Random attractors for a stochastic nonlocal delayed reaction–diffusion equation on a semi-infinite interval
Abstract The aim of this paper is to prove the existence and qualitative property of random attractors for a stochastic non-local delayed reaction–diffusion equation (SNDRDE) on a semi-infinite interval with a Dirichlet boundary condition at the finite end. This equation models the spatial–temporal...
Saved in:
Published in | IMA journal of applied mathematics Vol. 88; no. 4; pp. 576 - 601 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
28.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0272-4960 1464-3634 |
DOI | 10.1093/imamat/hxad025 |
Cover
Loading…
Abstract | Abstract
The aim of this paper is to prove the existence and qualitative property of random attractors for a stochastic non-local delayed reaction–diffusion equation (SNDRDE) on a semi-infinite interval with a Dirichlet boundary condition at the finite end. This equation models the spatial–temporal evolution of the mature individuals for a two-stage species whose juvenile and adults both diffuse that lives on a semi-infinite domain and subject to random perturbations. By transforming the SNDRDE into a random evolution equation with delay, by means of a stationary conjugate transformation, we first establish the global existence and uniqueness of solutions to the equation, after which we show the solutions generate a random dynamical system. Then, we deduce uniform a priori estimates of the solutions and show the existence of bounded random absorbing sets. Subsequently, we prove the pullback asymptotic compactness of the random dynamical system generated by the SNDRDE with respect to the compact open topology, and hence obtain the existence of random attractors. At last, it is proved that the random attractor is an exponentially attracting stationary solution under appropriate conditions. The theoretical results are illustrated by application to the stochastic non-local delayed Nicholson’s blowfly equation. |
---|---|
AbstractList | Abstract
The aim of this paper is to prove the existence and qualitative property of random attractors for a stochastic non-local delayed reaction–diffusion equation (SNDRDE) on a semi-infinite interval with a Dirichlet boundary condition at the finite end. This equation models the spatial–temporal evolution of the mature individuals for a two-stage species whose juvenile and adults both diffuse that lives on a semi-infinite domain and subject to random perturbations. By transforming the SNDRDE into a random evolution equation with delay, by means of a stationary conjugate transformation, we first establish the global existence and uniqueness of solutions to the equation, after which we show the solutions generate a random dynamical system. Then, we deduce uniform a priori estimates of the solutions and show the existence of bounded random absorbing sets. Subsequently, we prove the pullback asymptotic compactness of the random dynamical system generated by the SNDRDE with respect to the compact open topology, and hence obtain the existence of random attractors. At last, it is proved that the random attractor is an exponentially attracting stationary solution under appropriate conditions. The theoretical results are illustrated by application to the stochastic non-local delayed Nicholson’s blowfly equation. The aim of this paper is to prove the existence and qualitative property of random attractors for a stochastic non-local delayed reaction–diffusion equation (SNDRDE) on a semi-infinite interval with a Dirichlet boundary condition at the finite end. This equation models the spatial–temporal evolution of the mature individuals for a two-stage species whose juvenile and adults both diffuse that lives on a semi-infinite domain and subject to random perturbations. By transforming the SNDRDE into a random evolution equation with delay, by means of a stationary conjugate transformation, we first establish the global existence and uniqueness of solutions to the equation, after which we show the solutions generate a random dynamical system. Then, we deduce uniform a priori estimates of the solutions and show the existence of bounded random absorbing sets. Subsequently, we prove the pullback asymptotic compactness of the random dynamical system generated by the SNDRDE with respect to the compact open topology, and hence obtain the existence of random attractors. At last, it is proved that the random attractor is an exponentially attracting stationary solution under appropriate conditions. The theoretical results are illustrated by application to the stochastic non-local delayed Nicholson’s blowfly equation. |
