Random attractors for a stochastic nonlocal delayed reaction–diffusion equation on a semi-infinite interval

Abstract The aim of this paper is to prove the existence and qualitative property of random attractors for a stochastic non-local delayed reaction–diffusion equation (SNDRDE) on a semi-infinite interval with a Dirichlet boundary condition at the finite end. This equation models the spatial–temporal...

Full description

Saved in:
Bibliographic Details
Published inIMA journal of applied mathematics Vol. 88; no. 4; pp. 576 - 601
Main Authors Hu, Wenjie, Zhu, Quanxin, Caraballo, Tomás
Format Journal Article
LanguageEnglish
Published Oxford University Press 28.12.2023
Subjects
Online AccessGet full text
ISSN0272-4960
1464-3634
DOI10.1093/imamat/hxad025

Cover

Loading…
Abstract Abstract The aim of this paper is to prove the existence and qualitative property of random attractors for a stochastic non-local delayed reaction–diffusion equation (SNDRDE) on a semi-infinite interval with a Dirichlet boundary condition at the finite end. This equation models the spatial–temporal evolution of the mature individuals for a two-stage species whose juvenile and adults both diffuse that lives on a semi-infinite domain and subject to random perturbations. By transforming the SNDRDE into a random evolution equation with delay, by means of a stationary conjugate transformation, we first establish the global existence and uniqueness of solutions to the equation, after which we show the solutions generate a random dynamical system. Then, we deduce uniform a priori estimates of the solutions and show the existence of bounded random absorbing sets. Subsequently, we prove the pullback asymptotic compactness of the random dynamical system generated by the SNDRDE with respect to the compact open topology, and hence obtain the existence of random attractors. At last, it is proved that the random attractor is an exponentially attracting stationary solution under appropriate conditions. The theoretical results are illustrated by application to the stochastic non-local delayed Nicholson’s blowfly equation.
AbstractList Abstract The aim of this paper is to prove the existence and qualitative property of random attractors for a stochastic non-local delayed reaction–diffusion equation (SNDRDE) on a semi-infinite interval with a Dirichlet boundary condition at the finite end. This equation models the spatial–temporal evolution of the mature individuals for a two-stage species whose juvenile and adults both diffuse that lives on a semi-infinite domain and subject to random perturbations. By transforming the SNDRDE into a random evolution equation with delay, by means of a stationary conjugate transformation, we first establish the global existence and uniqueness of solutions to the equation, after which we show the solutions generate a random dynamical system. Then, we deduce uniform a priori estimates of the solutions and show the existence of bounded random absorbing sets. Subsequently, we prove the pullback asymptotic compactness of the random dynamical system generated by the SNDRDE with respect to the compact open topology, and hence obtain the existence of random attractors. At last, it is proved that the random attractor is an exponentially attracting stationary solution under appropriate conditions. The theoretical results are illustrated by application to the stochastic non-local delayed Nicholson’s blowfly equation.
The aim of this paper is to prove the existence and qualitative property of random attractors for a stochastic non-local delayed reaction–diffusion equation (SNDRDE) on a semi-infinite interval with a Dirichlet boundary condition at the finite end. This equation models the spatial–temporal evolution of the mature individuals for a two-stage species whose juvenile and adults both diffuse that lives on a semi-infinite domain and subject to random perturbations. By transforming the SNDRDE into a random evolution equation with delay, by means of a stationary conjugate transformation, we first establish the global existence and uniqueness of solutions to the equation, after which we show the solutions generate a random dynamical system. Then, we deduce uniform a priori estimates of the solutions and show the existence of bounded random absorbing sets. Subsequently, we prove the pullback asymptotic compactness of the random dynamical system generated by the SNDRDE with respect to the compact open topology, and hence obtain the existence of random attractors. At last, it is proved that the random attractor is an exponentially attracting stationary solution under appropriate conditions. The theoretical results are illustrated by application to the stochastic non-local delayed Nicholson’s blowfly equation.
Author Zhu, Quanxin
Hu, Wenjie
Caraballo, Tomás
Author_xml – sequence: 1
  givenname: Wenjie
  surname: Hu
  fullname: Hu, Wenjie
– sequence: 2
  givenname: Quanxin
  surname: Zhu
  fullname: Zhu, Quanxin
– sequence: 3
  givenname: Tomás
  surname: Caraballo
  fullname: Caraballo, Tomás
  email: caraball@us.es
BookMark eNqFkEtLAzEQgINUsK1ePefqYds8d7dHKb6gIIiel9k8aGR3U5NU7M3_4D_0l5haT4IIAzMM880w3wSNBj8YhM4pmVGy4HPXQw9pvn4DTZg8QmMqSlHwkosRGhNWsUIsSnKCJjE-E0KorMgY9Q8waN9jSCmASj5EbH3AgGPyag0xOYXznc4r6LA2HeyMxsHkUeeHz_cP7azdxlxj87KFfRPnyLjpXeEG6waXDHZDMuEVulN0bKGL5uwnT9HT9dXj8rZY3d_cLS9XhWKsloU1tZGtamsJVldUQ2W1lILXlGhmuLBgWW1LWi5aWjNYSN1CVREOlIlKcMqnaHbYq4KPMRjbbELWE3YNJc1eVnOQ1fzIyoD4BSiXvt_JWlz3N3ZxwPx289-JL2Rrhis
CitedBy_id crossref_primary_10_3390_math12071037
crossref_primary_10_14232_ejqtde_2024_1_56
Cites_doi 10.1007/978-3-662-12878-7
10.1007/978-1-4612-4050-1
10.1007/978-3-662-13159-6
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. 2023
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. 2023
DBID TOX
AAYXX
CITATION
DOI 10.1093/imamat/hxad025
DatabaseName Oxford Journals Open Access (Activated by CARLI)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access (Activated by CARLI)
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1464-3634
EndPage 601
ExternalDocumentID 10_1093_imamat_hxad025
10.1093/imamat/hxad025
GroupedDBID -E4
-~X
.2P
.I3
0R~
18M
1TH
29I
4.4
482
48X
5GY
5VS
5WA
6.Y
6TJ
70D
8WZ
A6W
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAWDT
ABDBF
ABDTM
ABEFU
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABTAH
ABWST
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACIWK
ACMRT
ACPQN
ACUFI
ACUTJ
ACYTK
ACZBC
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFIYH
AFOFC
AFSHK
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AHXPO
AI.
AIAGR
AIJHB
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ANFBD
APIBT
APJGH
APWMN
AQDSO
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DU5
D~K
EBS
EE~
EJD
ELUNK
ESX
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FQBLK
G8K
GAUVT
GJXCC
H13
H5~
HAR
HVGLF
HW0
HZ~
I-F
IOX
J21
JAVBF
KAQDR
KBUDW
KC5
KOP
KSI
KSN
M-Z
M43
M49
MBTAY
N9A
NGC
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OCL
ODMLO
OJQWA
OJZSN
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
T9H
TCN
TJP
TN5
TOX
TUS
UPT
UQL
VH1
WH7
X7H
XOL
YAYTL
YKOAZ
YXANX
ZCG
ZKX
ZY4
~91
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ACUHS
ACUXJ
ADNBA
ADYJX
AGORE
AHGBF
AJBYB
AJNCP
ALXQX
AMVHM
ANAKG
CITATION
JXSIZ
OXVGQ
ID FETCH-LOGICAL-c2285-fe8e5bcb85afd71da7fd5543810d2e34faf28f6169b182a95dba7703a12474313
IEDL.DBID TOX
ISSN 0272-4960
IngestDate Thu Apr 24 23:00:51 EDT 2025
Tue Jul 01 01:59:18 EDT 2025
Wed Aug 28 03:18:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords semi-infinite interval
age-structured population model
Random attractor
non-local
stochastic delayed reaction–diffusion equations
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2285-fe8e5bcb85afd71da7fd5543810d2e34faf28f6169b182a95dba7703a12474313
OpenAccessLink https://dx.doi.org/10.1093/imamat/hxad025
PageCount 26
ParticipantIDs crossref_primary_10_1093_imamat_hxad025
crossref_citationtrail_10_1093_imamat_hxad025
oup_primary_10_1093_imamat_hxad025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-28
PublicationDateYYYYMMDD 2023-12-28
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-28
  day: 28
PublicationDecade 2020
PublicationTitle IMA journal of applied mathematics
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Hu (2024010816055033800_ref15) 2018; 69
Li (2024010816055033800_ref20) 2020; 550
Duan (2024010816055033800_ref10) 2004; 16
Hu (2024010816055033800_ref18) 2018; 39
Yi (2024010816055033800_ref34) 2016; 28
Wu (2024010816055033800_ref31) 2001; 13
Gurney (2024010816055033800_ref13) 1980; 287
Hu (2024010816055033800_ref16) 2021; 53
Chueshov (2024010816055033800_ref6) 2014; 39
Caraballo (2024010816055033800_ref4) 2000; 6
Metz (2024010816055033800_ref24) 1986
Yi (2024010816055033800_ref32) 2013; 25
Yi (2024010816055033800_ref33) 2015; 47
Duan (2024010816055033800_ref9) 2003; 31
So (2024010816055033800_ref26) 2001; 457
Hu (2024010816055033800_ref17) 2022; 63
Zhou (2024010816055033800_ref37) 2017; 263
Liang (2024010816055033800_ref21) 2003; 11
Schmalfus (2024010816055033800_ref25) 1998; 225
Gao (2024010816055033800_ref12) 2014; 46
Wu (2024010816055033800_ref30) 1996
Crauel (2024010816055033800_ref7) 2002; 63
Li (2024010816055033800_ref19) 2008; 245
Crauel (2024010816055033800_ref8) 1994; 100
Flandoli (2024010816055033800_ref11) 1996; 59
Bates (2024010816055033800_ref2) 2009; 246
Haberman (2024010816055033800_ref14) 2004
Arnold (2024010816055033800_ref1) 1998
Wang (2024010816055033800_ref27) 2014; 13
Lu (2024010816055033800_ref23) 2008; 8
Yi (2024010816055033800_ref35) 2012; 63
Zhao (2024010816055033800_ref36) 2009; 17
Lu (2024010816055033800_ref22) 2007; 236
Wang (2024010816055033800_ref28) 2015; 14
Wang (2024010816055033800_ref29) 2018; 264
Caraballo (2024010816055033800_ref5) 2007; 18
Bessaih (2024010816055033800_ref3) 2014; 34
References_xml – volume: 6
  start-page: 875
  year: 2000
  ident: 2024010816055033800_ref4
  article-title: Stability and random attractors for a reaction-diffusion equation with multiplicative noise
– volume: 25
  start-page: 959
  year: 2013
  ident: 2024010816055033800_ref32
  article-title: On dirichlet problem for a class of delayed reaction-diffusion equations with spatial non-locality
– volume: 236
  start-page: 460
  year: 2007
  ident: 2024010816055033800_ref22
  article-title: Invariant manifolds for stochastic wave equations
– volume: 13
  start-page: 651
  year: 2001
  ident: 2024010816055033800_ref31
  article-title: Traveling wave fronts of reaction-diffusion systems with delay
– volume: 63
  start-page: 413
  year: 2002
  ident: 2024010816055033800_ref7
  article-title: Random point attractors versus random set attractor
– volume: 11
  start-page: 117
  year: 2003
  ident: 2024010816055033800_ref21
  article-title: Population dynamic models with nonlocal delay on bounded fields and their numeric computations
– volume: 287
  start-page: 17
  year: 1980
  ident: 2024010816055033800_ref13
  article-title: Nicholson’s blowflies revisited
– volume: 263
  start-page: 6347
  year: 2017
  ident: 2024010816055033800_ref37
  article-title: Random exponential attractors for stochastic reaction-diffusion equation with multiplicative noise in R3
– volume: 34
  start-page: 3945
  year: 2014
  ident: 2024010816055033800_ref3
  article-title: Pathwise solutions and attractors for retarded SPDES with time smooth diffusion coefficients
– volume: 225
  start-page: 91
  year: 1998
  ident: 2024010816055033800_ref25
  article-title: A random fixed point theorem and the random graph transformation
– volume: 17
  start-page: 271
  year: 2009
  ident: 2024010816055033800_ref36
  article-title: Global attractivity in a class of nonmonotone reaction diffusion equations with time delay
– volume: 63
  start-page: 793
  year: 2012
  ident: 2024010816055033800_ref35
  article-title: The global asymptotic behavior of nonlocal delay reaction diffusion equation with unbounded domain
– volume: 31
  start-page: 2109
  year: 2003
  ident: 2024010816055033800_ref9
  article-title: Invariant manifolds for stochastic partial differential equations
– volume: 63
  start-page: 032703
  year: 2022
  ident: 2024010816055033800_ref17
  article-title: Random attractors for a stochastic age-structured population model
– volume: 53
  start-page: 3375
  year: 2021
  ident: 2024010816055033800_ref16
  article-title: Existence, uniqueness and stability of mild solution to a stochastic nonlocal delayed reaction-diffusion equation
– volume: 550
  start-page: 124164
  year: 2020
  ident: 2024010816055033800_ref20
  article-title: Random attractors for stochastic semilinear degenerateparabolic equations with delay
– volume: 100
  start-page: 365
  year: 1994
  ident: 2024010816055033800_ref8
  article-title: Attractors for random dynamical systems
– year: 1998
  ident: 2024010816055033800_ref1
  article-title: Random Dynamical System
  doi: 10.1007/978-3-662-12878-7
– year: 1996
  ident: 2024010816055033800_ref30
  article-title: Theory and applications of partial functional differential equations
  doi: 10.1007/978-1-4612-4050-1
– volume: 16
  start-page: 949
  year: 2004
  ident: 2024010816055033800_ref10
  article-title: Smooth stable and unstable manifolds for stochastic evolutionary equations
– volume: 246
  start-page: 845
  year: 2009
  ident: 2024010816055033800_ref2
  article-title: Random attractors for stochastic reaction-diffusion equations on unbounded domains
– volume: 39
  start-page: 1965
  year: 2014
  ident: 2024010816055033800_ref6
  article-title: Attractors for delayed, non-rotational von Karman plates with applications to ow-structure interactions without any damping
– volume: 245
  start-page: 1775
  year: 2008
  ident: 2024010816055033800_ref19
  article-title: Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations
– volume: 47
  start-page: 3005
  year: 2015
  ident: 2024010816055033800_ref33
  article-title: Asymptotic behavior, spreading speeds and traveling waves of nonmonotone dynamical systems
– volume: 8
  start-page: 505
  year: 2008
  ident: 2024010816055033800_ref23
  article-title: Invariant foliations for stochastic partial differential equations
– volume: 264
  start-page: 378
  year: 2018
  ident: 2024010816055033800_ref29
  article-title: Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains
– volume: 18
  start-page: 271
  year: 2007
  ident: 2024010816055033800_ref5
  article-title: Existence of exponentially attracting stationary solutions for delay evolution equations
– volume: 46
  start-page: 2281
  year: 2014
  ident: 2024010816055033800_ref12
  article-title: Random attractors for stochastic evolution equations driven by fractional Brownian motion
– volume: 39
  start-page: 300
  year: 2018
  ident: 2024010816055033800_ref18
  article-title: Dirichlet problem of a delay differential equation with spatial non-locality on a half plane
– volume: 457
  start-page: 1841
  year: 2001
  ident: 2024010816055033800_ref26
  article-title: A reaction-diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains
– volume: 13
  start-page: 2475
  year: 2014
  ident: 2024010816055033800_ref27
  article-title: Global dynamics of a non-local delayed differential equation in the half plane
– volume: 59
  start-page: 21
  year: 1996
  ident: 2024010816055033800_ref11
  article-title: Random attractors for the 3D stochastic navier-stokes equation with multiplicative white noise
– year: 2004
  ident: 2024010816055033800_ref14
  article-title: Applied Partial Differential Equations with Fourier Series and Boundary Value problems
– year: 1986
  ident: 2024010816055033800_ref24
  article-title: The dynamics of physiologically structured populations
  doi: 10.1007/978-3-662-13159-6
– volume: 14
  start-page: 1018
  year: 2015
  ident: 2024010816055033800_ref28
  article-title: Random attractors for delay parabolic equations with additive noise and deterministic nonautonomous forcing
– volume: 28
  start-page: 1007
  year: 2016
  ident: 2024010816055033800_ref34
  article-title: Dirichlet problem of a delayed reaction-diffusion equation on a semi-infinite interval
– volume: 69
  start-page: 1
  year: 2018
  ident: 2024010816055033800_ref15
  article-title: Global dynamics of a nonlocal delayed reaction-diffusion equation on a half plane
SSID ssj0001570
Score 2.3336473
Snippet Abstract The aim of this paper is to prove the existence and qualitative property of random attractors for a stochastic non-local delayed reaction–diffusion...
The aim of this paper is to prove the existence and qualitative property of random attractors for a stochastic non-local delayed reaction–diffusion equation...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 576
Title Random attractors for a stochastic nonlocal delayed reaction–diffusion equation on a semi-infinite interval
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA4yX_RBvOK8jCCCT2Fr0jTp46aOIUxBNthbSZuEFVYvWwf65n_wH_pLPGlrUVEUSp9OoCTp-b6TnPMdhE6ZBtJApUcSlzvog28kMuCGKEMDLQxw5MDVDg-vg8HYv5rwSSUWvfjhCj9k7TRTQN7a0yelAaDB2wICO5X80c2k9rkeF-VpiqDEB1JeyzN-H_4FflxJ2yc06W-ijYoG4m65bltoxdxto_VhraG62EHZLQT59xlWeT4vm-JgIJhYYaBryVQ5fWUMsXsBRthpPT4bjYECFoUKby-vrvXJ0p2FYfNY6nljeGC4yVIC-yp1bBOnRc6jmu2icf9ydD4gVXMEklAqObFGGh4nseTKauFpJawGauAEuzQ1zLfKUmkDLwhjCCFUyHWsBPzeCgDdsQa2hxrwkWYfYRtKy2ItO6oDwZowyloGb88Y3rHMF01EPuYsSirlcNfAYhaVN9gsKuc4qua4ic5q-4dSM-NXyxNYgj-MDv5jdIjWXCN4l2hC5RFq5POlOQa6kMcttNrtXfT6rWLHvAPbusR3
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+attractors+for+a+stochastic+nonlocal+delayed+reaction%E2%80%93diffusion+equation+on+a+semi-infinite+interval&rft.jtitle=IMA+journal+of+applied+mathematics&rft.au=Hu%2C+Wenjie&rft.au=Zhu%2C+Quanxin&rft.au=Caraballo%2C+Tom%C3%A1s&rft.date=2023-12-28&rft.pub=Oxford+University+Press&rft.issn=0272-4960&rft.eissn=1464-3634&rft.volume=88&rft.issue=4&rft.spage=576&rft.epage=601&rft_id=info:doi/10.1093%2Fimamat%2Fhxad025&rft.externalDocID=10.1093%2Fimamat%2Fhxad025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4960&client=summon