Sterically Shielded Heptamethine Cyanine Dyes for Bioconjugation and High Performance Near‐Infrared Fluorescence Imaging
The near‐infrared window of fluorescent heptamethine cyanine dyes greatly facilitates biological imaging because there is deep penetration of the light and negligible background fluorescence. However, dye instability, aggregation, and poor pharmacokinetics are current drawbacks that limit performanc...
Saved in:
Published in | Angewandte Chemie Vol. 132; no. 29; pp. 12252 - 12259 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
13.07.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0044-8249 1521-3757 |
DOI | 10.1002/ange.202004449 |
Cover
Loading…
Abstract | The near‐infrared window of fluorescent heptamethine cyanine dyes greatly facilitates biological imaging because there is deep penetration of the light and negligible background fluorescence. However, dye instability, aggregation, and poor pharmacokinetics are current drawbacks that limit performance and the scope of possible applications. All these limitations are simultaneously overcome with a new molecular design strategy that produces a charge balanced and sterically shielded fluorochrome. The key design feature is a meso‐aryl group that simultaneously projects two shielding arms directly over each face of a linear heptamethine polyene. Cell and mouse imaging experiments compared a shielded heptamethine cyanine dye (and several peptide and antibody bioconjugates) to benchmark heptamethine dyes and found that the shielded systems possess an unsurpassed combination of photophysical, physiochemical, and biodistribution properties that greatly enhance bioimaging performance.
It's a bird! It's a plane! Just like a superhero, an ultrastable shielded heptamethine cyanine dye uses its two strong arms to ward off self‐aggregation and non‐specific biological interactions. Yet the arms are short enough to allow dye‐labeled bioconjugates to selectively target cell receptors for high‐contrast and photon‐intense microscopy or tumor imaging in living subjects. |
---|---|
AbstractList | The near‐infrared window of fluorescent heptamethine cyanine dyes greatly facilitates biological imaging because there is deep penetration of the light and negligible background fluorescence. However, dye instability, aggregation, and poor pharmacokinetics are current drawbacks that limit performance and the scope of possible applications. All these limitations are simultaneously overcome with a new molecular design strategy that produces a charge balanced and sterically shielded fluorochrome. The key design feature is a meso‐aryl group that simultaneously projects two shielding arms directly over each face of a linear heptamethine polyene. Cell and mouse imaging experiments compared a shielded heptamethine cyanine dye (and several peptide and antibody bioconjugates) to benchmark heptamethine dyes and found that the shielded systems possess an unsurpassed combination of photophysical, physiochemical, and biodistribution properties that greatly enhance bioimaging performance. The near‐infrared window of fluorescent heptamethine cyanine dyes greatly facilitates biological