Radio-frequency-induced transport of Cooper pairs in superconducting single electron transistors in a dissipative environment

We investigate low-temperature and low-voltage-bias charge transport in a superconducting Al single electron transistor in a dissipating environment, realized as on-chip high-ohmic Cr microstrips. In samples with relatively large charging energy Ec>EJ, where EJ is the Josephson coupling energy, t...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 95; no. 11; pp. 6325 - 6331
Main Authors Lotkhov, S. V., Bogoslovsky, S. A., Zorin, A. B., Niemeyer, J.
Format Journal Article
LanguageEnglish
Published 01.06.2004
Online AccessGet full text

Cover

Loading…
Abstract We investigate low-temperature and low-voltage-bias charge transport in a superconducting Al single electron transistor in a dissipating environment, realized as on-chip high-ohmic Cr microstrips. In samples with relatively large charging energy Ec>EJ, where EJ is the Josephson coupling energy, two transport mechanisms were found to be dominant, both based on discrete tunneling of individual Cooper pairs: Depending on the gate voltage Vg, either sequential tunneling of pairs via the transistor island [in the conducting state of the transistor around the points Qg≡CgVg=e mod (2e), where Cg is the gate capacitance] or their cotunneling through the transistor (for Qg away of these points) was found to prevail in the net current. As the conducting state of our transistors had been found to be subject to quasiparticle poisoning, high-frequency gate cycling (at f∼1 MHz) was applied to study the sequential tunneling mechanism. A simple model based on the master equation was found to be in a good agreement with the experimental data.
AbstractList We investigate low-temperature and low-voltage-bias charge transport in a superconducting Al single electron transistor in a dissipating environment, realized as on-chip high-ohmic Cr microstrips. In samples with relatively large charging energy Ec>EJ, where EJ is the Josephson coupling energy, two transport mechanisms were found to be dominant, both based on discrete tunneling of individual Cooper pairs: Depending on the gate voltage Vg, either sequential tunneling of pairs via the transistor island [in the conducting state of the transistor around the points Qg≡CgVg=e mod (2e), where Cg is the gate capacitance] or their cotunneling through the transistor (for Qg away of these points) was found to prevail in the net current. As the conducting state of our transistors had been found to be subject to quasiparticle poisoning, high-frequency gate cycling (at f∼1 MHz) was applied to study the sequential tunneling mechanism. A simple model based on the master equation was found to be in a good agreement with the experimental data.
Author Bogoslovsky, S. A.
Zorin, A. B.
Lotkhov, S. V.
Niemeyer, J.
Author_xml – sequence: 1
  givenname: S. V.
  surname: Lotkhov
  fullname: Lotkhov, S. V.
– sequence: 2
  givenname: S. A.
  surname: Bogoslovsky
  fullname: Bogoslovsky, S. A.
– sequence: 3
  givenname: A. B.
  surname: Zorin
  fullname: Zorin, A. B.
– sequence: 4
  givenname: J.
  surname: Niemeyer
  fullname: Niemeyer, J.
