Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions
Atmospheric methane (CH 4 ) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era 1 . Fossil fuel extraction and use are among the largest anthropogenic sources of CH 4 emissions, but the precise magnitude of these contributions is a subject of debate 2...
Saved in:
Published in | Nature (London) Vol. 578; no. 7795; pp. 409 - 412 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.02.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 0028-0836 1476-4687 1476-4687 |
DOI | 10.1038/s41586-020-1991-8 |
Cover
Loading…
Abstract | Atmospheric methane (CH
4
) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era
1
. Fossil fuel extraction and use are among the largest anthropogenic sources of CH
4
emissions, but the precise magnitude of these contributions is a subject of debate
2
,
3
. Carbon-14 in CH
4
(
14
CH
4
) can be used to distinguish between fossil (
14
C-free) CH
4
emissions and contemporaneous biogenic sources; however, poorly constrained direct
14
CH
4
emissions from nuclear reactors have complicated this approach since the middle of the 20th century
4
,
5
. Moreover, the partitioning of total fossil CH
4
emissions (presently 172 to 195 teragrams CH
4
per year)
2
,
3
between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate; emission inventories suggest that the latter account for about 40 to 60 teragrams CH
4
per year
6
,
7
. Geological emissions were less than 15.4 teragrams CH
4
per year at the end of the Pleistocene, about 11,600 years ago
8
, but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core
14
CH
4
measurements to show that natural geological CH
4
emissions to the atmosphere were about 1.6 teragrams CH
4
per year, with a maximum of 5.4 teragrams CH
4
per year (95 per cent confidence limit)—an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH
4
emissions are underestimated by about 38 to 58 teragrams CH
4
per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH
4
budget, and will help to inform strategies for targeted emission reductions
9
,
10
.
Isotopic evidence from ice cores indicates that preindustrial-era geological methane emissions were lower than previously thought, suggesting that present-day emissions of methane from fossil fuels are underestimated. |
---|---|
AbstractList | Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era1. Fossil fuel extraction and use are among the largest anthropogenic sources of CH4 emissions, but the precise magnitude of these contributions is a subject of debate2,3. Carbon-14 in CH4 (14CH4) can be used to distinguish between fossil (14C-free) CH4 emissions and contemporaneous biogenic sources; however, poorly constrained direct 14CH4 emissions from nuclear reactors have complicated this approach since the middle of the 20th century4,5. Moreover, the partitioning of total fossil CH4 emissions (presently 172 to 195 teragrams CH4 per year)2,3 between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate; emission inventories suggest that the latter account for about 40 to 60 teragrams CH4 per year6,7. Geological emissions were less than 15.4 teragrams CH4 per year at the end of the Pleistocene, about 11,600 years ago8, but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core 14CH4 measurements to show that natural geological CH4 emissions to the atmosphere were about 1.6 teragrams CH4 per year, with a maximum of 5.4 teragrams CH4 per year (95 per cent confidence limit)—an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH4 emissions are underestimated by about 38 to 58 teragrams CH4 per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH4 budget, and will help to inform strategies for targeted emission reductions9,10. Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era1. Fossil fuel extraction and use are among the largest anthropogenic sources of CH4 emissions, but the precise magnitude of these contributions is a subject of debate2,3. Carbon-14 in CH4 (14CH4) can be used to distinguish between fossil (14C-free) CH4 emissions and contemporaneous biogenic sources; however, poorly constrained direct 14CH4 emissions from nuclear reactors have complicated this approach since the middle of the 20th century4,5. Moreover, the partitioning of total fossil CH4 emissions (presently 172 to 195 teragrams CH4 per year)2,3 between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate; emission inventories suggest that the latter account for about 40 to 60 teragrams CH4 per year6,7. Geological emissions were less than 15.4 teragrams CH4 per year at the end of the Pleistocene, about 11,600 years ago8, but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core 14CH4 measurements to show that natural geological CH4 emissions to the atmosphere were about 1.6 teragrams CH4 per year, with a maximum of 5.4 teragrams CH4 per year (95 per cent confidence limit)-an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH4 emissions are underestimated by about 38 to 58 teragrams CH4 per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH4 budget, and will help to inform strategies for targeted emission reductions9,10.Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era1. Fossil fuel extraction and use are among the largest anthropogenic sources of CH4 emissions, but the precise magnitude of these contributions is a subject of debate2,3. Carbon-14 in CH4 (14CH4) can be used to distinguish between fossil (14C-free) CH4 emissions and contemporaneous biogenic sources; however, poorly constrained direct 14CH4 emissions from nuclear reactors have complicated this approach since the middle of the 20th century4,5. Moreover, the partitioning of total fossil CH4 emissions (presently 172 to 195 teragrams CH4 per year)2,3 between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate; emission inventories suggest that the latter account for about 40 to 60 teragrams CH4 per year6,7. Geological emissions were less than 15.4 teragrams CH4 per year at the end of the Pleistocene, about 11,600 years ago8, but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core 14CH4 measurements to show that natural geological CH4 emissions to the atmosphere were about 1.6 teragrams CH4 per year, with a maximum of 5.4 teragrams CH4 per year (95 per cent confidence limit)-an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH4 emissions are underestimated by about 38 to 58 teragrams CH4 per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH4 budget, and will help to inform strategies for targeted emission reductions9,10. Atmospheric methane (CH 4 ) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era 1 . Fossil fuel extraction and use are among the largest anthropogenic sources of CH 4 emissions, but the precise magnitude of these contributions is a subject of debate 2 , 3 . Carbon-14 in CH 4 ( 14 CH 4 ) can be used to distinguish between fossil ( 14 C-free) CH 4 emissions and contemporaneous biogenic sources; however, poorly constrained direct 14 CH 4 emissions from nuclear reactors have complicated this approach since the middle of the 20th century 4 , 5 . Moreover, the partitioning of total fossil CH 4 emissions (presently 172 to 195 teragrams CH 4 per year) 2 , 3 between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate; emission inventories suggest that the latter account for about 40 to 60 teragrams CH 4 per year 6 , 7 . Geological emissions were less than 15.4 teragrams CH 4 per year at the end of the Pleistocene, about 11,600 years ago 8 , but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core 14 CH 4 measurements to show that natural geological CH 4 emissions to the atmosphere were about 1.6 teragrams CH 4 per year, with a maximum of 5.4 teragrams CH 4 per year (95 per cent confidence limit)—an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH 4 emissions are underestimated by about 38 to 58 teragrams CH 4 per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH 4 budget, and will help to inform strategies for targeted emission reductions 9 , 10 . Isotopic evidence from ice cores indicates that preindustrial-era geological methane emissions were lower than previously thought, suggesting that present-day emissions of methane from fossil fuels are underestimated. Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era1. Fossil fuel extraction and use are among the largest anthropogenic sources of CH4 emissions, but the precise magnitude of these contributions is a subject of debate2,3. Carbon-14 in CH4 (14CH4) can be used to distinguish between fossil (14C-free) CH4 emissions and contemporaneous biogenic sources; however, poorly constrained direct14CH4 emissions from nuclear reactors have complicated this approach since the middle of the 20th century4,5. Moreover, the partitioning of total fossil CH4 emissions (presently 172 to 195 teragrams CH4 per year)2,3 between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate; emission inventories suggest that the latter account for about 40 to 60 teragrams CH4 per year6,7. Geological emissions were less than 15.4 teragrams CH4 per year at the end of the Pleistocene, about 11,600 years ago8, but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core14CH4 measurements to show that natural geological CH4 emissions to the atmosphere were about 1.6 teragrams CH4 per year, with a maximum of 5.4 teragrams CH4 per year (95 per cent confidence limit)-an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH4 emissions are underestimated by about 38 to 58 teragrams CH4 per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH4 budget, and will help to inform strategies for targeted emission reductions9,10. |
Author | Etheridge, D. Dlugokencky, E. Faïn, X. Place, P. F. Vimont, I. Severinghaus, J. P. Beaudette, R. Michel, S. E. Bromley, T. Hmiel, Benjamin Dyonisius, M. N. Smith, A. M. Hua, Q. Weiss, R. F. Harth, C. Yang, B. Petrenko, V. V. Schmitt, J. Buizert, C. |
Author_xml | – sequence: 1 givenname: Benjamin surname: Hmiel fullname: Hmiel, Benjamin email: bhmiel@ur.rochester.edu organization: Department of Earth and Environmental Sciences, University of Rochester (UR) – sequence: 2 givenname: V. V. surname: Petrenko fullname: Petrenko, V. V. organization: Department of Earth and Environmental Sciences, University of Rochester (UR) – sequence: 3 givenname: M. N. surname: Dyonisius fullname: Dyonisius, M. N. organization: Department of Earth and Environmental Sciences, University of Rochester (UR) – sequence: 4 givenname: C. surname: Buizert fullname: Buizert, C. organization: College of Earth, Ocean and Atmospheric Sciences, Oregon State University (OSU) – sequence: 5 givenname: A. M. surname: Smith fullname: Smith, A. M. organization: Australian Nuclear Science and Technology Organisation (ANSTO) – sequence: 6 givenname: P. F. surname: Place fullname: Place, P. F. organization: Department of Earth and Environmental Sciences, University of Rochester (UR) – sequence: 7 givenname: C. surname: Harth fullname: Harth, C. organization: Scripps Institution of Oceanography (SIO), University of California San Diego – sequence: 8 givenname: R. surname: Beaudette fullname: Beaudette, R. organization: Scripps Institution of Oceanography (SIO), University of California San Diego – sequence: 9 givenname: Q. surname: Hua fullname: Hua, Q. organization: Australian Nuclear Science and Technology Organisation (ANSTO) – sequence: 10 givenname: B. surname: Yang fullname: Yang, B. organization: Australian Nuclear Science and Technology Organisation (ANSTO) – sequence: 11 givenname: I. surname: Vimont fullname: Vimont, I. organization: Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado and National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division (GMD) – sequence: 12 givenname: S. E. surname: Michel fullname: Michel, S. E. organization: Institute of Arctic and Alpine Research (INSTAAR), University of Colorado – sequence: 13 givenname: J. P. surname: Severinghaus fullname: Severinghaus, J. P. organization: Scripps Institution of Oceanography (SIO), University of California San Diego – sequence: 14 givenname: D. surname: Etheridge fullname: Etheridge, D. organization: Climate Science Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere – sequence: 15 givenname: T. surname: Bromley fullname: Bromley, T. organization: National Institute of Water and Atmospheric Research (NIWA) – sequence: 16 givenname: J. surname: Schmitt fullname: Schmitt, J. organization: Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern – sequence: 17 givenname: X. surname: Faïn fullname: Faïn, X. organization: University of Grenoble Alpes, CNRS, IRD, Grenoble INP, Institut des Géosciences de l’Environnement (IGE) – sequence: 18 givenname: R. F. surname: Weiss fullname: Weiss, R. F. organization: Scripps Institution of Oceanography (SIO), University of California San Diego – sequence: 19 givenname: E. surname: Dlugokencky fullname: Dlugokencky, E. organization: NOAA, Earth System Research Laboratory (ESRL) |
BackLink | https://hal.science/hal-04945279$$DView record in HAL |
BookMark | eNp9kc1KLDEQhYMoOP48gLsGN7roe1NJOp0sZVDnwoAudB0ymeox0iZj0iP49jdNi4KgqwrFd6pO6hyR_RADEnIG9A9Qrv5mAY2SNWW0Bq2hVntkBqKVtZCq3SczSpmqqeLykBzl_EwpbaAVM7K4T-jDepeH5G1fgZgvRFUa3tkBc7VJWGqqbBieUtzGDQbvqi7m7PtqRPHFl3cM-YQcdLbPePpRj8njzfXDfFEv727_za-WtWNMqVo32MmWAzLFnZKW8xWilYo1uOLcdSgbqxBcg1KDtHbNJUXZaam6FXdr5Mfkcpr7ZHuzTf7FpncTrTeLq6UZe1Ro0bBWv0FhLyZ2m-LrDvNgiluHfW8Dxl02jDea6xb0iJ5_Q5_jLoXyk0JJLaAFpQoFE-VSOUHC7tMBUDPmYKYcTMnBjDmYUdN-0zg_2KHcbEjW978q2aTMZUvYYPry9LPoP371nLE |
CitedBy_id | crossref_primary_10_1002_admt_202101252 crossref_primary_10_5194_hess_24_6047_2020 crossref_primary_10_1016_j_adapen_2022_100085 crossref_primary_10_1038_s43247_021_00245_0 crossref_primary_10_1016_j_rse_2021_112418 crossref_primary_10_1097_EE9_0000000000000246 crossref_primary_10_1126_sciadv_aaz5120 crossref_primary_10_5194_acp_21_4339_2021 crossref_primary_10_5194_tc_18_3363_2024 crossref_primary_10_5194_acp_20_15487_2020 crossref_primary_10_3389_fcomm_2020_586711 crossref_primary_10_5194_cp_19_2535_2023 crossref_primary_10_1039_D2SE00923D crossref_primary_10_1038_s41467_020_16229_1 crossref_primary_10_5194_essd_14_1639_2022 crossref_primary_10_1007_s12268_021_1529_1 crossref_primary_10_1029_2022JD038281 crossref_primary_10_3389_fcomm_2020_00027 crossref_primary_10_1038_s43247_022_00560_0 crossref_primary_10_5194_essd_13_2307_2021 crossref_primary_10_1088_1748_9326_abc848 crossref_primary_10_3390_analytica3030024 crossref_primary_10_1016_j_ijhydene_2024_04_073 crossref_primary_10_5194_essd_12_1561_2020 crossref_primary_10_1021_acs_est_0c07531 crossref_primary_10_1016_j_jenvrad_2024_107576 crossref_primary_10_5194_acp_21_3643_2021 crossref_primary_10_1016_j_jclepro_2021_128428 crossref_primary_10_1103_RevModPhys_95_035006 crossref_primary_10_5194_gmd_15_1289_2022 crossref_primary_10_1038_s41598_021_83369_9 crossref_primary_10_1038_s41467_023_37514_9 crossref_primary_10_1073_pnas_2409333121 crossref_primary_10_1021_acs_est_4c03651 crossref_primary_10_5194_acp_21_4637_2021 crossref_primary_10_1088_1748_9326_ab9ed2 crossref_primary_10_1016_j_ecmx_2020_100043 crossref_primary_10_3390_en13174429 crossref_primary_10_3390_atmos13020210 crossref_primary_10_1073_pnas_2217900120 crossref_primary_10_5194_amt_17_1347_2024 crossref_primary_10_5194_essd_15_1197_2023 crossref_primary_10_3389_fenvs_2023_1177877 crossref_primary_10_1021_acs_est_2c02136 crossref_primary_10_2139_ssrn_3655624 crossref_primary_10_1016_j_rser_2024_114744 crossref_primary_10_5194_acp_22_6811_2022 crossref_primary_10_5194_acp_22_5859_2022 crossref_primary_10_1002_mop_33076 crossref_primary_10_1109_JSEN_2022_3214176 crossref_primary_10_1039_D2EE03072A crossref_primary_10_5194_acp_24_3009_2024 crossref_primary_10_1088_1748_9326_ac55b6 crossref_primary_10_5194_acp_20_4545_2020 crossref_primary_10_1016_j_fuel_2024_133364 crossref_primary_10_1016_j_oneear_2023_04_009 crossref_primary_10_1016_j_infrared_2022_104152 crossref_primary_10_1038_s43247_024_01286_x crossref_primary_10_5194_acp_21_10527_2021 crossref_primary_10_2139_ssrn_3968359 crossref_primary_10_1016_j_resconrec_2023_106971 crossref_primary_10_1038_s41560_022_01060_3 crossref_primary_10_1016_j_jenvman_2024_123568 crossref_primary_10_1088_1748_9326_ac8754 crossref_primary_10_5194_acp_23_5945_2023 crossref_primary_10_1038_s43247_021_00170_2 crossref_primary_10_1088_1748_9326_acb4af crossref_primary_10_1098_rsta_2020_0440 crossref_primary_10_1016_j_fmre_2021_03_007 crossref_primary_10_1038_s41467_024_55603_1 crossref_primary_10_3390_atmos14040613 crossref_primary_10_3390_en14164998 crossref_primary_10_1016_j_apr_2022_101498 crossref_primary_10_1088_1361_6501_ac22ef crossref_primary_10_1007_s10924_023_02792_3 crossref_primary_10_1016_j_biocon_2021_109354 crossref_primary_10_5194_cp_17_507_2021 crossref_primary_10_5194_gmd_15_5787_2022 crossref_primary_10_1007_s11367_021_01973_3 crossref_primary_10_5194_amt_14_5987_2021 crossref_primary_10_1016_j_fuel_2020_118950 crossref_primary_10_1088_1748_9326_abee4e crossref_primary_10_2139_ssrn_3834488 crossref_primary_10_5194_acp_25_2947_2025 crossref_primary_10_1038_s43247_023_00769_7 crossref_primary_10_1007_s10098_023_02521_3 crossref_primary_10_1016_j_ijggc_2021_103560 crossref_primary_10_1016_j_scitotenv_2021_151076 crossref_primary_10_3390_atmos14121709 crossref_primary_10_1016_j_cej_2023_142874 crossref_primary_10_1038_s41467_021_25017_4 crossref_primary_10_1088_1748_9326_abf9c8 crossref_primary_10_1016_j_jmse_2024_08_002 crossref_primary_10_1021_acs_est_1c01572 crossref_primary_10_5194_amt_14_2055_2021 crossref_primary_10_5796_electrochemistry_23_68120 crossref_primary_10_1021_acs_energyfuels_1c02673 crossref_primary_10_1021_acs_est_0c03300 crossref_primary_10_1007_s40804_022_00246_2 crossref_primary_10_1038_s41467_023_40671_6 crossref_primary_10_1525_elementa_2020_00066 crossref_primary_10_1080_14693062_2021_1990831 crossref_primary_10_3389_feart_2022_868609 crossref_primary_10_5194_acp_21_12443_2021 crossref_primary_10_5194_acp_25_797_2025 crossref_primary_10_1002_aic_17664 crossref_primary_10_1364_AO_489346 crossref_primary_10_1073_pnas_2218294120 crossref_primary_10_1525_elementa_2021_00031 crossref_primary_10_3389_feart_2024_1352498 crossref_primary_10_1029_2020GL089516 crossref_primary_10_1088_1748_9326_ac38d8 crossref_primary_10_1126_science_abj4351 crossref_primary_10_1038_s41561_023_01332_x crossref_primary_10_1038_s43247_021_00107_9 crossref_primary_10_1016_j_esr_2024_101358 crossref_primary_10_5194_acp_22_10809_2022 crossref_primary_10_5194_amt_17_4471_2024 crossref_primary_10_1088_1748_9326_ac1814 crossref_primary_10_1088_1748_9326_ac8fa9 crossref_primary_10_1016_j_quascirev_2022_107856 crossref_primary_10_1029_2023GB007723 crossref_primary_10_1093_nsr_nwab200 crossref_primary_10_1029_2021MS002982 crossref_primary_10_1080_10916466_2021_2001526 crossref_primary_10_1098_rsta_2020_0457 crossref_primary_10_1016_j_jenvman_2022_114766 crossref_primary_10_1002_ppap_202200162 crossref_primary_10_1016_j_aeaoa_2024_100253 crossref_primary_10_1029_2021GB007000 crossref_primary_10_3390_atmos11111227 crossref_primary_10_3390_rs16142525 crossref_primary_10_1126_sciadv_abf4507 crossref_primary_10_1016_j_marpetgeo_2024_106771 crossref_primary_10_5194_cp_19_2287_2023 crossref_primary_10_1038_s41561_021_00715_2 crossref_primary_10_1525_elementa_2022_00070 crossref_primary_10_5194_acp_21_14159_2021 crossref_primary_10_1016_j_scitotenv_2022_155019 crossref_primary_10_1016_j_envres_2022_114970 crossref_primary_10_1016_j_jece_2025_116234 crossref_primary_10_1002_ppp_2114 crossref_primary_10_1017_RDC_2024_27 crossref_primary_10_5194_esd_11_977_2020 crossref_primary_10_3390_atmos13010011 crossref_primary_10_1038_s41598_024_84593_9 crossref_primary_10_1073_pnas_2402730121 crossref_primary_10_3390_c6020024 crossref_primary_10_3390_world2020012 crossref_primary_10_1016_j_snb_2024_135829 crossref_primary_10_1029_2022EF002877 crossref_primary_10_3390_su13147909 crossref_primary_10_1016_j_renene_2023_119236 crossref_primary_10_5194_tc_17_843_2023 crossref_primary_10_3390_atmos13060888 crossref_primary_10_1038_s43247_024_01990_8 crossref_primary_10_3390_microorganisms9030560 crossref_primary_10_1088_1748_9326_ad2b2a crossref_primary_10_1016_j_biombioe_2022_106519 crossref_primary_10_1029_2020JD033074 crossref_primary_10_1039_D2EA00100D crossref_primary_10_5194_acp_21_17607_2021 crossref_primary_10_1002_ghg_2191 crossref_primary_10_1016_j_atmosenv_2023_119774 crossref_primary_10_1029_2021RG000757 crossref_primary_10_5194_acp_22_15351_2022 crossref_primary_10_5194_acp_20_14717_2020 crossref_primary_10_1029_2020JD032932 crossref_primary_10_2174_2405463105666220309142802 crossref_primary_10_3390_microorganisms8101614 crossref_primary_10_5194_cp_19_1081_2023 crossref_primary_10_1016_j_envsci_2024_103880 crossref_primary_10_3390_s22166139 |
Cites_doi | 10.5194/acp-12-9079-2012 10.1073/pnas.1613883114 10.1038/nature23316 10.1016/j.gca.2016.01.004 10.5194/acp-7-2119-2007 10.1016/j.gloplacha.2010.01.002 10.1073/pnas.1807172115 10.1126/sciadv.aao4842 10.1126/science.1168909 10.1016/j.gca.2017.01.009 10.1016/j.epsl.2010.03.003 10.5194/acp-7-2141-2007 10.1016/j.gloplacha.2007.08.008 10.1029/2005JC003183 10.1017/RDC.2018.42 10.2458/azu_js_rc.v55i2.16177 10.1029/97JD02653 10.1038/nature19797 10.5194/acp-12-4259-2012 10.1002/2015GL066854 10.5194/gmd-10-2057-2017 10.1007/978-3-319-14601-0_1 10.5040/9798400646126 10.1126/science.aar7204 10.1029/2002JD002545 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 Copyright Nature Publishing Group Feb 20, 2020 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: Copyright Nature Publishing Group Feb 20, 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 1XC |
DOI | 10.1038/s41586-020-1991-8 |
DatabaseName | CrossRef ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Psychology Database ProQuest Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics Geology Environmental Sciences |
EISSN | 1476-4687 |
EndPage | 412 |
ExternalDocumentID | oai_HAL_hal_04945279v1 10_1038_s41586_020_1991_8 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADXHL AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 SOI TUS 7X8 1XC |
ID | FETCH-LOGICAL-c2288-95ef6731e283c86a33beea6825eb33cfe65a8e1c5e6916aad360e6f968fb3cde3 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Wed Aug 13 07:44:51 EDT 2025 Fri Jul 11 01:28:40 EDT 2025 Sat Aug 23 12:23:09 EDT 2025 Tue Jul 01 01:21:19 EDT 2025 Thu Apr 24 23:11:26 EDT 2025 Fri Feb 21 02:38:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7795 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2288-95ef6731e283c86a33beea6825eb33cfe65a8e1c5e6916aad360e6f968fb3cde3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2369417188 |
PQPubID | 40569 |
PageCount | 4 |
ParticipantIDs | hal_primary_oai_HAL_hal_04945279v1 proquest_miscellaneous_2359397191 proquest_journals_2369417188 crossref_primary_10_1038_s41586_020_1991_8 crossref_citationtrail_10_1038_s41586_020_1991_8 springer_journals_10_1038_s41586_020_1991_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200220 |
PublicationDateYYYYMMDD | 2020-02-20 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200220 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Saunois (CR2) 2016; 8 Meinshausen (CR1) 2017; 10 Lassey, Lowe, Smith (CR13) 2007; 7 Severinghaus (CR17) 2010; 293 Petrenko (CR15) 2016; 177 Sparrow (CR26) 2018; 4 Buizert (CR18) 2012; 12 Etiope, Milkov, Derbyshire (CR14) 2008; 61 Lassey, Etheridge, Lowe, Smith, Ferretti (CR4) 2007; 7 Nicewonger, Aydin, Prather, Saltzman (CR11) 2018; 115 McGinnis, Greinert, Artemov, Beaubien, Wüest (CR24) 2006; 111 Bock (CR12) 2017; 114 Etiope, Klusman (CR23) 2010; 72 Alvarez (CR28) 2018; 361 Petrenko (CR8) 2017; 548 Leonte (CR25) 2017; 204 Nicewonger, Verhulst, Aydin, Saltzman (CR27) 2016; 43 CR6 Howarth (CR10) 2015; 3 Rommelaere, Arnaud, Barnola (CR19) 1997; 102 Höglund-Isaksson (CR9) 2012; 12 Zazzeri, Acuña Yeomans, Graven (CR5) 2018; 60 CR21 Petrenko (CR16) 2009; 324 CR20 Hua, Barbetti, Rakowski (CR22) 2013; 55 Schwietzke (CR3) 2016; 538 Etiope, Ciotoli, Schwietzke, Schoell (CR7) 2019; 11 M Bock (1991_CR12) 2017; 114 G Etiope (1991_CR14) 2008; 61 MR Nicewonger (1991_CR11) 2018; 115 RW Howarth (1991_CR10) 2015; 3 G Etiope (1991_CR23) 2010; 72 VV Petrenko (1991_CR8) 2017; 548 L Höglund-Isaksson (1991_CR9) 2012; 12 MR Nicewonger (1991_CR27) 2016; 43 1991_CR6 VV Petrenko (1991_CR15) 2016; 177 JP Severinghaus (1991_CR17) 2010; 293 C Buizert (1991_CR18) 2012; 12 M Meinshausen (1991_CR1) 2017; 10 KR Lassey (1991_CR13) 2007; 7 KR Lassey (1991_CR4) 2007; 7 Q Hua (1991_CR22) 2013; 55 G Zazzeri (1991_CR5) 2018; 60 DF McGinnis (1991_CR24) 2006; 111 G Etiope (1991_CR7) 2019; 11 VV Petrenko (1991_CR16) 2009; 324 KJ Sparrow (1991_CR26) 2018; 4 V Rommelaere (1991_CR19) 1997; 102 M Saunois (1991_CR2) 2016; 8 S Schwietzke (1991_CR3) 2016; 538 1991_CR21 1991_CR20 M Leonte (1991_CR25) 2017; 204 RA Alvarez (1991_CR28) 2018; 361 |
References_xml | – volume: 12 start-page: 9079 year: 2012 end-page: 9096 ident: CR9 article-title: Global anthropogenic methane emissions 2005–2030: technical mitigation potentials and costs publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-12-9079-2012 – volume: 114 start-page: E5778 year: 2017 end-page: E5786 ident: CR12 article-title: Glacial/interglacial wetland, biomass burning, and geologic methane emissions constrained by dual stable isotopic CH ice core records publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1613883114 – volume: 548 start-page: 443 year: 2017 end-page: 446 ident: CR8 article-title: Minimal geological methane emissions during the Younger Dryas–Preboreal abrupt warming event publication-title: Nature doi: 10.1038/nature23316 – volume: 177 start-page: 62 year: 2016 end-page: 77 ident: CR15 article-title: Measurements of C in ancient ice from Taylor Glacier, Antarctica constrain in situ cosmogenic CH and CO production rates publication-title: Geochim. Cosmochim. Ac doi: 10.1016/j.gca.2016.01.004 – volume: 7 start-page: 2119 year: 2007 end-page: 2139 ident: CR4 article-title: Centennial evolution of the atmospheric methane budget: what do the carbon isotopes tell us? publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-7-2119-2007 – volume: 72 start-page: 265 year: 2010 end-page: 274 ident: CR23 article-title: Microseepage in drylands: flux and implications in the global atmospheric source/sink budget of methane publication-title: Global Planet. Change doi: 10.1016/j.gloplacha.2010.01.002 – volume: 115 start-page: 12413 year: 2018 end-page: 12418 ident: CR11 article-title: Large changes in biomass burning over the last millennium inferred from paleoatmospheric ethane in polar ice cores publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1807172115 – volume: 4 start-page: eaao4842 year: 2018 ident: CR26 article-title: Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf publication-title: Sci. Adv doi: 10.1126/sciadv.aao4842 – ident: CR6 – volume: 11 start-page: 1 year: 2019 end-page: 22 ident: CR7 article-title: Gridded maps of geological methane emissions and their isotopic signature. Earth Syst publication-title: Sci. Data – volume: 324 start-page: 506 year: 2009 end-page: 508 ident: CR16 article-title: CH measurements in Greenland Ice: investigating last glacial termination CH sources publication-title: Science doi: 10.1126/science.1168909 – volume: 204 start-page: 375 year: 2017 end-page: 387 ident: CR25 article-title: Rapid rates of aerobic methane oxidation at the feather edge of gas hydrate stability in the waters of Hudson Canyon, US Atlantic Margin publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2017.01.009 – volume: 293 start-page: 359 year: 2010 end-page: 367 ident: CR17 article-title: Deep air convection in the firn at a zero-accumulation site, central Antarctica publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2010.03.003 – volume: 7 start-page: 2141 year: 2007 end-page: 2149 ident: CR13 article-title: The atmospheric cycling of radiomethane and the “fossil fraction” of the methane source publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-7-2141-2007 – volume: 61 start-page: 79 year: 2008 end-page: 88 ident: CR14 article-title: Did geologic emissions of methane play any role in Quaternary climate change? publication-title: Global Planet. Change doi: 10.1016/j.gloplacha.2007.08.008 – volume: 111 start-page: C09007 year: 2006 ident: CR24 article-title: Fate of rising methane bubbles in stratified waters: how much methane reaches the atmosphere? publication-title: J. Geophys. Res. Oceans doi: 10.1029/2005JC003183 – ident: CR21 – volume: 361 start-page: 186 year: 2018 end-page: 188 ident: CR28 article-title: Assessment of methane emissions from the U.S. oil and gas supply chain publication-title: Science – volume: 60 start-page: 1067 year: 2018 end-page: 1081 ident: CR5 article-title: Global and regional emissions of radiocarbon from nuclear power plants from 1972 to 2016 publication-title: Radiocarbon doi: 10.1017/RDC.2018.42 – volume: 55 start-page: 2059 year: 2013 end-page: 2072 ident: CR22 article-title: Atmospheric radiocarbon for the period 1950–2010 publication-title: Radiocarbon doi: 10.2458/azu_js_rc.v55i2.16177 – volume: 102 start-page: 30069 year: 1997 end-page: 30083 ident: CR19 article-title: Reconstructing recent atmospheric trace gas concentrations from polar firn and bubbly ice data by inverse methods publication-title: J. Geophys. Res. Atmos. doi: 10.1029/97JD02653 – volume: 538 start-page: 88 year: 2016 end-page: 91 ident: CR3 article-title: Upward revision of global fossil fuel methane emissions based on isotope database publication-title: Nature doi: 10.1038/nature19797 – volume: 8 start-page: 697 year: 2016 end-page: 751 ident: CR2 article-title: The global methane budget 2000–2012. Earth Syst publication-title: Sci. Data – volume: 12 start-page: 4259 year: 2012 end-page: 4277 ident: CR18 article-title: Gas transport in firn: multiple-tracer characterisation and model intercomparison for NEEM, Northern Greenland publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-12-4259-2012 – volume: 3 start-page: 45 year: 2015 end-page: 54 ident: CR10 article-title: Methane emissions and climatic warming risk from hydraulic fracturing and shale gas development: implications for policy publication-title: Eng. Emis. Con. Tech – volume: 43 start-page: 214 year: 2016 end-page: 221 ident: CR27 article-title: Preindustrial atmospheric ethane levels inferred from polar ice cores: a constraint on the geologic sources of atmospheric ethane and methane publication-title: Geophys. Res. Lett. doi: 10.1002/2015GL066854 – volume: 10 start-page: 2057 year: 2017 end-page: 2116 ident: CR1 article-title: Historical greenhouse gas concentrations for climate modelling (CMIP6) publication-title: Geosci. Model Dev doi: 10.5194/gmd-10-2057-2017 – ident: CR20 – volume: 8 start-page: 697 year: 2016 ident: 1991_CR2 publication-title: Sci. Data – ident: 1991_CR6 doi: 10.1007/978-3-319-14601-0_1 – volume: 114 start-page: E5778 year: 2017 ident: 1991_CR12 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1613883114 – volume: 55 start-page: 2059 year: 2013 ident: 1991_CR22 publication-title: Radiocarbon doi: 10.2458/azu_js_rc.v55i2.16177 – volume: 548 start-page: 443 year: 2017 ident: 1991_CR8 publication-title: Nature doi: 10.1038/nature23316 – volume: 61 start-page: 79 year: 2008 ident: 1991_CR14 publication-title: Global Planet. Change doi: 10.1016/j.gloplacha.2007.08.008 – volume: 111 start-page: C09007 year: 2006 ident: 1991_CR24 publication-title: J. Geophys. Res. Oceans doi: 10.1029/2005JC003183 – volume: 10 start-page: 2057 year: 2017 ident: 1991_CR1 publication-title: Geosci. Model Dev doi: 10.5194/gmd-10-2057-2017 – volume: 177 start-page: 62 year: 2016 ident: 1991_CR15 publication-title: Geochim. Cosmochim. Ac doi: 10.1016/j.gca.2016.01.004 – ident: 1991_CR21 doi: 10.5040/9798400646126 – volume: 4 start-page: eaao4842 year: 2018 ident: 1991_CR26 publication-title: Sci. Adv doi: 10.1126/sciadv.aao4842 – volume: 12 start-page: 9079 year: 2012 ident: 1991_CR9 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-12-9079-2012 – volume: 3 start-page: 45 year: 2015 ident: 1991_CR10 publication-title: Eng. Emis. Con. Tech – volume: 204 start-page: 375 year: 2017 ident: 1991_CR25 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2017.01.009 – volume: 361 start-page: 186 year: 2018 ident: 1991_CR28 publication-title: Science doi: 10.1126/science.aar7204 – ident: 1991_CR20 doi: 10.1029/2002JD002545 – volume: 72 start-page: 265 year: 2010 ident: 1991_CR23 publication-title: Global Planet. Change doi: 10.1016/j.gloplacha.2010.01.002 – volume: 7 start-page: 2119 year: 2007 ident: 1991_CR4 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-7-2119-2007 – volume: 43 start-page: 214 year: 2016 ident: 1991_CR27 publication-title: Geophys. Res. Lett. doi: 10.1002/2015GL066854 – volume: 324 start-page: 506 year: 2009 ident: 1991_CR16 publication-title: Science doi: 10.1126/science.1168909 – volume: 102 start-page: 30069 year: 1997 ident: 1991_CR19 publication-title: J. Geophys. Res. Atmos. doi: 10.1029/97JD02653 – volume: 115 start-page: 12413 year: 2018 ident: 1991_CR11 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1807172115 – volume: 60 start-page: 1067 year: 2018 ident: 1991_CR5 publication-title: Radiocarbon doi: 10.1017/RDC.2018.42 – volume: 293 start-page: 359 year: 2010 ident: 1991_CR17 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2010.03.003 – volume: 12 start-page: 4259 year: 2012 ident: 1991_CR18 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-12-4259-2012 – volume: 538 start-page: 88 year: 2016 ident: 1991_CR3 publication-title: Nature doi: 10.1038/nature19797 – volume: 11 start-page: 1 year: 2019 ident: 1991_CR7 publication-title: Sci. Data – volume: 7 start-page: 2141 year: 2007 ident: 1991_CR13 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-7-2141-2007 |
SSID | ssj0005174 |
Score | 2.318014 |
Snippet | Atmospheric methane (CH
4
) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era
1
. Fossil fuel extraction and... Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era1. Fossil fuel extraction and use... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 409 |
SubjectTerms | 639/638/169/824 704/106/35 704/106/694/674 704/47/4113 Anthropogenic factors Atmosphere Atmospheric methane Biomass Carbon Carbon 14 Confidence limits Cosmic rays Emission inventories Emissions control Environmental Sciences Estimates Fossil fuels Gases Geology Greenhouse effect Greenhouse gases Human impact Human influences Humanities and Social Sciences Ice cover Ice sheets Industrial plant emissions Methane Mud volcanoes multidisciplinary Nuclear fuels Nuclear power plants Nuclear reactors Permafrost Pleistocene Science Science (multidisciplinary) Sciences of the Universe Sea level Time series Volcanoes |
Title | Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions |
URI | https://link.springer.com/article/10.1038/s41586-020-1991-8 https://www.proquest.com/docview/2369417188 https://www.proquest.com/docview/2359397191 https://hal.science/hal-04945279 |
Volume | 578 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDBdry2Avox8by9oVb_RhH4Qm9sVxnkZ79BrGKGWscG_GcZTtoNy1l7bQ_75SzrlbC-uLCYmSGEmWZUv-CeAgReO9qnRMrn8eD1TiyA5WdWw4ZFXJRmYLtM8zXV4Mfoyzcdhwa0NaZW8TO0NdzzzvkR9KxUcuyZKa71fXMVeN4uhqKKGxBhsMXcYpXfk4X6V4PEFh7qOayhy2NHEZTr9N4i75xzyal9b-clbkPy7nkyhpN_mMNuF18BrF0ULMW_ACp9vw8rSryntPV10ep2-3YSuM1VZ8DoDSX3agPJ_jZFmiQ6SDYTkQHKvmbKhW_GG_EefChZoJpFITLxrq5eRSMCmXhONNtfYNXIxOfg_LOFRQiL2UNASKDBudqxTJifBGO6UqRKdpVUhraOUb1JkzmPoMNbmJztVKJ6ibQpumUr5G9RbWp7MpvgNRoZOFkWnNEHBK5YVryMZmuU-ShuY4jCDp-Wd9gBfnKheXtgtzK2MXLLfEcssstyaCr8tXrhbYGs8RfyKhLOkYFbs8-mn5HkPcZDIv7tII9nqZ2TAWW7vSnAg-Lh8T5zg04qY4u2WarCDPjBavEXzrZb36xH979f75H-7CK8kqxkfgkz1Yv5nf4gdyYm6q_U5TqTXDlNvR6T5sHJ-cnf96AFxx7CI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8AxsiLEdRQRVyNJn6kod29brcPxBAUi5zEB0jubd1up3oJucMraPin_Bud6cedksgbb007bTezs_OxM_sbgBcxGu9VoUNy_dNwoCJHerAoQ8Mpq0JWMmnRPo90fjL4NEpGS_C7PwvDZZW9TmwUdTn1vEe-LRUfuSRNat6d_Qi5axRnV_sWGq1YHOLlLwrZ6p2D9zS_L6Xc_3C8l4ddV4HQS0likSVY6VTFSIbVG-2UKhCdpkiJ4krlK9SJMxj7BDW5Ts6VSkeoq0ybqlC-REXfXYZbZHgjXlHpKF2UlFxBfe6zqMps12QoDZf7RmFTbGT-sYPL37kK8y8X90pWtjF2-_fgbuelit1WrNZgCSfrcPtj0wX4kq6aulFfr8Napxtq8aoDsH59H_IvMxzPW4KIeLCXDwTnxrn6qhbf2E_FmXBdjwYS4bEXFY1yfCqYlFvQ8SZe_QBOboS3D2FlMp3gBogCncyMjEuGnFMqzVxFOj1JfRRVZFMxgKjnn_UdnDl31Ti1TVpdGduy3BLLLbPcmgDezF85a7E8riN-TpMyp2MU7nx3aPkeQ-okMs1-xgFs9nNmu7Vf24WkBvBs_pg4x6kYN8HpBdMkGXmCFCwH8Laf68Un_juqR9f_8CncyY8_D-3w4OjwMaxKFjc-fh9twsr57AKfkAN1Xmw1Uivg600vkz9c9Sa5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RSAuiBYQKQUMAomHok3sjeMcEKpalpRWVQ9U2ptxnAmsVO22mxbUv8avYyaPXahEb71FySSxxuN5eD7PALyK0XivCh2S65-GQxU50oNFGRpOWRWykklb7fNQ58fDL-NkvAK_-7MwDKvsdWKjqMuZ5z3ygVR85JI0qRlUHSziaHf08fQs5A5SnGnt22m0IrKPl78ofKs_7O3SXL-WcvTp604edh0GQi8liUiWYKVTFSMZWW-0U6pAdJqiJooxla9QJ85g7BPU5EY5Vyodoa4ybapC-RIVfXcVbqUqiXmNpeN0CS-5UgG6z6gqM6jJaBqG_kZhAzwy_9jE1R-MyPzL3b2SoW0M3-g-3Os8VrHditg6rOB0A25_bjoCX9JVgyH19Qasd3qiFm-6YtZvH0B-NMfJoj2IiIc7-VBwnpyRWLX4zj4rzoXr-jWQOE-8qGiUkxPBpNyOjjf06odwfCO8fQRr09kUH4Mo0MnMyLjk8nNKpZmrSL8nqY-iiuwrBhD1_LO-K23OHTZObJNiV8a2LLfEcssstyaAd4tXTtu6HtcRv6RJWdBxRe58-8DyPS6vk8g0-xkHsNXPme30QG2XUhvAi8Vj4hynZdwUZxdMk2TkFVLgHMD7fq6Xn_jvqDav_-FzuEMLxB7sHe4_gbuSpY1P4kdbsHY-v8Cn5EudF88aoRXw7aZXyR9HyCrv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preindustrial+14CH4+indicates+greater+anthropogenic+fossil+CH4+emissions&rft.jtitle=Nature+%28London%29&rft.au=Hmiel%2C+Benjamin&rft.au=Petrenko%2C+V.+V.&rft.au=Dyonisius%2C+M.+N.&rft.au=Buizert%2C+C.&rft.date=2020-02-20&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=578&rft.issue=7795&rft.spage=409&rft.epage=412&rft_id=info:doi/10.1038%2Fs41586-020-1991-8&rft.externalDocID=10_1038_s41586_020_1991_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |