Optimal channels selection based on ABC-SVM in Parkinson′s disease detection using short-time resting state EEG
Parkinson’s disease (PD) poses a detection challenge due to its concealed nature and the long-term data collection for subjects. This study proposes a PD detection method based on the artificial bee colony and support vector machine (ABC-SVM), which can select the optimal channels with short-time re...
Saved in:
Published in | The Journal of supercomputing Vol. 81; no. 8 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer Nature B.V
06.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Parkinson’s disease (PD) poses a detection challenge due to its concealed nature and the long-term data collection for subjects. This study proposes a PD detection method based on the artificial bee colony and support vector machine (ABC-SVM), which can select the optimal channels with short-time resting-state electroencephalography (EEG) data. Power spectral density (PSD) and differential entropy (DE) are extracted from the data, followed by an evaluation of various time intervals and channels to ascertain the most effective ones. Subsequently, ABC-SVM is proposed to select the optimal channels and get the detection results. The University of New Mexico (UNM) dataset and University of Iowa (UI) dataset are employed in the paper; the results demonstrate that the average accuracy achieved by the two datasets based on their optimal channels is 99.96% and 93.99%. Overall, we use about half of raw data to get better detection results and improve subject comfort significantly. |
---|---|
AbstractList | Parkinson’s disease (PD) poses a detection challenge due to its concealed nature and the long-term data collection for subjects. This study proposes a PD detection method based on the artificial bee colony and support vector machine (ABC-SVM), which can select the optimal channels with short-time resting-state electroencephalography (EEG) data. Power spectral density (PSD) and differential entropy (DE) are extracted from the data, followed by an evaluation of various time intervals and channels to ascertain the most effective ones. Subsequently, ABC-SVM is proposed to select the optimal channels and get the detection results. The University of New Mexico (UNM) dataset and University of Iowa (UI) dataset are employed in the paper; the results demonstrate that the average accuracy achieved by the two datasets based on their optimal channels is 99.96% and 93.99%. Overall, we use about half of raw data to get better detection results and improve subject comfort significantly. |
ArticleNumber | 977 |
Author | She, Yichong Xu, Kemeng Zhang, Lu Zhang, Xiaodan Zhao, Rui Yang, Yuyu |
Author_xml | – sequence: 1 givenname: Xiaodan surname: Zhang fullname: Zhang, Xiaodan – sequence: 2 givenname: Lu surname: Zhang fullname: Zhang, Lu – sequence: 3 givenname: Kemeng surname: Xu fullname: Xu, Kemeng – sequence: 4 givenname: Yuyu surname: Yang fullname: Yang, Yuyu – sequence: 5 givenname: Rui surname: Zhao fullname: Zhao, Rui – sequence: 6 givenname: Yichong surname: She fullname: She, Yichong |
BookMark | eNpNkM1OAjEUhRuDiYC-gKsmrqv9m-nMEgmiCQYTf7ZNp3NHBrEDbUlw5zP5SD6JVVi4uic355578g1Qz3UOEDpn9JJRqq4CY5wrQnlGqJI5I7sj1GeZEoTKQvb-6RM0CGFJKZVCiT7azNexfTcrbBfGOVgFHGAFNradw5UJUOMkRtdj8vhyj1uHH4x_a13o3PfnV8B1GyCZcA3xcLMNrXvFYdH5SFIwYA8h_q2iiYAnk-kpOm7MKsDZYQ7R883kaXxLZvPp3Xg0I5bzIhJBc1kqBnlmC2qN5ZmsbWN4URWlZJXJa07LxgrJgPPaSGVlrqqaCwsNSNaIIbrY5659t9mmFnrZbb1LL7XgLM8ykZUiufjeZX0XgodGr33i4T80o_oXrd6j1Qmt_kOrd-IHi09v_g |
Cites_doi | 10.3233/jpd-212787 10.1145/3397161 10.3389/fneur.2022.758452 10.1007/s10548-025-01106-1 10.1093/brain/awz141 10.3389/fpsyt.2022.830819 10.3390/diagnostics13101769 10.1007/s42835-021-00727-3 10.1016/j.parkreldis.2013.09.025 10.1111/cns.14149 10.1007/s12031-025-02329-4 10.1007/s42235-023-00478-z 10.1016/j.parkreldis.2021.04.023 10.3390/en13102531 10.1016/j.bspc.2024.107142 10.1016/j.neurobiolaging.2015.01.016 10.1016/j.bspc.2017.06.015 10.1109/JBHI.2023.3235040 10.3389/fneur.2023.1273458 10.1016/j.bspc.2023.105872 10.1080/13682199.2023.2200060 10.1016/j.parkreldis.2022.01.011 10.1016/j.clinph.2021.06.002 10.3389/fneur.2023.972210 10.1002/mdc3.13597 10.1155/2021/6693206 10.3233/jpd-201973 10.1007/s40120-019-00169-0 10.3389/fneur.2023.1259772 10.1109/ACCESS.2024.3520482 10.1007/s11250-023-03501-x 10.1109/EMBC40787.2023.10340700 10.1016/j.clinph.2023.03.363 10.31128/AJGP-07-21-6093 10.1016/j.bspc.2022.104116 10.3390/diagnostics13172816 10.1016/j.eswa.2025.126503 10.1109/tbme.2023.3250355 10.1007/s10072-021-05381-1 10.3390/diagnostics12051033 10.3390/s24144634 10.3389/fneur.2023.1101650 10.3389/fnagi.2022.973310 10.1016/j.neunet.2020.06.018 10.1016/j.parkreldis.2020.08.001 |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11227-025-07461-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-0484 |
ExternalDocumentID | 10_1007_s11227_025_07461_x |
GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADIMF ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CITATION CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAP EBLON EBS EIOEI ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R89 R9I RHV ROL RPX RSV S16 S1Z S27 S3B SAP SCJ SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WH7 WK8 YLTOR Z45 ZMTXR ~EX ABRTQ ACUHS |
ID | FETCH-LOGICAL-c228t-3064971e65c80cac254dcfa28b8941ba6d209fc341e22da47c467bd23cefe41f3 |
ISSN | 1573-0484 0920-8542 |
IngestDate | Fri Jul 25 09:29:01 EDT 2025 Thu Jul 03 08:32:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c228t-3064971e65c80cac254dcfa28b8941ba6d209fc341e22da47c467bd23cefe41f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3216553593 |
PQPubID | 2043774 |
ParticipantIDs | proquest_journals_3216553593 crossref_primary_10_1007_s11227_025_07461_x |
PublicationCentury | 2000 |
PublicationDate | 2025-06-06 |
PublicationDateYYYYMMDD | 2025-06-06 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Journal of supercomputing |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | HL Li (7461_CR38) 2021; 21 I Suuronen (7461_CR44) 2023; 27 J Michels (7461_CR6) 2022; 12 JM Janssen Daalen (7461_CR15) 2023; 10 S Yao (7461_CR18) 2022; 13 MS d’Alencar (7461_CR7) 2023; 14 7461_CR28 F Han (7461_CR39) 2020; 13 L Molcho (7461_CR19) 2023; 14 MF Karakas (7461_CR24) 2023; 13 Z Chen (7461_CR14) 2023; 29 G Archana (7461_CR33) 2025; 13 FR Gao (7461_CR41) 2021 M Elkharadly (7461_CR35) 2025; 100 U Smailovic (7461_CR16) 2019; 8 F Chen (7461_CR2) 2022; 14 V Carroll (7461_CR9) 2021; 50 V Kaasinen (7461_CR13) 2015; 36 J Li (7461_CR25) 2024; 91 S Avvaru (7461_CR23) 2023; 70 SAA Shah (7461_CR43) 2020; 130 M Aljalal (7461_CR22) 2022; 12 HY Wu (7461_CR45) 2024; 24 S-B Lee (7461_CR21) 2022; 95 AM Ali (7461_CR31) 2023; 13 AM Lavezzi (7461_CR1) 2023; 14 K Szewczyk-Krolikowski (7461_CR12) 2014; 20 Y Wang (7461_CR37) 2017; 38 M Bange (7461_CR5) 2021; 132 TDC Costa (7461_CR17) 2022; 13 RX Luo (7461_CR40) 2021; 16 HAG Teive (7461_CR4) 2021; 42 M Javidnia (7461_CR8) 2020; 10 MF Anjum (7461_CR20) 2020; 79 R D’Alessandro (7461_CR10) 2021; 87 P Chawla (7461_CR29) 2023; 79 NG Pozzi (7461_CR3) 2019; 142 F Iqbal (7461_CR42) 2023; 55 MK Dharani (7461_CR32) 2024; 72 T Dokeroglu (7461_CR36) 2025; 270 LY Feng (7461_CR34) 2024; 21 KG Heimrich (7461_CR11) 2023; 14 S Jain (7461_CR30) 2025; 38 A Jaramillo-Jimenez (7461_CR27) 2023; 151 N Shirisha (7461_CR26) 2025; 75 |
References_xml | – volume: 12 start-page: 905 issue: 3 year: 2022 ident: 7461_CR6 publication-title: J Parkinsons Disease doi: 10.3233/jpd-212787 – volume: 21 start-page: 1 issue: 3 year: 2021 ident: 7461_CR38 publication-title: ACM Trans Internet Technol doi: 10.1145/3397161 – volume: 13 year: 2022 ident: 7461_CR17 publication-title: Front Neurol doi: 10.3389/fneur.2022.758452 – volume: 38 start-page: 33 issue: 3 year: 2025 ident: 7461_CR30 publication-title: Brain Topogr doi: 10.1007/s10548-025-01106-1 – volume: 142 start-page: 2037 year: 2019 ident: 7461_CR3 publication-title: Brain doi: 10.1093/brain/awz141 – volume: 13 year: 2022 ident: 7461_CR18 publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2022.830819 – volume: 13 start-page: 1769 issue: 10 year: 2023 ident: 7461_CR24 publication-title: Diagnostics doi: 10.3390/diagnostics13101769 – volume: 16 start-page: 2191 issue: 4 year: 2021 ident: 7461_CR40 publication-title: J Electr Eng Technol doi: 10.1007/s42835-021-00727-3 – volume: 20 start-page: 99 issue: 1 year: 2014 ident: 7461_CR12 publication-title: Parkinsonism Relat Disord doi: 10.1016/j.parkreldis.2013.09.025 – volume: 29 start-page: 1907 issue: 7 year: 2023 ident: 7461_CR14 publication-title: Cns Neurosci Therapeutics doi: 10.1111/cns.14149 – volume: 75 start-page: 36 issue: 1 year: 2025 ident: 7461_CR26 publication-title: J Mol Neurosci doi: 10.1007/s12031-025-02329-4 – volume: 21 start-page: 1003 issue: 2 year: 2024 ident: 7461_CR34 publication-title: J Bionic Eng doi: 10.1007/s42235-023-00478-z – volume: 87 start-page: 137 year: 2021 ident: 7461_CR10 publication-title: Parkinsonism Relat Disord doi: 10.1016/j.parkreldis.2021.04.023 – volume: 13 start-page: 2531 issue: 10 year: 2020 ident: 7461_CR39 publication-title: Energies doi: 10.3390/en13102531 – volume: 100 year: 2025 ident: 7461_CR35 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2024.107142 – volume: 36 start-page: 1757 issue: 4 year: 2015 ident: 7461_CR13 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2015.01.016 – volume: 38 start-page: 400 year: 2017 ident: 7461_CR37 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2017.06.015 – volume: 27 start-page: 3740 issue: 8 year: 2023 ident: 7461_CR44 publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2023.3235040 – volume: 14 start-page: 1273458 year: 2023 ident: 7461_CR19 publication-title: Front Neurol doi: 10.3389/fneur.2023.1273458 – volume: 91 year: 2024 ident: 7461_CR25 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2023.105872 – volume: 72 start-page: 167 issue: 2 year: 2024 ident: 7461_CR32 publication-title: Imaging Sci J doi: 10.1080/13682199.2023.2200060 – volume: 95 start-page: 77 year: 2022 ident: 7461_CR21 publication-title: Parkinsonism Relat Disord doi: 10.1016/j.parkreldis.2022.01.011 – volume: 132 start-page: 2255 issue: 9 year: 2021 ident: 7461_CR5 publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2021.06.002 – volume: 14 year: 2023 ident: 7461_CR11 publication-title: Front Neurol doi: 10.3389/fneur.2023.972210 – volume: 10 start-page: 151 issue: 1 year: 2023 ident: 7461_CR15 publication-title: Mov Disord Clin Pract doi: 10.1002/mdc3.13597 – year: 2021 ident: 7461_CR41 publication-title: Comput Intell Neurosci doi: 10.1155/2021/6693206 – volume: 10 start-page: 1239 issue: 3 year: 2020 ident: 7461_CR8 publication-title: J Parkinsons Disease doi: 10.3233/jpd-201973 – volume: 8 start-page: 37 issue: SUPPL 2 year: 2019 ident: 7461_CR16 publication-title: Neurol Ther doi: 10.1007/s40120-019-00169-0 – volume: 14 start-page: 1259772 year: 2023 ident: 7461_CR1 publication-title: Front Neurol doi: 10.3389/fneur.2023.1259772 – volume: 13 start-page: 2546 year: 2025 ident: 7461_CR33 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3520482 – volume: 55 start-page: 86 issue: 2 year: 2023 ident: 7461_CR42 publication-title: Trop Anim Health Prod doi: 10.1007/s11250-023-03501-x – ident: 7461_CR28 doi: 10.1109/EMBC40787.2023.10340700 – volume: 151 start-page: 28 year: 2023 ident: 7461_CR27 publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2023.03.363 – volume: 50 start-page: 812 issue: 11 year: 2021 ident: 7461_CR9 publication-title: Aust J Gen Pract doi: 10.31128/AJGP-07-21-6093 – volume: 79 year: 2023 ident: 7461_CR29 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.104116 – volume: 13 start-page: 2816 issue: 17 year: 2023 ident: 7461_CR31 publication-title: Diagnostics doi: 10.3390/diagnostics13172816 – volume: 270 year: 2025 ident: 7461_CR36 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2025.126503 – volume: 70 start-page: 2475 issue: 8 year: 2023 ident: 7461_CR23 publication-title: IEEE Trans Biomed Eng doi: 10.1109/tbme.2023.3250355 – volume: 42 start-page: 5413 issue: 12 year: 2021 ident: 7461_CR4 publication-title: Neurol Sci doi: 10.1007/s10072-021-05381-1 – volume: 12 start-page: 1033 issue: 5 year: 2022 ident: 7461_CR22 publication-title: Diagnostics doi: 10.3390/diagnostics12051033 – volume: 24 start-page: 4634 issue: 14 year: 2024 ident: 7461_CR45 publication-title: SENSORS doi: 10.3390/s24144634 – volume: 14 start-page: 1101650 year: 2023 ident: 7461_CR7 publication-title: Front Neurol doi: 10.3389/fneur.2023.1101650 – volume: 14 year: 2022 ident: 7461_CR2 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2022.973310 – volume: 130 start-page: 75 year: 2020 ident: 7461_CR43 publication-title: Neural Netw doi: 10.1016/j.neunet.2020.06.018 – volume: 79 start-page: 79 year: 2020 ident: 7461_CR20 publication-title: Parkinsonism Relat Disord doi: 10.1016/j.parkreldis.2020.08.001 |
SSID | ssj0004373 |
Score | 2.3759072 |
Snippet | Parkinson’s disease (PD) poses a detection challenge due to its concealed nature and the long-term data collection for subjects. This study proposes a PD... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
SubjectTerms | Channels Data collection Datasets Parkinson's disease Power spectral density Support vector machines Swarm intelligence |
Title | Optimal channels selection based on ABC-SVM in Parkinson′s disease detection using short-time resting state EEG |
URI | https://www.proquest.com/docview/3216553593 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZW7YULb0ShIB-4RUaJ4zjOcbfaUiFaDrRoe4ocP9Qeui1NIgEnjvwefhK_hLHjPFotEuUSRVYyiTJfZsbj-TwIvdEilpQXCaFSM8KkMKTiTBObQ2xNU8uFdiu6h0f84IS9X2Wr2eznpGqpbaq36vtGXsn_aBXGQK-OJXsHzQ5CYQDOQb9wBA3D8Z90_BH-9wu3wceZdOUqdVT7rjZOo847abcSMF_skU-fD11ewzGcO7JXV-GwoHW_QBNp04Q7W589qM8gLieu83zkuneErENjouXy3TSgHallPqit2ytzrXyniN4nTrPSq3N5qUc8DuMf2n5o1XZsoQsz3n4arjptv7XTLAXNfDUVnxrWPCVxt28p-J0NY8Eadw1cAurERiMfB9JzQmlO_LNyxhPydXRp_TL-LU831B-OezU7GSXIKL0MNxvZpjDhAIu5Pd9fLI5Gjm3qqxWGdw4ErI6GeftNbgY5N328D1yOH6L7QTl43sHnEZqZ9WP0oO_mgYNxf4K-BDThHk14QBP2aMJwEtCEz9d4QNPvH79qHHCEBxxhjyM84ggHHGGPIww4eopO9pfHewckNOQgilLREDdbLfLE8EyJWElFM6aVlVRUomBJJbmmcWEVBEaGUi1ZrsANV5qmyljDEps-Q1vry7V5jnDBFUtErqyWFmJiXeRWG11UKhHSVlrtoKj_guVVt-9K-Xet7aDd_iOX4f-sy5QmPMvSrEhf3EnYS3RvRPAu2mquW_MKIs-meh1A8QfnwoOC |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+channels+selection+based+on+ABC-SVM+in+Parkinson%E2%80%B2s+disease+detection+using+short-time+resting+state+EEG&rft.jtitle=The+Journal+of+supercomputing&rft.au=Zhang%2C+Xiaodan&rft.au=Zhang%2C+Lu&rft.au=Xu%2C+Kemeng&rft.au=Yang%2C+Yuyu&rft.date=2025-06-06&rft.issn=1573-0484&rft.eissn=1573-0484&rft.volume=81&rft.issue=8&rft_id=info:doi/10.1007%2Fs11227-025-07461-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_025_07461_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-0484&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-0484&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-0484&client=summon |