BookMark eNptkMtqwzAQRUVJoUnaRf9A2y6caCzbspcl9AWBQsneTPQoKo7kSkogi_57FZJV6WaGgXOGy52RifNOE3IPbAGs4UtYgADOyuqKTIG1XSHqmk3IlLESirYT3Q2ZxfjFGEDLuyn5-UBlfWGC_t5rJ4-FdWovtaIpoIujD4l6Q1fejzrQEW2I1Doa9_mU_oQm6z5pzGPQVA9apuDdWbYx-TOOVNkY7YjJHjLlDjZDO-3SLbk2OER9d9lzsnl-2qxei_X7y9vqcV3IshSpMCj0FrDVwMtG12XHEYBVW8mqTqDkgCAFKoG14g2XzDTKSMN4dnSHis_J8vxWBh9j0KaXNuUw3uWgduiB9afyeugv5WXj4Y8xBrvDcPyH_QUm93Uw
CitedBy_id crossref_primary_10_1116_1_2715971
crossref_primary_10_1038_nphys808
crossref_primary_10_1063_1_2709967
crossref_primary_10_1063_1_1855399
crossref_primary_10_1016_j_physc_2006_06_053
Cites_doi 10.1103/PhysRevLett.83.3721
10.1103/PhysRevLett.65.377
10.1103/PhysRevLett.69.1993
10.1016/S0921-4534(01)01182-0
10.1007/BF01307644
10.1103/PhysRevLett.69.1997
10.1007/BF01307630
10.1103/PhysRevB.49.5942
10.1103/PhysRevLett.67.1161
10.1103/PhysRevLett.70.994
10.1103/PhysRevLett.92.057004
10.1023/A:1007780925567
10.1103/PhysRevLett.91.197002
10.1103/RevModPhys.73.357
10.1103/PhysRevLett.63.1307
10.1126/science.1069372
10.1063/1.1145385
10.1007/BF00683782
10.1103/PhysRevLett.76.4408
10.1103/PhysRevLett.87.136802
10.1063/1.1530731
10.1103/PhysRevLett.73.1541
10.1103/PhysRevLett.72.2458
10.1063/1.353092
10.1063/1.1286328
10.1007/BF01307627
10.1109/77.233572
10.1103/PhysRevLett.55.422
10.1103/PhysRevLett.72.3234
10.1103/PhysRevLett.87.137003
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1063/1.1713024
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
EndPage 6331
ExternalDocumentID 10_1063_1_1713024
GroupedDBID -DZ
-~X
.DC
186
1UP
2-P
29J
4.4
53G
5GY
5VS
6TJ
85S
AAAAW
AABDS
AAGWI
AAIKC
AAMNW
AAPUP
AAYIH
AAYJJ
AAYXX
ABFTF
ABJGX
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEGXH
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D0L
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
MVM
N9A
NPSNA
O-B
OHT
P0-
P2P
RIP
RNS
ROL
RQS
RXW
SC5
TAE
TN5
TWZ
UHB
UPT
VOH
WH7
XSW
YQT
YZZ
ZCA
ZCG
~02
ID FETCH-LOGICAL-c227t-fa7eb1a8e1326e5293a1104bc0497ac31a1c7ad7a5d363c0f6dfcf03b1ae9ad3
ISSN 0021-8979
IngestDate Tue Jul 01 02:06:01 EDT 2025
Thu Apr 24 22:54:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c227t-fa7eb1a8e1326e5293a1104bc0497ac31a1c7ad7a5d363c0f6dfcf03b1ae9ad3
PageCount 7
ParticipantIDs crossref_citationtrail_10_1063_1_1713024
crossref_primary_10_1063_1_1713024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-06-01
PublicationDateYYYYMMDD 2004-06-01
PublicationDate_xml – month: 06
  year: 2004
  text: 2004-06-01
  day: 01
PublicationDecade 2000
PublicationTitle Journal of applied physics
PublicationYear 2004
References 2024020718232422800_r3b
2024020718232422800_r3a
(2024020718232422800_r2a) 1999; 12
(2024020718232422800_r8) 1991; 67
(2024020718232422800_r30) 1991; 85
(2024020718232422800_r13) 1991; 85
(2024020718232422800_r15) 1990; 65
(2024020718232422800_r7a) 2001; 87
(2024020718232422800_r22) 1994; 50
(2024020718232422800_r26) 1992; 69
(2024020718232422800_r10) 2002; 87
2024020718232422800_r32
(2024020718232422800_r2) 1996; 76
(2024020718232422800_r7) 1999; 83
(2024020718232422800_r12) 2003; 91
(2024020718232422800_r21) 1990; 165&166
(2024020718232422800_r4) 1985; 61
(2024020718232422800_r33) 2002; 296
(2024020718232422800_r9) 2001; 87
(2024020718232422800_r16) 1992; 69
(2024020718232422800_r4a) 1985; 59
(2024020718232422800_r19) 1994; 72
(2024020718232422800_r27) 1993; 70
(2024020718232422800_r17) 1989; 63
(2024020718232422800_r31a) 1993; 73
(2024020718232422800_r31b) 1994; 49
(2024020718232422800_r31) 1985; 55
(2024020718232422800_r1) 2001; 73
2024020718232422800_r2b
(2024020718232422800_r24) 2000; 88
(2024020718232422800_r28) 1994; 72
2024020718232422800_r20
(2024020718232422800_r33a) 2002; 368
(2024020718232422800_r14) 1994; 73
(2024020718232422800_r3) 1991; 85
(2024020718232422800_r25) 1995; 66
2024020718232422800_r5
2024020718232422800_r6
(2024020718232422800_r11) 2002; 81
(2024020718232422800_r29) 2004; 92
(2024020718232422800_r18) 1993; 3
2024020718232422800_r23
References_xml – volume: 61
  start-page: 407
  year: 1985
  ident: 2024020718232422800_r4
  publication-title: Sov. Phys. JETP
– volume: 83
  start-page: 3721
  year: 1999
  ident: 2024020718232422800_r7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.3721
– volume: 65
  start-page: 377
  year: 1990
  ident: 2024020718232422800_r15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.65.377
– volume: 69
  start-page: 1993
  year: 1992
  ident: 2024020718232422800_r26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.1993
– volume: 368
  start-page: 284
  year: 2002
  ident: 2024020718232422800_r33a
  publication-title: Physica C
  doi: 10.1016/S0921-4534(01)01182-0
– ident: 2024020718232422800_r20
– volume: 87
  start-page: 017002
  year: 2002
  ident: 2024020718232422800_r10
  publication-title: Phys. Rev. Lett.
– volume: 50
  start-page: 395
  year: 1994
  ident: 2024020718232422800_r22
  publication-title: Phys. Rev. B
– ident: 2024020718232422800_r3b
– volume: 85
  start-page: 459
  year: 1991
  ident: 2024020718232422800_r13
  publication-title: Z. Phys. B: Condens. Matter
  doi: 10.1007/BF01307644
– volume: 69
  start-page: 1997
  year: 1992
  ident: 2024020718232422800_r16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.1997
– ident: 2024020718232422800_r6
– volume: 85
  start-page: 349
  year: 1991
  ident: 2024020718232422800_r3
  publication-title: Z. Phys. B: Condens. Matter
  doi: 10.1007/BF01307630
– volume: 49
  start-page: 5942
  year: 1994
  ident: 2024020718232422800_r31b
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.5942
– volume: 67
  start-page: 1161
  year: 1991
  ident: 2024020718232422800_r8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.67.1161
– volume: 70
  start-page: 994
  year: 1993
  ident: 2024020718232422800_r27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.994
– ident: 2024020718232422800_r2b
– volume: 92
  start-page: 057004
  year: 2004
  ident: 2024020718232422800_r29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.057004
– volume: 12
  start-page: 747
  year: 1999
  ident: 2024020718232422800_r2a
  publication-title: J. Supercond.
  doi: 10.1023/A:1007780925567
– volume: 91
  start-page: 197002
  year: 2003
  ident: 2024020718232422800_r12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.197002
– ident: 2024020718232422800_r23
– volume: 73
  start-page: 357
  year: 2001
  ident: 2024020718232422800_r1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.73.357
– volume: 63
  start-page: 1307
  year: 1989
  ident: 2024020718232422800_r17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.63.1307
– volume: 296
  start-page: 886
  year: 2002
  ident: 2024020718232422800_r33
  publication-title: Science
  doi: 10.1126/science.1069372
– volume: 165&166
  start-page: 945
  year: 1990
  ident: 2024020718232422800_r21
  publication-title: Physica B
– volume: 66
  start-page: 4296
  year: 1995
  ident: 2024020718232422800_r25
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1145385
– volume: 59
  start-page: 347
  year: 1985
  ident: 2024020718232422800_r4a
  publication-title: J. Low Temp. Phys.
  doi: 10.1007/BF00683782
– ident: 2024020718232422800_r5
– volume: 76
  start-page: 4408
  year: 1996
  ident: 2024020718232422800_r2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.76.4408
– ident: 2024020718232422800_r3a
– volume: 87
  start-page: 136802
  year: 2001
  ident: 2024020718232422800_r9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.136802
– volume: 81
  start-page: 4976
  year: 2002
  ident: 2024020718232422800_r11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1530731
– volume: 73
  start-page: 1541
  year: 1994
  ident: 2024020718232422800_r14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.73.1541
– volume: 72
  start-page: 2458
  year: 1994
  ident: 2024020718232422800_r28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.2458
– volume: 73
  start-page: 2386
  year: 1993
  ident: 2024020718232422800_r31a
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.353092
– volume: 88
  start-page: 2665
  year: 2000
  ident: 2024020718232422800_r24
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1286328
– volume: 85
  start-page: 327
  year: 1991
  ident: 2024020718232422800_r30
  publication-title: Z. Phys. B: Condens. Matter
  doi: 10.1007/BF01307627
– volume: 3
  start-page: 1972
  year: 1993
  ident: 2024020718232422800_r18
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/77.233572
– volume: 55
  start-page: 422
  year: 1985
  ident: 2024020718232422800_r31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.55.422
– volume: 72
  start-page: 3234
  year: 1994
  ident: 2024020718232422800_r19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.3234
– ident: 2024020718232422800_r32
– volume: 87
  start-page: 137003
  year: 2001
  ident: 2024020718232422800_r7a
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.137003
SSID ssj0011839
Score 1.7701324
Snippet We investigate low-temperature and low-voltage-bias charge transport in a superconducting Al single electron transistor in a dissipating environment, realized...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 6325
Title Radio-frequency-induced transport of Cooper pairs in superconducting single electron transistors in a dissipative environment
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZymB7GFu3sXYXxNjDIMiLLFu2H9NdKKUtY8tG2UuQLbkLS6OQOIEW-nP2P3sk2YrXrNDtRSSylJCcD-k7d4TeMJmkWSpTIkxoYxTHJcmLMCWScwn6BJAO27Tv6Jjvf4sOTuKTTud3K2ppWeVBcfHXvJL_kSrMgVxNluw_SNZ_KEzAa5AvjCBhGG8l4y9CjjUp5y4c-pyAfr00_vyqqVhugy20nql5b2YcN8a6sVjCW9CCTaFXa0yAYaJ6TT8ct9kWD7HLhfHhLGzg9Uq18-JuoLWiprXOZOIZ-6Gufv3UK2tsDXrfA28G0Kd6MdGr2oYLzwb-2Q8THGgPr6C352ePx-pMnTukHQR_WC2idXSVzyKgJM1cI5lAucO3n2YkiV0h2uZ0di04GxTS1lnLmUuZru9tXqd-bdwJQMKMeSKgiXHSRuuLr3H2X7sPfZSi9c9zNqKjeusdtBWCNhJ20dbgw9HhV--uMjTTxRK5H9WUsOLsnf_eFvFpMZjhQ_SglhEeOBw9Qh013Ub3WwUpt9Hdz05qj9HlDdjCHltYl9hhC1ts4fEUX8MWdtjCDbZwC1tmucAtbOEWtp6g4aePw_f7pG7VQYowTCpSigQufZEqCuqAioFDCuCVUV6AApqIglFBi0TIRMSScVb0Sy7Louwz2KMyIdlT1J3qqXqGMFeqTPKSKsGA3McyFVTCaRenPIOrh4sd9Lb5G0dFXcbedFOZjDbEtYNe-6UzV7tlc9HubRY9R_fWIH6ButV8qV4CGa3yVzUUrgDc148K
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radio-frequency-induced+transport+of+Cooper+pairs+in+superconducting+single+electron+transistors+in+a+dissipative+environment&rft.jtitle=Journal+of+applied+physics&rft.au=Lotkhov%2C+S.+V.&rft.au=Bogoslovsky%2C+S.+A.&rft.au=Zorin%2C+A.+B.&rft.au=Niemeyer%2C+J.&rft.date=2004-06-01&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=95&rft.issue=11&rft.spage=6325&rft.epage=6331&rft_id=info:doi/10.1063%2F1.1713024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_1713024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon