA3D8Z90_BH-9wu3wceZdOUqdVT7rjZOo847abcSMF_skU-fD11ewzGcO7JXV-GwoHW_QBNp04Q7W589qM8gLieu83zkuneErENjouXy3TSgHallPqit2ytzrXyniN4nTrPSq3N5qUc8DuMf2n5o1XZsoQsz3n4arjptv7XTLAXNfDUVnxrWPCVxt28p-J0NY8Eadw1cAurERiMfB9JzQmlO_LNyxhPydXRp_TL-LU831B-OezU7GSXIKL0MNxvZpjDhAIu5Pd9fLI5Gjm3qqxWGdw4ErI6GeftNbgY5N328D1yOH6L7QTl43sHnEZqZ9WP0oO_mgYNxf4K-BDThHk14QBP2aMJwEtCEz9d4QNPvH79qHHCEBxxhjyM84ggHHGGPIww4eopO9pfHewckNOQgilLREDdbLfLE8EyJWElFM6aVlVRUomBJJbmmcWEVBEaGUi1ZrsANV5qmyljDEps-Q1vry7V5jnDBFUtErqyWFmJiXeRWG11UKhHSVlrtoKj_guVVt-9K-Xet7aDd_iOX4f-sy5QmPMvSrEhf3EnYS3RvRPAu2mquW_MKIs-meh1A8QfnwoOC
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+channels+selection+based+on+ABC-SVM+in+Parkinson%E2%80%B2s+disease+detection+using+short-time+resting+state+EEG&rft.jtitle=The+Journal+of+supercomputing&rft.au=Zhang%2C+Xiaodan&rft.au=Zhang%2C+Lu&rft.au=Xu%2C+Kemeng&rft.au=Yang%2C+Yuyu&rft.date=2025-06-06&rft.issn=1573-0484&rft.eissn=1573-0484&rft.volume=81&rft.issue=8&rft_id=info:doi/10.1007%2Fs11227-025-07461-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_025_07461_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-0484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-0484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-0484&client=summon