imaging because there is deep penetration of the light and negligible background fluorescence. However, dye instability, aggregation, and poor pharmacokinetics are current drawbacks that limit performance and the scope of possible applications. All these limitations are simultaneously overcome with a new molecular design strategy that produces a charge balanced and sterically shielded fluorochrome. The key design feature is a meso ‐aryl group that simultaneously projects two shielding arms directly over each face of a linear heptamethine polyene. Cell and mouse imaging experiments compared a shielded heptamethine cyanine dye (and several peptide and antibody bioconjugates) to benchmark heptamethine dyes and found that the shielded systems possess an unsurpassed combination of photophysical, physiochemical, and biodistribution properties that greatly enhance bioimaging performance. The near‐infrared window of fluorescent heptamethine cyanine dyes greatly facilitates biological imaging because there is deep penetration of the light and negligible background fluorescence. However, dye instability, aggregation, and poor pharmacokinetics are current drawbacks that limit performance and the scope of possible applications. All these limitations are simultaneously overcome with a new molecular design strategy that produces a charge balanced and sterically shielded fluorochrome. The key design feature is a meso‐aryl group that simultaneously projects two shielding arms directly over each face of a linear heptamethine polyene. Cell and mouse imaging experiments compared a shielded heptamethine cyanine dye (and several peptide and antibody bioconjugates) to benchmark heptamethine dyes and found that the shielded systems possess an unsurpassed combination of photophysical, physiochemical, and biodistribution properties that greatly enhance bioimaging performance. It's a bird! It's a plane! Just like a superhero, an ultrastable shielded heptamethine cyanine dye uses its two strong arms to ward off self‐aggregation and non‐specific biological interactions. Yet the arms are short enough to allow dye‐labeled bioconjugates to selectively target cell receptors for high‐contrast and photon‐intense microscopy or tumor imaging in living subjects. |
Author | Smith, Bradley D. Li, Dong‐Hao Schreiber, Cynthia L. |
Author_xml | – sequence: 1 givenname: Dong‐Hao orcidid: 0000-0003-2556-1624 surname: Li fullname: Li, Dong‐Hao organization: University of Notre Dame – sequence: 2 givenname: Cynthia L. orcidid: 0000-0001-9773-3101 surname: Schreiber fullname: Schreiber, Cynthia L. organization: University of Notre Dame – sequence: 3 givenname: Bradley D. orcidid: 0000-0003-4120-3210 surname: Smith fullname: Smith, Bradley D. email: smith.115@nd.edu organization: University of Notre Dame |
BookMark | eNqFkM1Kw0AUhQdRsK1uXQdcp96ZTJrMslb7A6UK1XWYTm7SKelMnaRIXPkIPqNPYmJFQRBXB-4537lwuuTYWIOEXFDoUwB2JU2OfQYMgHMujkiHhoz6QRRGx6TTHv2YcXFKumW5AYABi0SHvCwrdFrJoqi95VpjkWLqTXFXyS1Wa23QG9XStHpTY-ll1nnX2iprNvtcVtoaT5oG0Pnau0fX2FtpFHoLlO799W1mMidd0zgu9tZhqbA1Z1uZa5OfkZNMFiWef2mPPI5vH0ZTf343mY2Gc18xFgufg-Q8EjRI48EqSmmKCpUKgyASgUjlSjXGSmSxkEGUKoBYUAVchZmCTK0yHvTI5aF35-zTHssq2di9M83LhHEGNAAWDppU_5BSzpalwyzZOb2Vrk4oJO2-Sbtv8r1vA_BfgNLV5ySVk7r4GxMH7FkXWP_zJBkuJrc_7AcurZUX |