Author | Zhu, Quanxin Hu, Wenjie Caraballo, Tomás |
Author_xml | – sequence: 1 givenname: Wenjie surname: Hu fullname: Hu, Wenjie – sequence: 2 givenname: Quanxin surname: Zhu fullname: Zhu, Quanxin – sequence: 3 givenname: Tomás surname: Caraballo fullname: Caraballo, Tomás email: caraball@us.es |
BookMark | eNqFkEtLAzEQgINUsK1ePefqYds8d7dHKb6gIIiel9k8aGR3U5NU7M3_4D_0l5haT4IIAzMM880w3wSNBj8YhM4pmVGy4HPXQw9pvn4DTZg8QmMqSlHwkosRGhNWsUIsSnKCJjE-E0KorMgY9Q8waN9jSCmASj5EbH3AgGPyag0xOYXznc4r6LA2HeyMxsHkUeeHz_cP7azdxlxj87KFfRPnyLjpXeEG6waXDHZDMuEVulN0bKGL5uwnT9HT9dXj8rZY3d_cLS9XhWKsloU1tZGtamsJVldUQ2W1lILXlGhmuLBgWW1LWi5aWjNYSN1CVREOlIlKcMqnaHbYq4KPMRjbbELWE3YNJc1eVnOQ1fzIyoD4BSiXvt_JWlz3N3ZxwPx289-JL2Rrhis |
CitedBy_id | crossref_primary_10_3390_math12071037 crossref_primary_10_14232_ejqtde_2024_1_56 |
Cites_doi | 10.1007/978-3-662-12878-7 10.1007/978-1-4612-4050-1 10.1007/978-3-662-13159-6 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. 2023 |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. 2023 |
DBID | TOX AAYXX CITATION |
DOI | 10.1093/imamat/hxad025 |
DatabaseName | Oxford Journals Open Access (Activated by CARLI) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access (Activated by CARLI) url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1464-3634 |
EndPage | 601 |
ExternalDocumentID | 10_1093_imamat_hxad025 10.1093/imamat/hxad025 |
GroupedDBID | -E4 -~X .2P .I3 0R~ 18M 1TH 29I 4.4 482 48X 5GY 5VS 5WA 6.Y 6TJ 70D 8WZ A6W AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAWDT ABDBF ABDTM ABEFU ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABSAR ABSMQ ABTAH ABWST ABXVV ABZBJ ACFRR ACGFO ACGFS ACGOD ACIWK ACMRT ACPQN ACUFI ACUTJ ACYTK ACZBC ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKPW AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFIYH AFOFC AFSHK AFXEN AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AHXPO AI. AIAGR AIJHB AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ANFBD APIBT APJGH APWMN AQDSO ASAOO ASPBG ATDFG ATGXG ATTQO AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DU5 D~K EBS EE~ EJD ELUNK ESX F9B FEDTE FLIZI FLUFQ FOEOM FQBLK G8K GAUVT GJXCC H13 H5~ HAR HVGLF HW0 HZ~ I-F IOX J21 JAVBF KAQDR KBUDW KC5 KOP KSI KSN M-Z M43 M49 MBTAY N9A NGC NMDNZ NOMLY NU- NVLIB O0~ O9- OCL ODMLO OJQWA OJZSN OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO T9H TCN TJP TN5 TOX TUS UPT UQL VH1 WH7 X7H XOL YAYTL YKOAZ YXANX ZCG ZKX ZY4 ~91 AAYXX ABDFA ABEJV ABGNP ABPQP ABVGC ACUHS ACUXJ ADNBA ADYJX AGORE AHGBF AJBYB AJNCP ALXQX AMVHM ANAKG CITATION JXSIZ OXVGQ |
ID | FETCH-LOGICAL-c2285-fe8e5bcb85afd71da7fd5543810d2e34faf28f6169b182a95dba7703a12474313 |
IEDL.DBID | TOX |
ISSN | 0272-4960 |
IngestDate | Thu Apr 24 23:00:51 EDT 2025 Tue Jul 01 01:59:18 EDT 2025 Wed Aug 28 03:18:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | semi-infinite interval age-structured population model Random attractor non-local stochastic delayed reaction–diffusion equations |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2285-fe8e5bcb85afd71da7fd5543810d2e34faf28f6169b182a95dba7703a12474313 |
OpenAccessLink | https://dx.doi.org/10.1093/imamat/hxad025 |
PageCount | 26 |
ParticipantIDs | crossref_primary_10_1093_imamat_hxad025 crossref_citationtrail_10_1093_imamat_hxad025 oup_primary_10_1093_imamat_hxad025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-28 |
PublicationDateYYYYMMDD | 2023-12-28 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | IMA journal of applied mathematics |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Hu (2024010816055033800_ref15) 2018; 69 Li (2024010816055033800_ref20) 2020; 550 Duan (2024010816055033800_ref10) 2004; 16 Hu (2024010816055033800_ref18) 2018; 39 Yi (2024010816055033800_ref34) 2016; 28 Wu (2024010816055033800_ref31) 2001; 13 Gurney (2024010816055033800_ref13) 1980; 287 Hu (2024010816055033800_ref16) 2021; 53 Chueshov (2024010816055033800_ref6) 2014; 39 Caraballo (2024010816055033800_ref4) 2000; 6 Metz (2024010816055033800_ref24) 1986 Yi (2024010816055033800_ref32) 2013; 25 Yi (2024010816055033800_ref33) 2015; 47 Duan (2024010816055033800_ref9) 2003; 31 So (2024010816055033800_ref26) 2001; 457 Hu (2024010816055033800_ref17) 2022; 63 Zhou (2024010816055033800_ref37) 2017; 263 Liang (2024010816055033800_ref21) 2003; 11 Schmalfus (2024010816055033800_ref25) 1998; 225 Gao (2024010816055033800_ref12) 2014; 46 Wu (2024010816055033800_ref30) 1996 Crauel (2024010816055033800_ref7) 2002; 63 Li (2024010816055033800_ref19) 2008; 245 Crauel (2024010816055033800_ref8) 1994; 100 Flandoli (2024010816055033800_ref11) 1996; 59 Bates (2024010816055033800_ref2) 2009; 246 Haberman (2024010816055033800_ref14) 2004 Arnold (2024010816055033800_ref1) 1998 Wang (2024010816055033800_ref27) 2014; 13 Lu (2024010816055033800_ref23) 2008; 8 Yi (2024010816055033800_ref35) 2012; 63 Zhao (2024010816055033800_ref36) 2009; 17 Lu (2024010816055033800_ref22) 2007; 236 Wang (2024010816055033800_ref28) 2015; 14 Wang (2024010816055033800_ref29) 2018; 264 Caraballo (2024010816055033800_ref5) 2007; 18 Bessaih (2024010816055033800_ref3) 2014; 34 |
References_xml | – volume: 6 start-page: 875 year: 2000 ident: 2024010816055033800_ref4 article-title: Stability and random attractors for a reaction-diffusion equation with multiplicative noise – volume: 25 start-page: 959 year: 2013 ident: 2024010816055033800_ref32 article-title: On dirichlet problem for a class of delayed reaction-diffusion equations with spatial non-locality – volume: 236 start-page: 460 year: 2007 ident: 2024010816055033800_ref22 article-title: Invariant manifolds for stochastic wave equations – volume: 13 start-page: 651 year: 2001 ident: 2024010816055033800_ref31 article-title: Traveling wave fronts of reaction-diffusion systems with delay – volume: 63 start-page: 413 year: 2002 ident: 2024010816055033800_ref7 article-title: Random point attractors versus random set attractor – volume: 11 start-page: 117 year: 2003 ident: 2024010816055033800_ref21 article-title: Population dynamic models with nonlocal delay on bounded fields and their numeric computations – volume: 287 start-page: 17 year: 1980 ident: 2024010816055033800_ref13 article-title: Nicholson’s blowflies revisited – volume: 263 start-page: 6347 year: 2017 ident: 2024010816055033800_ref37 article-title: Random exponential attractors for stochastic reaction-diffusion equation with multiplicative noise in R3 – volume: 34 start-page: 3945 year: 2014 ident: 2024010816055033800_ref3 article-title: Pathwise solutions and attractors for retarded SPDES with time smooth diffusion coefficients – volume: 225 start-page: 91 year: 1998 ident: 2024010816055033800_ref25 article-title: A random fixed point theorem and the random graph transformation – volume: 17 start-page: 271 year: 2009 ident: 2024010816055033800_ref36 article-title: Global attractivity in a class of nonmonotone reaction diffusion equations with time delay – volume: 63 start-page: 793 year: 2012 ident: 2024010816055033800_ref35 article-title: The global asymptotic behavior of nonlocal delay reaction diffusion equation with unbounded domain – volume: 31 start-page: 2109 year: 2003 ident: 2024010816055033800_ref9 article-title: Invariant manifolds for stochastic partial differential equations – volume: 63 start-page: 032703 year: 2022 ident: 2024010816055033800_ref17 article-title: Random attractors for a stochastic age-structured population model – volume: 53 start-page: 3375 year: 2021 ident: 2024010816055033800_ref16 article-title: Existence, uniqueness and stability of mild solution to a stochastic nonlocal delayed reaction-diffusion equation – volume: 550 start-page: 124164 year: 2020 ident: 2024010816055033800_ref20 article-title: Random attractors for stochastic semilinear degenerateparabolic equations with delay – volume: 100 start-page: 365 year: 1994 ident: 2024010816055033800_ref8 article-title: Attractors for random dynamical systems – year: 1998 ident: 2024010816055033800_ref1 article-title: Random Dynamical System doi: 10.1007/978-3-662-12878-7 – year: 1996 ident: 2024010816055033800_ref30 article-title: Theory and applications of partial functional differential equations doi: 10.1007/978-1-4612-4050-1 – volume: 16 start-page: 949 year: 2004 ident: 2024010816055033800_ref10 article-title: Smooth stable and unstable manifolds for stochastic evolutionary equations – volume: 246 start-page: 845 year: 2009 ident: 2024010816055033800_ref2 article-title: Random attractors for stochastic reaction-diffusion equations on unbounded domains – volume: 39 start-page: 1965 year: 2014 ident: 2024010816055033800_ref6 article-title: Attractors for delayed, non-rotational von Karman plates with applications to ow-structure interactions without any damping – volume: 245 start-page: 1775 year: 2008 ident: 2024010816055033800_ref19 article-title: Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations – volume: 47 start-page: 3005 year: 2015 ident: 2024010816055033800_ref33 article-title: Asymptotic behavior, spreading speeds and traveling waves of nonmonotone dynamical systems – volume: 8 start-page: 505 year: 2008 ident: 2024010816055033800_ref23 article-title: Invariant foliations for stochastic partial differential equations – volume: 264 start-page: 378 year: 2018 ident: 2024010816055033800_ref29 article-title: Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains – volume: 18 start-page: 271 year: 2007 ident: 2024010816055033800_ref5 article-title: Existence of exponentially attracting stationary solutions for delay evolution equations – volume: 46 start-page: 2281 year: 2014 ident: 2024010816055033800_ref12 article-title: Random attractors for stochastic evolution equations driven by fractional Brownian motion – volume: 39 start-page: 300 year: 2018 ident: 2024010816055033800_ref18 article-title: Dirichlet problem of a delay differential equation with spatial non-locality on a half plane – volume: 457 start-page: 1841 year: 2001 ident: 2024010816055033800_ref26 article-title: A reaction-diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains – volume: 13 start-page: 2475 year: 2014 ident: 2024010816055033800_ref27 article-title: Global dynamics of a non-local delayed differential equation in the half plane – volume: 59 start-page: 21 year: 1996 ident: 2024010816055033800_ref11 article-title: Random attractors for the 3D stochastic navier-stokes equation with multiplicative white noise – year: 2004 ident: 2024010816055033800_ref14 article-title: Applied Partial Differential Equations with Fourier Series and Boundary Value problems – year: 1986 ident: 2024010816055033800_ref24 article-title: The dynamics of physiologically structured populations doi: 10.1007/978-3-662-13159-6 – volume: 14 start-page: 1018 year: 2015 ident: 2024010816055033800_ref28 article-title: Random attractors for delay parabolic equations with additive noise and deterministic nonautonomous forcing – volume: 28 start-page: 1007 year: 2016 ident: 2024010816055033800_ref34 article-title: Dirichlet problem of a delayed reaction-diffusion equation on a semi-infinite interval – volume: 69 start-page: 1 year: 2018 ident: 2024010816055033800_ref15 article-title: Global dynamics of a nonlocal delayed reaction-diffusion equation on a half plane |
SSID | ssj0001570 |
Score | 2.3336473 |
Snippet | Abstract
The aim of this paper is to prove the existence and qualitative property of random attractors for a stochastic non-local delayed reaction–diffusion... The aim of this paper is to prove the existence and qualitative property of random attractors for a stochastic non-local delayed reaction–diffusion equation... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 576 |
Title | Random attractors for a stochastic nonlocal delayed reaction–diffusion equation on a semi-infinite interval |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA4yX_RBvOK8jCCCT2Fr0jTp46aOIUxBNthbSZuEFVYvWwf65n_wH_pLPGlrUVEUSp9OoCTp-b6TnPMdhE6ZBtJApUcSlzvog28kMuCGKEMDLQxw5MDVDg-vg8HYv5rwSSUWvfjhCj9k7TRTQN7a0yelAaDB2wICO5X80c2k9rkeF-VpiqDEB1JeyzN-H_4FflxJ2yc06W-ijYoG4m65bltoxdxto_VhraG62EHZLQT59xlWeT4vm-JgIJhYYaBryVQ5fWUMsXsBRthpPT4bjYECFoUKby-vrvXJ0p2FYfNY6nljeGC4yVIC-yp1bBOnRc6jmu2icf9ydD4gVXMEklAqObFGGh4nseTKauFpJawGauAEuzQ1zLfKUmkDLwhjCCFUyHWsBPzeCgDdsQa2hxrwkWYfYRtKy2ItO6oDwZowyloGb88Y3rHMF01EPuYsSirlcNfAYhaVN9gsKuc4qua4ic5q-4dSM-NXyxNYgj-MDv5jdIjWXCN4l2hC5RFq5POlOQa6kMcttNrtXfT6rWLHvAPbusR3 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+attractors+for+a+stochastic+nonlocal+delayed+reaction%E2%80%93diffusion+equation+on+a+semi-infinite+interval&rft.jtitle=IMA+journal+of+applied+mathematics&rft.au=Hu%2C+Wenjie&rft.au=Zhu%2C+Quanxin&rft.au=Caraballo%2C+Tom%C3%A1s&rft.date=2023-12-28&rft.pub=Oxford+University+Press&rft.issn=0272-4960&rft.eissn=1464-3634&rft.volume=88&rft.issue=4&rft.spage=576&rft.epage=601&rft_id=info:doi/10.1093%2Fimamat%2Fhxad025&rft.externalDocID=10.1093%2Fimamat%2Fhxad025 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4960&client=summon |