CitedBy_id | crossref_primary_10_1002_smll_202401905 crossref_primary_10_1002_ange_202008075 crossref_primary_10_1002_anie_202009599 crossref_primary_10_1002_ange_202017349 crossref_primary_10_1002_anie_202201308 crossref_primary_10_1002_anse_202200004 crossref_primary_10_1002_adom_202102514 crossref_primary_10_1002_anie_202017349 crossref_primary_10_3390_bios12070504 crossref_primary_10_1002_adhm_202402311 crossref_primary_10_1002_ange_202201308 crossref_primary_10_1002_asia_202100282 crossref_primary_10_1021_acs_analchem_4c04020 crossref_primary_10_1002_anie_202208574 crossref_primary_10_1002_ange_202208574 crossref_primary_10_1002_adhm_202400791 crossref_primary_10_3390_bios14120612 crossref_primary_10_1002_anie_202008075 crossref_primary_10_1002_ange_202011914 crossref_primary_10_1002_cplu_202100174 crossref_primary_10_1002_ange_202009599 crossref_primary_10_1002_anie_202011914 crossref_primary_10_1002_anie_202211767 crossref_primary_10_1002_ange_202211767 |
Cites_doi | 10.1021/acs.bioconjchem.5b00492 10.1021/acschembio.9b00122 10.1002/chem.201700026 10.1039/b802728e 10.1016/j.bpj.2017.12.011 10.1039/C5OB00788G 10.1021/acs.accounts.6b00239 10.1158/1078-0432.CCR-16-0437 10.1117/1.JBO.19.3.036006 10.1016/j.bmcl.2018.02.040 10.1002/anie.201801226 10.1017/S0033583510000247 10.1039/c0cc02366c 10.1039/C5SC00348B 10.1007/s00259-016-3372-y 10.1002/anie.201102459 10.1002/chem.201605847 10.21037/qims.2019.09.04 10.1021/bc000015m 10.1021/acs.molpharmaceut.6b01091 10.1016/j.bmcl.2017.12.001 10.7150/thno.27995 10.1016/j.dyepig.2016.03.054 10.1021/jacs.7b07272 10.1016/j.dyepig.2018.01.029 10.1021/acs.accounts.9b00221 10.1007/s11307-011-0534-y 10.1021/acs.jmedchem.5b00253 10.1073/pnas.1617990114 10.1021/jacs.9b02537 10.1162/153535002321093963 10.1002/ange.201507868 10.1021/acs.bioconjchem.6b00093 10.1021/acs.chemrev.6b00001 10.1021/acs.bioconjchem.9b00750 10.1007/s11307-015-0870-4 10.1002/anie.201510620 10.1039/C4RA11225C 10.1002/chem.201604473 10.1002/ejoc.201900715 10.1021/bi2000966 10.1002/cmmi.1484 10.1021/acs.accounts.8b00384 10.1039/C5SC02396C 10.1162/15353500200505127 10.1002/anie.201507868 10.7150/thno.33595 10.18632/oncotarget.15486 10.1039/C4CC08814J 10.1117/1.JBO.21.8.080901 10.1038/nbt.2468 10.3389/fphar.2019.00510 10.1039/C8MD00190A 10.1021/jo061284u 10.1021/jo00043a009 10.1002/adma.201802546 10.1021/acs.bioconjchem.5b00097 10.1039/C8SC00900G 10.1002/ange.201510620 10.1021/acs.molpharmaceut.6b01053 10.1002/chem.201801825 10.1117/1.JBO.24.6.066012 10.1021/acs.molpharmaceut.5b00472 10.1117/1.JBO.21.5.050901 10.1177/002215540305101214 10.1021/acs.bioconjchem.9b00707 10.1002/ange.201801226 10.1021/ja500962u 10.1016/S1470-2045(19)30317-1 10.1002/ange.201102459 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/ange.202004449 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3757 |
EndPage | 12259 |
ExternalDocumentID | 10_1002_ange_202004449 ANGE202004449 |
Genre | article |
GrantInformation_xml | – fundername: National Institute of General Medical Sciences funderid: R01GM059078; T32GM075762; R35GM136212 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCUC ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K RGC ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 UPT V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c2289-40a447913d86b7d1dececc5337939dabc3d8b9f89a37dc00891c04c5fc0fcbf43 |
IEDL.DBID | DR2 |
ISSN | 0044-8249 |
IngestDate | Fri Jul 25 10:39:36 EDT 2025 Thu Apr 24 23:02:56 EDT 2025 Tue Jul 01 01:48:35 EDT 2025 Wed Jan 22 16:34:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2289-40a447913d86b7d1dececc5337939dabc3d8b9f89a37dc00891c04c5fc0fcbf43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2556-1624 0000-0001-9773-3101 0000-0003-4120-3210 |
PQID | 2420130256 |
PQPubID | 866336 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2420130256 crossref_primary_10_1002_ange_202004449 crossref_citationtrail_10_1002_ange_202004449 wiley_primary_10_1002_ange_202004449_ANGE202004449 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 13, 2020 |
PublicationDateYYYYMMDD | 2020-07-13 |
PublicationDate_xml | – month: 07 year: 2020 text: July 13, 2020 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2006; 71 2017; 8 2019; 52 2019; 10 2019; 14 1992; 57 2012; 14 2003; 51 2017; 114 2014; 136 2018; 9 2018; 8 2014; 4 2019; 20 2019; 24 2018 2018; 57 130 2000; 11 2016; 43 2015 2015; 54 127 2018; 30 2016; 116 2014; 19 2016; 49 2015; 13 2015; 12 2018; 28 2015; 58 2019; 9 2015; 6 2015; 51 2017; 23 2002; 1 2008 2016; 18 2019; 141 2017; 139 2018; 24 2018; 152 2015; 26 2016 2016; 55 128 2010; 46 2020; 31 2017; 14 2013; 31 2011; 50 2018; 114 2016; 21 2019 2005; 4 2011; 44 2016; 132 2018; 51 2011 2011; 50 123 2012; 7 2016; 27 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_76_1 e_1_2_6_53_2 e_1_2_6_70_1 e_1_2_6_30_2 e_1_2_6_72_1 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_59_2 e_1_2_6_11_1 e_1_2_6_32_2 e_1_2_6_17_1 e_1_2_6_38_3 e_1_2_6_78_1 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_62_1 e_1_2_6_83_2 e_1_2_6_64_1 e_1_2_6_20_2 e_1_2_6_81_1 e_1_2_6_41_2 e_1_2_6_60_1 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_43_2 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_47_1 e_1_2_6_50_2 e_1_2_6_73_1 e_1_2_6_52_2 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_31_2 e_1_2_6_71_1 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_14_1 e_1_2_6_10_2 e_1_2_6_33_1 e_1_2_6_16_2 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_79_1 e_1_2_6_61_2 e_1_2_6_84_2 e_1_2_6_63_1 e_1_2_6_42_2 e_1_2_6_65_1 e_1_2_6_84_3 e_1_2_6_80_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_29_2 e_1_2_6_4_1 e_1_2_6_6_2 e_1_2_6_23_3 e_1_2_6_25_1 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_44_1 e_1_2_6_27_2 e_1_2_6_67_1 e_1_2_6_46_2 |
References_xml | – volume: 11 start-page: 696 year: 2000 end-page: 704 publication-title: Bioconjugate Chem. – volume: 19 year: 2014 publication-title: J. Biomed. Opt. – volume: 139 start-page: 12406 year: 2017 end-page: 12409 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 7018 year: 2014 end-page: 7025 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 6556 year: 2015 end-page: 6563 publication-title: Chem. Sci. – volume: 51 start-page: 3226 year: 2018 end-page: 3235 publication-title: Acc. Chem. Res. – volume: 49 start-page: 1731 year: 2016 end-page: 1740 publication-title: Acc. Chem. Res. – volume: 26 start-page: 773 year: 2015 end-page: 781 publication-title: Bioconjugate Chem. – volume: 28 start-page: 2741 year: 2018 end-page: 2745 publication-title: Bioorg. Med. Chem. Lett. – volume: 46 start-page: 7406 year: 2010 end-page: 7408 publication-title: Chem. Commun. – volume: 4 start-page: 172 year: 2005 end-page: 181 publication-title: Mol. Imaging – volume: 58 start-page: 2845 year: 2015 end-page: 2854 publication-title: J. Med. Chem. – volume: 55 128 start-page: 2470 2516 year: 2016 2016 end-page: 2473 2519 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 510 year: 2019 publication-title: Front. Pharmacol. – volume: 14 start-page: 934 year: 2019 end-page: 940 publication-title: ACS Chem. Biol. – volume: 7 start-page: 516 year: 2012 end-page: 524 publication-title: Contrast Media Mol. Imaging – volume: 23 start-page: 4849 year: 2017 end-page: 4862 publication-title: Chem. Eur. J. – volume: 9 start-page: 2856 year: 2019 end-page: 2867 publication-title: Theranostics – start-page: 4791 year: 2019 end-page: 4796 publication-title: Eur. J. Org. Chem. – volume: 44 start-page: 123 year: 2011 end-page: 151 publication-title: Q. Rev. Biophys. – volume: 114 start-page: 688 year: 2018 end-page: 700 publication-title: Biophys. J. – volume: 50 start-page: 2691 year: 2011 end-page: 2700 publication-title: Biochemistry – volume: 27 start-page: 1253 year: 2016 end-page: 1258 publication-title: Bioconjugate Chem. – volume: 50 123 start-page: 6258 6382 year: 2011 2011 end-page: 6263 6387 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 28 start-page: 509 year: 2018 end-page: 514 publication-title: Bioorg. Med. Chem. Lett. – volume: 23 start-page: 9306 year: 2017 end-page: 9312 publication-title: Chem. Eur. J. – volume: 52 start-page: 2266 year: 2019 end-page: 2277 publication-title: Acc. Chem. Res. – volume: 57 130 start-page: 7483 7605 year: 2018 2018 end-page: 7487 7609 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 20 start-page: e354 year: 2019 end-page: e367 publication-title: Lancet Oncol. – volume: 43 start-page: 1857 year: 2016 end-page: 1867 publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 9 start-page: 7261 year: 2018 end-page: 7270 publication-title: Chem. Sci. – volume: 141 start-page: 7155 year: 2019 end-page: 7162 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 254 year: 2017 end-page: 258 publication-title: Chem. Eur. J. – start-page: 2897 year: 2008 end-page: 2899 publication-title: Chem. Commun. – volume: 4 start-page: 58762 year: 2014 end-page: 58768 publication-title: RSC Adv. – volume: 54 127 start-page: 15434 15654 year: 2015 2015 end-page: 15438 15658 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 18 start-page: 52 year: 2016 end-page: 61 publication-title: Mol. Imaging Biol. – volume: 13 start-page: 7584 year: 2015 end-page: 7598 publication-title: Org. Biomol. Chem. – volume: 31 start-page: 148 year: 2013 end-page: 153 publication-title: Nat. Biotechnol. – volume: 71 start-page: 7862 year: 2006 end-page: 7865 publication-title: J. Org. Chem. – volume: 23 start-page: 2730 year: 2017 end-page: 2742 publication-title: Clin. Cancer Res. – volume: 14 start-page: 1145 year: 2017 end-page: 1153 publication-title: Mol. Pharm. – volume: 14 start-page: 584 year: 2012 end-page: 592 publication-title: Mol. Imaging Biol. – volume: 6 start-page: 4530 year: 2015 end-page: 4536 publication-title: Chem. Sci. – volume: 14 start-page: 1623 year: 2017 end-page: 1633 publication-title: Mol. Pharm. – volume: 152 start-page: 19 year: 2018 end-page: 28 publication-title: Dyes Pigm. – volume: 24 year: 2019 publication-title: J. Biomed. Opt. – volume: 9 start-page: 1754 year: 2018 end-page: 1760 publication-title: MedChemComm – volume: 1 start-page: 354 year: 2002 end-page: 364 publication-title: Mol. Imaging – volume: 116 start-page: 7768 year: 2016 end-page: 7817 publication-title: Chem. Rev. – volume: 9 start-page: 1548 year: 2019 end-page: 1555 publication-title: Quant. Imaging Med. Surg. – volume: 24 start-page: 13821 year: 2018 end-page: 13829 publication-title: Chem. Eur. J. – volume: 8 start-page: 21054 year: 2017 end-page: 21066 publication-title: Oncotarget – volume: 51 start-page: 3989 year: 2015 end-page: 3992 publication-title: Chem. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 31 start-page: 214 year: 2020 end-page: 223 publication-title: Bioconjugate Chem. – volume: 114 start-page: 962 year: 2017 end-page: 967 publication-title: Proc. Natl. Acad. Sci. USA – volume: 57 start-page: 4578 year: 1992 end-page: 4580 publication-title: J. Org. Chem. – volume: 31 start-page: 241 year: 2020 end-page: 247 publication-title: Bioconjugate Chem. – volume: 132 start-page: 7 year: 2016 end-page: 19 publication-title: Dyes Pigm. – volume: 8 start-page: 4141 year: 2018 end-page: 4151 publication-title: Theranostics – volume: 12 start-page: 3303 year: 2015 end-page: 3311 publication-title: Mol. Pharm. – volume: 27 start-page: 404 year: 2016 end-page: 413 publication-title: Bioconjugate Chem. – volume: 51 start-page: 1699 year: 2003 end-page: 1712 publication-title: J. Histochem. Cytochem. – volume: 21 year: 2016 publication-title: J. Biomed. Opt. – ident: e_1_2_6_20_2 doi: 10.1021/acs.bioconjchem.5b00492 – ident: e_1_2_6_29_2 doi: 10.1021/acschembio.9b00122 – ident: e_1_2_6_70_1 doi: 10.1002/chem.201700026 – ident: e_1_2_6_40_1 – ident: e_1_2_6_59_2 doi: 10.1039/b802728e – ident: e_1_2_6_72_1 doi: 10.1016/j.bpj.2017.12.011 – ident: e_1_2_6_13_2 doi: 10.1039/C5OB00788G – ident: e_1_2_6_21_2 doi: 10.1021/acs.accounts.6b00239 – ident: e_1_2_6_14_1 – ident: e_1_2_6_75_1 doi: 10.1158/1078-0432.CCR-16-0437 – ident: e_1_2_6_28_1 – ident: e_1_2_6_42_2 doi: 10.1117/1.JBO.19.3.036006 – ident: e_1_2_6_39_1 doi: 10.1016/j.bmcl.2018.02.040 – ident: e_1_2_6_84_2 doi: 10.1002/anie.201801226 – ident: e_1_2_6_67_1 – ident: e_1_2_6_63_1 – ident: e_1_2_6_7_2 doi: 10.1017/S0033583510000247 – ident: e_1_2_6_4_1 – ident: e_1_2_6_31_2 doi: 10.1039/c0cc02366c – ident: e_1_2_6_53_2 doi: 10.1039/C5SC00348B – ident: e_1_2_6_74_1 doi: 10.1007/s00259-016-3372-y – ident: e_1_2_6_38_2 doi: 10.1002/anie.201102459 – ident: e_1_2_6_56_2 doi: 10.1002/chem.201605847 – ident: e_1_2_6_48_2 doi: 10.21037/qims.2019.09.04 – ident: e_1_2_6_50_2 doi: 10.1021/bc000015m – ident: e_1_2_6_19_2 doi: 10.1021/acs.molpharmaceut.6b01091 – ident: e_1_2_6_15_2 doi: 10.1016/j.bmcl.2017.12.001 – ident: e_1_2_6_44_1 – ident: e_1_2_6_9_2 doi: 10.7150/thno.27995 – ident: e_1_2_6_45_2 doi: 10.1016/j.dyepig.2016.03.054 – ident: e_1_2_6_83_2 doi: 10.1021/jacs.7b07272 – ident: e_1_2_6_47_1 – ident: e_1_2_6_49_2 doi: 10.1016/j.dyepig.2018.01.029 – ident: e_1_2_6_55_2 doi: 10.1021/acs.accounts.9b00221 – ident: e_1_2_6_80_1 doi: 10.1007/s11307-011-0534-y – ident: e_1_2_6_36_2 doi: 10.1021/acs.jmedchem.5b00253 – ident: e_1_2_6_57_2 doi: 10.1073/pnas.1617990114 – ident: e_1_2_6_62_1 doi: 10.1021/jacs.9b02537 – ident: e_1_2_6_27_2 doi: 10.1162/153535002321093963 – ident: e_1_2_6_23_3 doi: 10.1002/ange.201507868 – ident: e_1_2_6_22_2 doi: 10.1021/acs.bioconjchem.6b00093 – ident: e_1_2_6_2_2 doi: 10.1021/acs.chemrev.6b00001 – ident: e_1_2_6_65_1 – ident: e_1_2_6_1_1 – ident: e_1_2_6_51_1 – ident: e_1_2_6_78_1 doi: 10.1021/acs.bioconjchem.9b00750 – ident: e_1_2_6_35_2 doi: 10.1007/s11307-015-0870-4 – ident: e_1_2_6_61_1 doi: 10.1002/anie.201510620 – ident: e_1_2_6_46_2 doi: 10.1039/C4RA11225C – ident: e_1_2_6_52_2 doi: 10.1002/chem.201604473 – ident: e_1_2_6_64_1 doi: 10.1002/ejoc.201900715 – ident: e_1_2_6_71_1 doi: 10.1021/bi2000966 – ident: e_1_2_6_82_1 – ident: e_1_2_6_11_1 – ident: e_1_2_6_68_2 doi: 10.1002/cmmi.1484 – ident: e_1_2_6_12_2 doi: 10.1021/acs.accounts.8b00384 – ident: e_1_2_6_30_2 doi: 10.1039/C5SC02396C – ident: e_1_2_6_69_2 doi: 10.1162/15353500200505127 – ident: e_1_2_6_23_2 doi: 10.1002/anie.201507868 – ident: e_1_2_6_60_1 doi: 10.7150/thno.33595 – ident: e_1_2_6_79_1 doi: 10.18632/oncotarget.15486 – ident: e_1_2_6_41_2 doi: 10.1039/C4CC08814J – ident: e_1_2_6_66_1 doi: 10.1117/1.JBO.21.8.080901 – ident: e_1_2_6_37_2 doi: 10.1038/nbt.2468 – ident: e_1_2_6_17_1 – ident: e_1_2_6_25_1 – ident: e_1_2_6_33_1 – ident: e_1_2_6_6_2 doi: 10.3389/fphar.2019.00510 – ident: e_1_2_6_34_2 doi: 10.1039/C8MD00190A – ident: e_1_2_6_43_2 doi: 10.1021/jo061284u – ident: e_1_2_6_16_2 doi: 10.1021/jo00043a009 – ident: e_1_2_6_10_2 doi: 10.1002/adma.201802546 – ident: e_1_2_6_58_2 doi: 10.1021/acs.bioconjchem.5b00097 – ident: e_1_2_6_32_2 doi: 10.1039/C8SC00900G – ident: e_1_2_6_61_2 doi: 10.1002/ange.201510620 – ident: e_1_2_6_18_2 doi: 10.1021/acs.molpharmaceut.6b01053 – ident: e_1_2_6_77_1 doi: 10.1002/chem.201801825 – ident: e_1_2_6_81_1 doi: 10.1117/1.JBO.24.6.066012 – ident: e_1_2_6_8_1 – ident: e_1_2_6_24_2 doi: 10.1021/acs.molpharmaceut.5b00472 – ident: e_1_2_6_3_2 doi: 10.1117/1.JBO.21.5.050901 – ident: e_1_2_6_73_1 doi: 10.1177/002215540305101214 – ident: e_1_2_6_76_1 doi: 10.1021/acs.bioconjchem.9b00707 – ident: e_1_2_6_54_1 – ident: e_1_2_6_84_3 doi: 10.1002/ange.201801226 – ident: e_1_2_6_26_2 doi: 10.1021/ja500962u – ident: e_1_2_6_5_2 doi: 10.1016/S1470-2045(19)30317-1 – ident: e_1_2_6_38_3 doi: 10.1002/ange.201102459 |
SSID | ssj0006279 |
Score | 2.1132307 |
Snippet | The near‐infrared window of fluorescent heptamethine cyanine dyes greatly facilitates biological imaging because there is deep penetration of the light and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12252 |
SubjectTerms | Antibodies Aromatic compounds Chemistry Cyanine dyes cyanines Dye penetrants Dyes dyes/pigments Fluorescence fluorescent probes imaging agents Infrared imaging Infrared windows Medical imaging Pharmacokinetics Physiochemistry Shielding |
Title | Sterically Shielded Heptamethine Cyanine Dyes for Bioconjugation and High Performance Near‐Infrared Fluorescence Imaging |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202004449 https://www.proquest.com/docview/2420130256 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHODCjiiUygckTqFN4qTJsSuFQ4VYJG6R11IIadWmh_bEJ_CNfAljp2kBCSHBKYlsZ_HMxG_s8RuETomoUE-4oQW6QSzCQtuiDnMtEbpcEKlsxk2Ub9fv3JOrB-_h0y7-jB9iMeGmLcP8r7WBUzYuL0lDdew9-HeOYTzTO_hs19fk-c2bJX-U72Rke1DFCsDRyFkbK075a_Ovo9ISan4GrGbEaW8hmr9rFmjyfD5J2TmffaNx_M_HbKPNORzFtUx_dtCKTHbReiPPAreHZrepWdKJ4ynWebNjIQXuyGFKde5peC5uTGmij82pHGOAwLjeH4CT_TTpGaFjmkCDfu8RXy_3KOAuGNj769tlokY6Ah6348lgZJiloPDyxaRO2kf37dZdo2PN8zVY3AG_DVxRSkg1tF0R-KwqbCE5KAjgSfgHhIIyDgUsVEFI3argAD5Cm1cI9xSvKM4UcQ_QajJI5CHCPifa9-Q8AAxh6zFU-o7yAqG4zpatCsjK5RXxOZm5zqkRRxkNsxPpHo0WPVpAZ4v6w4zG48eaxVz80dycxxHgGLPC6_kF5Bg5_nKXqNa9aC2ujv7S6Bht6HM9j2y7RbSajibyBABQykporVZv1tslo-wf_tAAcw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB616QEupaWtCI92D0g9GWJ77XiPaSAkQCNEQerN8r541DgoOIdw6k_ob-wvYWYdJ1CpqkRPlr27fuzMeL_Znf0GYJvrVhbpUHioG9zjUvheFsjQ0yJUmhvrS-WifIdx_5wffo_qaELaC1PxQ8wn3Mgy3P-aDJwmpHcXrKEUfI8OXuAoz8RLeMURbZD_tXe6YJCKg4puD-t4CboaNW9jK9h92v7puLQAm48hqxtzeisg67etQk1-7ExKuaPu_yBy_K_PeQOvZ4iUdSoVegsvTLEKS906Edw7uP9WulWdPJ8ySp2da6NZ39yWGaWfxgez7jQr6Lg3NXcMUTD7cjVCP_t6cuHkzrICG1xdXLKTxTYFNkQb-_3z16CwYwqCZ718Mho7ciksHNy47Env4by3f9bte7OUDZ4K0HVDbzTjvC38UCexbGtfG4U6gpASfwNCZ1JhgRQ2EVnY1grxh_BVi6vIqpZV0vLwAzSKUWHWgMWKk_upVIIwwqdh1MSBjRJtFSXMtk3waoGlasZnTmk18rRiYg5S6tF03qNN-Dyvf1sxefy15mYt_3Rm0XcpQhm3yBvFTQicIP9xl7QzPNifn60_p9EnWOqffT1OjwfDow1Ypus0reyHm9AoxxOzhXiolB-dxj8A-RoDIA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB61IBUuQAuI8NwDUk-G2F473iMEQgJVhGiRuFn7TCnGiYJzCCd-Qn9jfwmz6ziBShUSPVn27vqxM-P9Znf2G4B9quo8UiHzUDeoRwXzPR6I0FMslIpq4wvpony7cfuant9ENy928Zf8ENMJN2sZ7n9tDXygzOGMNNTG3qN_FzjGM_YR5mmMcMLCoqsZgVQclGx7WMdL0NOoaBvrweHr9q-HpRnWfIlY3ZDTWgZevWwZaXJ3MCrEgXz8i8fxf75mBZYmeJQclQr0GT7o_AssNKs0cKvw-L1wazpZNiY2cXamtCJtPSi4TT6NzyXNMc_t8WSsHwhiYHJ820cv-9eo56ROeI4Nbns_yeVskwLpooX9efrdyc3QhsCTVjbqDx21FBZ27l3upDW4bp3-aLa9ScIGTwbouKEvyiltMD9USSwayldaooYgoMSfAFNcSCwQzCSMhw0lEX0wX9apjIysGykMDddhLu_negNILKl1PqVMEET4dhDVcWCiRBlp02WbGniVvFI5YTO3STWytORhDlLbo-m0R2vwdVp_UPJ4_LPmdiX-dGLPDykCGbfEG8U1CJwc37hLetQ9O52ebb6n0R58ujxppd863YstWLSX7ZyyH27DXDEc6R0EQ4XYdfr-DO0EAc8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sterically+Shielded+Heptamethine+Cyanine+Dyes+for+Bioconjugation+and+High+Performance+Near%E2%80%90Infrared+Fluorescence+Imaging&rft.jtitle=Angewandte+Chemie&rft.au=Li%2C+Dong%E2%80%90Hao&rft.au=Schreiber%2C+Cynthia+L.&rft.au=Smith%2C+Bradley+D.&rft.date=2020-07-13&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=132&rft.issue=29&rft.spage=12252&rft.epage=12259&rft_id=info:doi/10.1002%2Fange.202004449&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ange_202004449 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon |