Advanced photocatalysts for uranium extraction: Elaborate design and future perspectives
[Display omitted] •The influencing factors on photocatalytic uranium extraction was evaluated.•The design strategy of photocatalysts for uranium extraction was summarized.•The rational design was provided from band structure and surface coordination.•The technical methods for identificating uranium...
Saved in:
Published in | Coordination chemistry reviews Vol. 467; p. 214615 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•The influencing factors on photocatalytic uranium extraction was evaluated.•The design strategy of photocatalysts for uranium extraction was summarized.•The rational design was provided from band structure and surface coordination.•The technical methods for identificating uranium reduction species were summarized.•The challenges and prospects of photocatalytic uranium reduction were pointed out.
Nuclear energy has been regarded as one of the promising energy sources to replace traditional fossil fuels due to its advantages of high energy density and carbon-free emission. Unfortunately, the limited storage of uranium ore restricted the sustainable development of nuclear energy, together with the generation of uranium-containing wastewater resulting in the problems of environmental pollution. Therefore, extracting and recycling uranium from seawater and radioactive uranium-containing wastewater is necessary for the sustainable development of nuclear energy and environmental protection. The light-driven heterogeneous photocatalytic technology is an appealing strategy to significantly promote the kinetics, capacity, and selectivity during uranium extraction. However, the recovery of uranium from radioactive wastewater/seawater is restricted by various factors, such as abundant competing ions, low uranium concentration, coexisting organic matter, and strong acidity or alkalinity in special environmental in the process of practical application. In this review, we described the general background of uranium extraction, followed by a brief discussion of the several possible reduction paths for photocatalytic reduction of uranium. Then, the effects of experimental conditions, photocatalyst stability and environmental adaptability on the performance of photocatalytic uranium reduction were systematically discussed. After having some fundamental understanding on photocatalytic uranium reduction, we summarized the design guidelines of photocatalysts for uranium reduction, and further discussed the corresponding advantages and disadvantages in photocatalytic uranium reduction. In addition, we concluded the current available characterization techniques for identifying uranium species after reduction, which is critical to the mechanistic study. Finally, we end this review with an outlook into the remaining challenges and future perspectives of photocatalytic uranium reduction. |
---|---|
AbstractList | [Display omitted]
•The influencing factors on photocatalytic uranium extraction was evaluated.•The design strategy of photocatalysts for uranium extraction was summarized.•The rational design was provided from band structure and surface coordination.•The technical methods for identificating uranium reduction species were summarized.•The challenges and prospects of photocatalytic uranium reduction were pointed out.
Nuclear energy has been regarded as one of the promising energy sources to replace traditional fossil fuels due to its advantages of high energy density and carbon-free emission. Unfortunately, the limited storage of uranium ore restricted the sustainable development of nuclear energy, together with the generation of uranium-containing wastewater resulting in the problems of environmental pollution. Therefore, extracting and recycling uranium from seawater and radioactive uranium-containing wastewater is necessary for the sustainable development of nuclear energy and environmental protection. The light-driven heterogeneous photocatalytic technology is an appealing strategy to significantly promote the kinetics, capacity, and selectivity during uranium extraction. However, the recovery of uranium from radioactive wastewater/seawater is restricted by various factors, such as abundant competing ions, low uranium concentration, coexisting organic matter, and strong acidity or alkalinity in special environmental in the process of practical application. In this review, we described the general background of uranium extraction, followed by a brief discussion of the several possible reduction paths for photocatalytic reduction of uranium. Then, the effects of experimental conditions, photocatalyst stability and environmental adaptability on the performance of photocatalytic uranium reduction were systematically discussed. After having some fundamental understanding on photocatalytic uranium reduction, we summarized the design guidelines of photocatalysts for uranium reduction, and further discussed the corresponding advantages and disadvantages in photocatalytic uranium reduction. In addition, we concluded the current available characterization techniques for identifying uranium species after reduction, which is critical to the mechanistic study. Finally, we end this review with an outlook into the remaining challenges and future perspectives of photocatalytic uranium reduction. |
ArticleNumber | 214615 |
Author | Wang, Xiangke Yuan, Xin Zhou, Li Gong, Xiang Zhu, Wenkun Chen, Tao Cao, Xin Li, Mingzhe He, Rong Dong, Changxue Lian, Jie Hu, Baowei Yu, Kaifu |
Author_xml | – sequence: 1 givenname: Tao surname: Chen fullname: Chen, Tao organization: State Key Laboratory of Environmentally Friendly Energy Materials, Sichuan Civil-military Integration Institute, National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China – sequence: 2 givenname: Kaifu surname: Yu fullname: Yu, Kaifu organization: State Key Laboratory of Environmentally Friendly Energy Materials, Sichuan Civil-military Integration Institute, National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China – sequence: 3 givenname: Changxue surname: Dong fullname: Dong, Changxue organization: State Key Laboratory of Environmentally Friendly Energy Materials, Sichuan Civil-military Integration Institute, National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China – sequence: 4 givenname: Xin surname: Yuan fullname: Yuan, Xin organization: State Key Laboratory of Environmentally Friendly Energy Materials, Sichuan Civil-military Integration Institute, National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China – sequence: 5 givenname: Xiang surname: Gong fullname: Gong, Xiang organization: State Key Laboratory of Environmentally Friendly Energy Materials, Sichuan Civil-military Integration Institute, National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China – sequence: 6 givenname: Jie surname: Lian fullname: Lian, Jie organization: State Key Laboratory of Environmentally Friendly Energy Materials, Sichuan Civil-military Integration Institute, National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China – sequence: 7 givenname: Xin surname: Cao fullname: Cao, Xin organization: State Key Laboratory of Environmentally Friendly Energy Materials, Sichuan Civil-military Integration Institute, National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China – sequence: 8 givenname: Mingzhe surname: Li fullname: Li, Mingzhe organization: State Key Laboratory of Environmentally Friendly Energy Materials, Sichuan Civil-military Integration Institute, National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China – sequence: 9 givenname: Li surname: Zhou fullname: Zhou, Li organization: State Key Laboratory of Environmentally Friendly Energy Materials, Sichuan Civil-military Integration Institute, National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China – sequence: 10 givenname: Baowei surname: Hu fullname: Hu, Baowei organization: School of Life Science, Shaoxing University, Shaoxing 312000, PR China – sequence: 11 givenname: Rong surname: He fullname: He, Rong email: her@swust.edu.cn organization: State Key Laboratory of Environmentally Friendly Energy Materials, Sichuan Civil-military Integration Institute, National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China – sequence: 12 givenname: Wenkun surname: Zhu fullname: Zhu, Wenkun email: zhuwenkun@swust.edu.cn organization: State Key Laboratory of Environmentally Friendly Energy Materials, Sichuan Civil-military Integration Institute, National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China – sequence: 13 givenname: Xiangke surname: Wang fullname: Wang, Xiangke email: xkwang@ncepu.edu.cn organization: School of Life Science, Shaoxing University, Shaoxing 312000, PR China |
BookMark | eNp9kMtqwzAQRUVJoUnaD-hOP2BXkmU7blchpA8IdNNCd2IsjVsFxzKSHJq_r0266qKrYWDOcO9ZkFnnOiTklrOUM17c7VOtfSqYEKngsuD5BZnzVZkl2UqyGZkzxlmyymV-RRYh7Me1qCoxJx9rc4ROo6H9l4tOQ4T2FGKgjfN08NDZ4UDxO3rQ0brunm5bqJ2HiNRgsJ8dhc7QZoiDR9qjDz2Oh0cM1-SygTbgze9ckvfH7dvmOdm9Pr1s1rtEC1HGBEVTiFzWuQHgdSlrwyvBCyhRFDWyKtMFb6SpRWE0VCUrc2iErLWUIEQmdbYk5fmv9i4Ej43SNsKUdcxsW8WZmgSpvRoFqUmQOgsaSf6H7L09gD_9yzycGRwrHS16FbTFyZ_1Y3FlnP2H_gHbsYIP |
CitedBy_id | crossref_primary_10_1007_s42773_025_00439_1 crossref_primary_10_1016_j_jclepro_2024_141538 crossref_primary_10_1002_adfm_202404126 crossref_primary_10_1002_adfm_202307230 crossref_primary_10_1016_j_jwpe_2024_106690 crossref_primary_10_1016_j_seppur_2024_129241 crossref_primary_10_1016_j_seppur_2025_132257 crossref_primary_10_1016_j_jcis_2024_02_073 crossref_primary_10_1007_s44169_022_00018_6 crossref_primary_10_1021_acsmaterialslett_4c00594 crossref_primary_10_1016_j_chempr_2023_06_008 crossref_primary_10_1016_j_seppur_2024_129233 crossref_primary_10_1016_j_jhazmat_2022_130620 crossref_primary_10_1016_j_seppur_2024_126888 crossref_primary_10_1016_j_seppur_2022_122726 crossref_primary_10_1021_acs_inorgchem_4c04614 crossref_primary_10_1016_j_apcatb_2024_124721 crossref_primary_10_1021_acsami_2c16702 crossref_primary_10_1016_j_scitotenv_2024_173755 crossref_primary_10_1021_acsami_4c20394 crossref_primary_10_1021_acs_inorgchem_4c00477 crossref_primary_10_1007_s10967_024_09707_z crossref_primary_10_1021_acs_inorgchem_4c00597 crossref_primary_10_1016_j_apcatb_2022_122092 crossref_primary_10_1016_j_chemosphere_2023_140321 crossref_primary_10_1016_j_scib_2022_09_001 crossref_primary_10_1016_j_molliq_2023_123862 crossref_primary_10_1016_j_cej_2024_156552 crossref_primary_10_1021_acs_inorgchem_4c02096 crossref_primary_10_1007_s10967_022_08573_x crossref_primary_10_1016_j_enchem_2022_100078 crossref_primary_10_1016_j_seppur_2024_128012 crossref_primary_10_1016_j_jhazmat_2022_130054 crossref_primary_10_1016_j_jhazmat_2024_135861 crossref_primary_10_1016_j_seppur_2023_126134 crossref_primary_10_1039_D3TA05099H crossref_primary_10_1016_j_apcatb_2024_124950 crossref_primary_10_1002_adfm_202400588 crossref_primary_10_1016_j_seppur_2022_122862 crossref_primary_10_1016_j_cej_2023_143746 crossref_primary_10_1007_s10967_023_08772_0 crossref_primary_10_1016_j_xinn_2022_100281 crossref_primary_10_1016_j_seppur_2025_132599 crossref_primary_10_1016_j_cej_2024_156783 crossref_primary_10_1016_j_cej_2024_156785 crossref_primary_10_1016_j_scitotenv_2023_163525 crossref_primary_10_1039_D4EN00163J crossref_primary_10_1016_j_enchem_2023_100101 crossref_primary_10_1039_D4EE05239K crossref_primary_10_1016_j_seppur_2024_129331 crossref_primary_10_1016_j_ccr_2022_214825 crossref_primary_10_1007_s11356_024_34773_x crossref_primary_10_1016_j_psep_2024_06_124 crossref_primary_10_1016_j_jece_2024_115055 crossref_primary_10_1080_10934529_2024_2380956 crossref_primary_10_1142_S1793292023500212 crossref_primary_10_1016_j_jenvman_2023_119347 crossref_primary_10_1016_j_cej_2024_149339 crossref_primary_10_1016_j_envres_2023_116160 crossref_primary_10_1016_j_cej_2023_144705 crossref_primary_10_1016_j_ccr_2023_215097 crossref_primary_10_1016_j_seppur_2024_130437 crossref_primary_10_1007_s12274_024_6654_x crossref_primary_10_3390_catal13111402 crossref_primary_10_1007_s11270_024_07077_6 crossref_primary_10_1016_j_seppur_2023_125620 crossref_primary_10_1016_j_jmrt_2022_11_121 crossref_primary_10_1039_D5DT00307E crossref_primary_10_1080_10643389_2024_2401215 crossref_primary_10_1007_s10967_025_10001_9 crossref_primary_10_1016_j_jece_2023_110192 crossref_primary_10_1016_j_cej_2024_151982 crossref_primary_10_1007_s10668_024_05219_8 crossref_primary_10_1002_adfm_202312215 crossref_primary_10_1021_acsanm_2c03168 crossref_primary_10_1016_j_seppur_2024_127259 crossref_primary_10_1016_j_cej_2023_143285 crossref_primary_10_1016_j_psep_2023_08_034 crossref_primary_10_1016_j_seppur_2022_122873 crossref_primary_10_1016_j_jiec_2022_11_026 crossref_primary_10_1016_j_apsusc_2022_155254 crossref_primary_10_1016_j_seppur_2022_122196 crossref_primary_10_1016_j_chemosphere_2022_135869 crossref_primary_10_1007_s10967_022_08710_6 crossref_primary_10_1016_j_molliq_2022_120973 crossref_primary_10_1016_j_seppur_2024_130899 crossref_primary_10_1039_D4NJ03870C crossref_primary_10_1016_j_cej_2024_156076 crossref_primary_10_1016_j_cej_2023_144919 crossref_primary_10_1016_j_jcis_2022_10_151 crossref_primary_10_1002_smll_202208002 crossref_primary_10_1016_j_cej_2025_160631 crossref_primary_10_1016_j_cej_2025_160199 crossref_primary_10_1016_j_jclepro_2023_139114 crossref_primary_10_1016_j_jenvrad_2022_107090 crossref_primary_10_1016_j_jphotochem_2022_114435 crossref_primary_10_1038_s41467_024_48564_y crossref_primary_10_1021_acs_inorgchem_2c01850 crossref_primary_10_1016_j_molliq_2023_123851 crossref_primary_10_1016_j_apcata_2022_118733 crossref_primary_10_1016_j_seppur_2025_132435 crossref_primary_10_1016_j_seppur_2025_131469 crossref_primary_10_1021_acs_iecr_3c02831 crossref_primary_10_1016_j_seppur_2024_129654 crossref_primary_10_1021_acs_inorgchem_4c04076 crossref_primary_10_1016_j_chemosphere_2022_137226 crossref_primary_10_1007_s42765_023_00324_1 crossref_primary_10_1021_acs_inorgchem_4c03786 crossref_primary_10_1016_j_desal_2024_117623 crossref_primary_10_1016_j_molliq_2022_119745 crossref_primary_10_1007_s11356_023_31353_3 crossref_primary_10_1016_j_cej_2024_152947 crossref_primary_10_1016_j_jhazmat_2024_136708 crossref_primary_10_1007_s10967_024_09932_6 crossref_primary_10_1016_j_envpol_2023_122168 crossref_primary_10_1016_j_cej_2023_142844 crossref_primary_10_1016_j_jece_2023_111705 crossref_primary_10_1039_D3AY01281F crossref_primary_10_1016_j_seppur_2023_123121 crossref_primary_10_3390_nano13132005 crossref_primary_10_1016_j_seppur_2024_131281 crossref_primary_10_1002_smll_202307946 crossref_primary_10_1002_smtd_202401598 crossref_primary_10_1016_j_eehl_2023_07_001 crossref_primary_10_1016_j_jssc_2024_124625 crossref_primary_10_1021_acssusresmgt_3c00126 crossref_primary_10_1007_s44246_024_00137_w crossref_primary_10_1016_j_cej_2023_142951 crossref_primary_10_1016_j_psep_2022_10_055 crossref_primary_10_1021_acs_inorgchem_4c02148 crossref_primary_10_1016_j_carbpol_2024_122283 crossref_primary_10_1016_j_cej_2023_142952 crossref_primary_10_1007_s10967_024_09751_9 crossref_primary_10_1016_j_jece_2024_113944 crossref_primary_10_1016_j_seppur_2022_121590 crossref_primary_10_1039_D4SC05349D crossref_primary_10_1016_j_cej_2024_156164 crossref_primary_10_1016_j_jece_2023_110951 crossref_primary_10_1016_j_cej_2024_155078 crossref_primary_10_1016_j_jclepro_2022_132654 crossref_primary_10_1039_D4QI01553C crossref_primary_10_1021_acs_est_3c05753 crossref_primary_10_1016_j_jece_2025_116250 crossref_primary_10_1016_j_jece_2022_108914 crossref_primary_10_1039_D2CE00892K crossref_primary_10_1016_j_jclepro_2023_137140 crossref_primary_10_1016_j_seppur_2022_122794 crossref_primary_10_1016_j_seppur_2022_122670 crossref_primary_10_1016_j_jece_2023_110164 crossref_primary_10_1016_j_apsusc_2023_158220 crossref_primary_10_1016_j_susmat_2025_e01251 crossref_primary_10_20517_cs_2024_47 crossref_primary_10_1002_smll_202403105 crossref_primary_10_1016_j_cej_2023_141978 crossref_primary_10_1016_j_scitotenv_2023_162841 crossref_primary_10_1016_j_carbpol_2023_120834 crossref_primary_10_1007_s10570_024_05778_z crossref_primary_10_1016_j_seppur_2024_131026 crossref_primary_10_1016_j_jece_2024_113806 crossref_primary_10_1016_j_cej_2023_148363 crossref_primary_10_1016_j_seppur_2025_132091 crossref_primary_10_1021_acs_macromol_4c00717 crossref_primary_10_1016_j_cej_2023_142012 crossref_primary_10_1021_acsami_4c22385 crossref_primary_10_1016_j_jece_2024_113967 crossref_primary_10_1016_j_seppur_2024_130607 crossref_primary_10_1021_acs_inorgchem_4c00660 crossref_primary_10_1021_acs_inorgchem_3c03483 crossref_primary_10_1016_j_cej_2024_152341 crossref_primary_10_1002_advs_202305439 crossref_primary_10_1016_j_apsusc_2022_154227 crossref_primary_10_1016_j_efmat_2023_03_001 crossref_primary_10_1016_j_seppur_2023_125333 crossref_primary_10_1016_j_pnucene_2023_104910 crossref_primary_10_1016_j_jclepro_2022_134059 crossref_primary_10_1038_s41467_025_56471_z crossref_primary_10_1016_j_jece_2024_112185 crossref_primary_10_1002_sus2_199 crossref_primary_10_1016_j_cej_2023_146048 crossref_primary_10_1021_acs_est_3c02916 crossref_primary_10_1021_acs_iecr_3c02101 crossref_primary_10_1039_D4QM00869C crossref_primary_10_3866_PKU_WHXB202404006 crossref_primary_10_1016_j_apcatb_2022_121815 crossref_primary_10_1016_j_chemosphere_2024_142544 crossref_primary_10_1021_acs_jpca_4c00068 crossref_primary_10_1039_D4QI03221G crossref_primary_10_1016_j_cej_2023_141834 crossref_primary_10_1016_j_memsci_2023_121543 crossref_primary_10_1021_acs_est_4c04881 crossref_primary_10_1007_s42773_022_00173_y crossref_primary_10_3390_catal14110825 crossref_primary_10_1016_j_jhazmat_2023_132356 crossref_primary_10_1002_cplu_202400364 crossref_primary_10_1016_j_ijbiomac_2022_09_256 crossref_primary_10_1021_acs_iecr_3c03985 crossref_primary_10_1016_j_molliq_2024_125578 crossref_primary_10_1002_adfm_202421623 crossref_primary_10_1039_D4SC02554G crossref_primary_10_1016_j_jcis_2025_01_229 crossref_primary_10_1016_j_jssc_2024_124941 crossref_primary_10_1016_j_cej_2024_156483 crossref_primary_10_1007_s10967_023_09320_6 crossref_primary_10_1016_j_cej_2024_156246 crossref_primary_10_1007_s10967_023_08942_0 crossref_primary_10_1016_j_seppur_2025_132616 crossref_primary_10_1016_j_seppur_2023_124383 crossref_primary_10_1039_D3DT01853A crossref_primary_10_1016_j_ceramint_2024_10_172 crossref_primary_10_1021_acssuschemeng_4c00358 crossref_primary_10_1007_s41365_023_01237_9 crossref_primary_10_1016_j_jhazmat_2023_133415 crossref_primary_10_1039_D3TA07710A crossref_primary_10_1016_j_mseb_2022_115891 crossref_primary_10_1002_smll_202306353 crossref_primary_10_1002_smll_202307684 crossref_primary_10_1021_acsestwater_3c00516 crossref_primary_10_1002_advs_202204141 crossref_primary_10_1016_j_jece_2022_108781 crossref_primary_10_1016_j_ccr_2023_215234 crossref_primary_10_1007_s44246_023_00041_9 crossref_primary_10_1007_s11356_023_25231_1 crossref_primary_10_1088_1402_4896_adbf6a crossref_primary_10_1007_s41365_022_01154_3 crossref_primary_10_1016_j_seppur_2024_130376 crossref_primary_10_1007_s13399_022_03183_9 crossref_primary_10_1016_j_scib_2024_09_039 crossref_primary_10_1021_acsami_2c17849 crossref_primary_10_1016_j_jhazmat_2023_131248 crossref_primary_10_1016_j_apcatb_2023_122751 crossref_primary_10_1360_nso_20240024 crossref_primary_10_1016_j_inoche_2023_110900 crossref_primary_10_1016_j_jece_2024_114211 crossref_primary_10_1016_j_seppur_2023_123878 crossref_primary_10_1016_j_materresbull_2024_112839 crossref_primary_10_1007_s11705_022_2218_3 crossref_primary_10_1016_j_seppur_2025_132271 crossref_primary_10_1016_j_scib_2024_07_005 crossref_primary_10_1016_j_ijbiomac_2023_126866 crossref_primary_10_1016_j_cej_2023_141367 crossref_primary_10_1016_j_envres_2023_117280 crossref_primary_10_1007_s10967_023_08976_4 crossref_primary_10_1016_j_apsusc_2024_159482 crossref_primary_10_1007_s40843_023_2599_9 crossref_primary_10_1016_j_cclet_2023_108146 crossref_primary_10_1016_j_cej_2022_140749 crossref_primary_10_1021_acs_langmuir_3c02739 crossref_primary_10_1016_j_cej_2022_138317 crossref_primary_10_1016_j_apcatb_2023_122965 crossref_primary_10_1016_j_jhazmat_2022_130089 crossref_primary_10_1007_s10967_023_08827_2 crossref_primary_10_1007_s11426_024_2218_8 crossref_primary_10_1016_j_desal_2023_116893 crossref_primary_10_1016_j_jhazmat_2023_131578 crossref_primary_10_1021_acsanm_4c00126 crossref_primary_10_1007_s10967_023_09093_y crossref_primary_10_1002_smll_202300003 crossref_primary_10_1016_j_seppur_2023_125947 crossref_primary_10_1016_j_surfin_2024_104961 crossref_primary_10_1016_j_jece_2024_113475 crossref_primary_10_1016_j_seppur_2022_122256 crossref_primary_10_1021_acssuschemeng_2c03412 crossref_primary_10_1016_j_jssc_2024_124739 crossref_primary_10_1021_acssuschemeng_2c04621 crossref_primary_10_1016_j_seppur_2025_132023 crossref_primary_10_1016_j_cej_2023_143415 crossref_primary_10_1039_D2CS00595F crossref_primary_10_1016_j_scitotenv_2023_161767 crossref_primary_10_1016_j_seppur_2025_132029 crossref_primary_10_1021_acs_inorgchem_3c00221 crossref_primary_10_1016_j_psep_2025_106776 crossref_primary_10_1016_j_seppur_2023_124054 crossref_primary_10_1016_j_jhazmat_2024_135445 crossref_primary_10_1016_j_seppur_2023_125026 crossref_primary_10_1016_j_seppur_2022_121966 crossref_primary_10_1016_j_cej_2023_147331 |
Cites_doi | 10.1016/j.cej.2015.01.118 10.1016/j.cej.2018.04.140 10.1016/j.apcatb.2017.06.003 10.1002/anie.202007895 10.1088/1361-6528/ab3991 10.1016/j.jhazmat.2021.127823 10.1002/adma.201601694 10.1007/s42114-020-00140-w 10.1007/s42114-020-00202-z 10.1016/j.apcatb.2013.04.035 10.1016/j.cej.2021.129831 10.1016/j.apcatb.2018.01.062 10.1007/s10967-018-6237-y 10.1007/s42114-021-00346-6 10.1007/s10967-019-06817-x 10.1016/j.apsusc.2015.11.112 10.1021/acsestwater.0c00176 10.1016/j.apcatb.2021.120250 10.1007/s42114-020-00187-9 10.1007/s42114-020-00153-5 10.1021/acs.chemrev.9b00201 10.1016/j.cej.2021.129550 10.1016/j.jechem.2021.04.049 10.1016/j.carbpol.2018.08.133 10.1016/j.seppur.2021.119627 10.1007/s10967-020-07567-x 10.1007/s10967-016-4820-7 10.1007/s42114-021-00368-0 10.1016/j.cej.2021.131552 10.1016/j.chemosphere.2018.08.070 10.1049/mnl:20080007 10.1016/j.apsusc.2017.09.216 10.1021/ja5044787 10.1016/j.envpol.2019.02.025 10.1016/j.cogsc.2017.04.002 10.1016/j.envpol.2020.114373 10.1016/j.apcatb.2016.12.043 10.1002/adma.202000086 10.1016/j.molliq.2019.111563 10.1002/anie.201906191 10.1021/acs.nanolett.0c02144 10.1038/s41467-022-29107-9 10.1002/adfm.201901009 10.1007/s42114-021-00296-z 10.1002/adma.202106621 10.1016/j.apcatb.2021.120625 10.1016/j.apcatb.2019.117956 10.34133/2021/9794329 10.1039/ft9918703267 10.1016/j.apcatb.2016.07.036 10.1016/j.molliq.2021.117937 10.1002/smtd.201700080 10.1016/j.pmatsci.2019.01.005 10.1016/j.ccr.2021.214148 10.1002/adfm.202100106 10.1016/j.jhazmat.2021.126935 10.1016/j.jphotochemrev.2007.12.003 10.1038/nenergy.2017.7 10.1016/j.nanoen.2018.08.058 10.1016/j.jhazmat.2021.127851 10.1016/j.apcatb.2018.02.062 10.31635/ccschem.022.202201897 10.1016/j.jssc.2021.122499 10.1021/acs.inorgchem.1c03552 10.1016/j.apcatb.2022.121343 10.1016/j.apsusc.2017.06.065 10.1246/cl.130180 10.1039/C9TA04562G 10.1016/j.apcatb.2019.117967 10.1016/j.cej.2018.08.215 10.1016/j.apcatb.2019.04.087 10.1016/j.chemosphere.2021.130411 10.1007/s10967-021-07784-y 10.1002/adfm.202200315 10.1021/acsami.0c22800 10.1038/s41467-020-17795-0 10.1016/j.jece.2020.104638 10.1016/j.partic.2021.11.013 10.1021/acsanm.9b01581 10.1007/s10967-021-08091-2 10.1016/j.jhazmat.2019.121383 10.1021/acs.est.6b05313 10.1016/j.chemosphere.2020.126671 10.1016/j.chemosphere.2020.127548 10.1016/j.molliq.2020.113007 10.1016/j.scib.2021.05.012 10.1016/j.apcata.2018.03.015 10.1007/s11157-019-09507-y 10.1007/s10967-021-08118-8 10.1016/j.cej.2019.123193 10.1016/j.apsusc.2020.147754 10.1016/j.cej.2020.126256 10.1002/anie.201909718 10.1039/C7DT02639K 10.1007/s10967-020-07458-1 10.1016/j.apcatb.2020.119390 10.1016/j.jssc.2021.122053 10.1021/acs.chemrev.7b00355 10.1016/j.jssc.2021.122305 10.1016/j.cej.2021.128810 10.1016/j.cej.2021.129164 10.1016/j.scitotenv.2021.152280 10.1016/j.envpol.2020.114070 10.1016/j.cej.2020.127558 10.1039/D1TA00386K 10.1002/adma.202008145 10.1002/anie.201908762 10.1038/s41570-020-0173-4 10.1039/D0RA10694A 10.1002/adfm.201801983 10.1016/j.jhazmat.2021.126912 10.1016/j.jcis.2020.02.091 10.1002/adma.201501200 10.1016/j.jhazmat.2021.125812 10.1016/j.jhazmat.2020.122350 10.30919/es8d576 10.1021/acsanm.9b00205 10.1016/j.cej.2021.130756 10.1039/C8TA09486A 10.1016/j.cej.2019.02.013 10.1007/s42114-020-00199-5 10.1016/j.apcatb.2021.119978 10.1016/j.jphotochemrev.2019.100320 10.1039/C8TA05000G 10.1016/j.apcatb.2021.120819 10.1016/j.cej.2018.11.092 10.1016/j.cej.2020.126791 10.1007/s11164-021-04568-7 10.1021/acs.chemrev.5b00370 10.1039/C4EE03271C 10.1016/j.xinn.2021.100076 10.1016/j.apcatb.2020.119523 10.1016/j.cej.2020.127645 10.1016/j.jclepro.2021.129821 10.1016/j.cej.2018.01.134 10.1007/s42114-021-00378-y 10.1007/s12274-021-3916-8 10.1016/j.apsusc.2020.146352 10.1016/j.envres.2020.110349 10.1016/j.cej.2019.01.169 10.1039/D0NJ04519E 10.1002/anie.201913644 10.1016/j.cej.2020.128280 10.1016/j.apsusc.2019.03.330 10.1002/advs.202000204 10.1016/j.apcatb.2020.118688 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ccr.2022.214615 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3840 |
ExternalDocumentID | 10_1016_j_ccr_2022_214615 S0010854522002107 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 6J9 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M23 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSZ T5K TN5 TWZ UPT WH7 XPP YK3 ZMT ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HMH HVGLF HZ~ H~9 NDZJH OHT R2- RIG SCB SEW SIC SSH UQL VH1 WUQ XJT ZKB ZY4 |
ID | FETCH-LOGICAL-c227t-e2f6254b5daa1b74bd19216a7e26be093c61f4db26dca97075af24bc44a2234c3 |
IEDL.DBID | .~1 |
ISSN | 0010-8545 |
IngestDate | Tue Jul 01 02:43:53 EDT 2025 Thu Apr 24 22:57:00 EDT 2025 Fri Feb 23 02:39:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Uranium extraction Photoreduction Heterogeneous catalysis Photocatalysts |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c227t-e2f6254b5daa1b74bd19216a7e26be093c61f4db26dca97075af24bc44a2234c3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ccr_2022_214615 crossref_primary_10_1016_j_ccr_2022_214615 elsevier_sciencedirect_doi_10_1016_j_ccr_2022_214615 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-15 |
PublicationDateYYYYMMDD | 2022-09-15 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Coordination chemistry reviews |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Tatarchuk, Shyichuk, Mironyuk, Naushad (b0035) 2019; 293 Guo, Guo, Li, Kong, Wang, Li, Liu (b0410) 2017; 46 Xin, Yu, Zhang, Yang, Yuan, Li, Wang, Zeng (b0595) 2021; 33 Yu, Jiang, Wei, Yuan, Xin, He, Wang, Zhu (b0600) 2022; 426 Qi, Liu, Chen, Xie, Pan, Shi, Quan, Zhong, Liu, Fan, Guo (b0225) 2021; 4 Hu, Yan, Zhang, Shan (b0285) 2018; 428 Dong, Qiao, Huang, Yuan, Lian, Duan, Zhu, He (b0195) 2021; 13 Wang, Wang, Wang, Liang, Pan, Li, Fan (b0235) 2020; 308 Le, Xiong, Gong, Wu, Pan, Chen, Xie (b0685) 2020; 260 Dong, Zhang, Li, Feng, Dong, Wang, Cheng, Wang, Dai, Cao, Liu (b0425) 2021; 8 Cheng, Wang, Ge, Ding, Cui, Shao (b0535) 2021; 4 L. Devi, R. Kavitha, A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity. Appl. Catal. B Environ. 2013, 140, 559-587, https://doi.org/0.1016/j.apcatb.2013.04.035. Li, Yang, Liu, Zhang, Xie, Wang, Liu, Guo (b0315) 2019; 7 Liu, Luo, Dong, Wei, Nie, Zhang, Hu, Ding, Wang (b0545) 2019; 319 Zhong, Shen, He, Wang, Wang, Lin, Tu, Yu (b0405) 2019; 258 Low, Yu, Jaroniec, Wageh, Al-Ghamdi (b0240) 2017; 29 Li, Zhang, Dong, Wu, Zhu, Cheng, Liu, Wang, Zheng, Cao, Wang, Liu (b0300) 2021; 303 Wang, Liu, Lei, Huang, Wu, Liu, Ye, Lu, Wang (b0160) 2020; 402 Wu, Zhang, Cheng, Zhou, Lin, Liu, Wang, Cao, Liu, Liu (b0365) 2021; 329 B. Chen, G. Zhang, L. Chen, J. Kang, Y. Wang, S. Chen, Y. Jin, H. Yan, C. Xia, Visible light driven photocatalytic removal of uranium(VI) in strongly acidic solution, J. Hazard. Mater., 2022, 426, 127851 White, Baruch, Pander, Hu, Fortmeyer, Park, Zhang, Liao, Gu, Yan, Shaw, Abelev, Bocarsly (b0250) 2015; 115 Li, Wang, Wang, Dong, Wang, Geng, Ding, Luo, Pan, Liang, Fan (b0330) 2021; 425 Dai, Sun, Zhang, Ding, Li (b0420) 2020; 254 Cui, Zhang, Xu, Chen, Yan, Jiang, Liang, Qiu (b0630) 2021; 1 Feng, Yang, He, Niu, Zhang, Ding, Liang, Feng (b0445) 2018; 212 Bai, Li, Kong, Long, Wang, Jiang, Xiong (b0400) 2015; 27 Wang, Wang, Wang, Peng, Liang, Li, Pan, Fan, Wu (b0450) 2020; 262 Jiang, Yuan, Pan, Liang, Zeng, Wu, Wang (b0475) 2017; 217 Litter (b0500) 2017; 6 Cheng, Zhang, Zhao, Chai, Hu, Han, Ai, Wang (b0095) 2021; 66 Chen, Zhang, Li, Ge, Li, Duan, Zhu (b0220) 2019; 30 Zhu, Cai, Liu, Fang, Tan, Liu, Kong, Xu, Mei, Hayat (b0415) 2019; 248 Li, Yang, Cui, Xu, Niu, Li, Pan, Wu (b0385) 2021; 298 . Liang, Yuan, Du, Wang, Li, Deng, Wang, Luo, Shi (b0305) 2021; 420 Gong, Xie, Wang, Li, Zhu, Xue, Le (b0470) 2021; 9 Jiang, Xing, Luo, Li, Zou, Liu, Li, Wang (b0005) 2018; 228 Liu, Dong, Yu, Gong, Wang, Zhang, Liu (b0335) 2021; 537 Low, Jiang, Cheng, Wageh, Al-Ghamdi, Yu (b0370) 2017; 1 Yu, Wang, Li, Ma, Wang, Liu, Suzuki, Terashima, Ohtani, Ochiai, Fujishima, Zhang (b0505) 2020; 7 Zhang, Cheng, Yu, Ge, Shao, Pan, Liu, Wang, Guo (b0510) 2021; 4 He, Zhang, Wu, Yang, Chen, Li, Yang, Zhu, Meng, Duan (b0430) 2022; 61 Li, Xie, Wang, Gong, Xue, Le (b0660) 2020; 326 Li, Wang, Wang, Liang, He, Pan, Fan, Wang (b0015) 2019; 365 Qian, Yuan, Wang, Liu, Zhang, Shi, Guo, Wang (b0085) 2018; 6 Yang, Liu, Hao, Xie, Wang, Tian, Waterhouse, Kruger, Telfer, Ma (b0755) 2021; 33 Zhao, Yuan, Yu, Niu, Liao, Guo, Wang (b0765) 2019; 58 Lei, Liu, Yuan, Chen, Liu, Wen, Jiang, Deng, Cui, Duan, Zhu, He (b0155) 2021; 416 Liu, Wu, Liu, Xie, Liu (b0375) 2021; 11 Liu, Wang, Lu, Li, Chen, Wei, Wu, Maguire, Ye, Chen (b0610) 2021; 282 S. Yu, H. Tang, D. Zhang, S. Wang, M. Qiu, G. Song, D. Fu, B. Hu, X. Wang, MXenes as emerging nanomaterials in water purification and environmental remediation. Sci. Total Environ. 2022, 811, 152280. Yu, Shao, Meng, Chen, Lei, Yu, He, Yang, Zhu, Duan (b0200) 2020; 392 Chen, Shi, Zhang, Li, Duan, Dai, Wang, Yu, Zhu (b0230) 2018; 202 Cheng, Liu, Zhang, Zhou, Zhang, Zheng, Chu, Hu, Wu, Xie (b0150) 2020; 20 Deng, Li, Wang, Yuan, Lan, Chang, Chai, Shi (b0290) 2019; 2 Abney, Mayes, Saito, Dai (b0075) 2017; 117 Jing, Zhang, Zheng, Ge, Lin, Pan, Naik, Guo (b0515) 2022; 69 Yuan, Yu, Wen, Li, Guo, Wang, Wang (b0055) 2019; 58 Yu, Low, Xiao, Zhou, Jaroniec (b0555) 2014; 136 Cui, Li, Xu, Zhang, Chen, Yan, Liang, Qiu (b0640) 2020; 59 Wang, Zhang, Dong, Cao, Cheng, Liu (b0350) 2022; 331 Dai, Zhen, Sun, Li, Ding (b0140) 2021; 415 Gaya, Abdullah (b0265) 2008; 9 W. Cui, C. Zhang, R. Xu, X. Chen, J. Qiu, Rational design of covalent organic frameworks as a groundbreaking uranium capture platform through three synergistic mechanisms. Appl. Catal. B Environ. 2021, 294, 120250, https://doi.org/10.1016/j.apcatb.2021.120250. Li, Zhai, Gui, Wang, Wu, Zhang, Dai, Deng, Su, Diwu, Lin, Chai, Wang (b0655) 2019; 254 Guo, Mei, Xiao, Huang, Ishag, Sun (b0105) 2021; 278 Moniz, Shevlin, Martin, Guo, Tang (b0260) 2015; 8 Zhang, Zhou, Dong, Wu, Xu, Xie, Li, Xiong, Wang, Liu (b0345) 2021; 328 Chen, Chen, Ren, Alsaedi, Hayat (b0550) 2019; 359 Yu, Luo, Liu, Zhou, Feng, Zhu, Wang, Zhang, Lin, Chen (b0210) 2018; 6 Zhu, Li, Dai, Li, Li, Li, Duan, Lei, Chen (b0175) 2018; 339 Yang, Zeng, Zeng, Huang, Xiao, Zhang, Zhou, Xiong, Wang, Cheng, Xue, Guo, Tang, He (b0585) 2019; 258 Yuan, Niu, Yu, Guo, Wang, Guo, Wen, Liu, Zhang (b0770) 2020; 59 Mei, Liu, Li, Gu, Du, Lu, Song, Xu, Jiang (b0725) 2022; 64 He, Yang, Cui, Zhang, Niu (b0255) 2020; 260 Chen, Liu, Li, Zhou, Lin, Ding, Lian, Li, He, Duan, Zhu (b0115) 2021; 406 Gong, Tang, Zou, Guo, Li, Lei, Liu, Liu, Zhou, Huang, Ruan, Lu, Zhu, He (b0440) 2022; 423 Li, Wang, Wang, Dong, Zhang, Lu, Liang, Pan, Fan (b0025) 2021; 414 Li, Zou, Yang, Wang, Chen, Yu, Guo, He, Duan, Zhu (b0030) 2019; 364 Kumar, Umar, Kumar, Chauhan, Kumar, Chauhan (b0525) 2021; 16 Zhang, Liu, Li, Zhang, Li, Zhai, Chen, Chen, Wang, Wang (b0720) 2019; 58 Wang, Wang, Wang, Ding, Geng, Li, Pan, Liang, Qin, Fan (b0040) 2020; 383 Ke, Li, Wu, Jiang, Luo, Liu, Le, Sun, Song (b0130) 2017; 205 Singh, Jana, Singh, Dey (b0560) 2020; 3 Zhu, Lei, Li, Dai, Chen, Bai, Zhou, Wang, Duan (b0215) 2019; 355 Wang, Zhuang (b0045) 2019; 18 Wu, Zhong, Tang, Huang, Liu, Sun, Xie, Pan, Liu, Guo (b0270) 2021; 5 Feng, Yuan, Yan, Feng, Jian, Zhang, Sun, Lin, Luo, Wang (b0710) 2022; 13 Li, Huang, Guo, Wang, Zheng, Chai, Shi (b0280) 2017; 51 Huang, Xiao, Mei, Wang, Ishag, Sun (b0395) 2021 Wang, Song, Lin, Wen, Ma, Yuan, Lei, Wang, Wang, Wu (b0745) 2019; 29 Chen, Li, Zhou, Feng, Lin, Ding, Li, Yan, Duan, He, Zhu (b0110) 2021; 420 Filippov, Svintsitskiy, Chetyrin, Prosvirin, Selishchev, Kozlov (b0120) 2018; 558 Amadelli, Maldotti, Sostero, Carassiti (b0100) 1991; 87 Zhang, Li, Gao, Zhang (b0320) 2020; 44 Li, Zhang, Dong, Wu, Liu, Cheng, Liu, Wang, Zheng, Cao, Wang, Liu (b0360) 2021; 302 Li, Wang, Peng, Wang, Liang, Pan, Fan (b0010) 2019; 483 Xiang, Cheng, Chi, Nie, Hayat, Alharbi (b0690) 2020; 3 Xue, Wang, Li, Xie, Le (b0485) 2022; 48 Li, Miao, Zhang, Wu, Zhang, Du, Han, Sun, Xu (b0590) 2021; 33 M. Danish, M. Qamar, MH. Suliman, M. Muneer, Photoelectrochemical and photocatalytic properties of Fe@ZnSQDs/TiO Guo, Li, Li, Li, Wang, Wang (b0670) 2016; 310 Qiu, Liu, Wang, Hu (b0675) 2021; 196 Zhang, Zhu, Zhang, Cai, Lv, Fang, Tan, Wang (b0070) 2020; 279 Bai, Zhang, Gao, Xiong (b0495) 2018; 53 Lei, Liu, Wen, Jiang, Yuan, Chen, Liu, Cui, Yang, Zhu, He (b0605) 2021; 426 Jain, Hashmi, Sanwaria, Singh, Susan, Singh (b0520) 2022; 3 Xie, Liu, Feng, Niu, Liu, Wu, Sui, Patil, Pan, Guo, Fan (b0245) 2021; 4 Wang, Chen, Weng, Wang, Chen, Cheng, Zhang, Wang, Ge, Chen, Huang, Lin (b0480) 2021; 410 Wang, Mei, Huang, Xiao, Sun (b0695) 2022; 330 Wang, Domen (b0580) 2020; 120 Zhang, Li, Li, Deng, Deng, Zhao (b0575) 2013; 42 Xie, Chen, Ren, Wang, Wang, Wang (b0135) 2019; 103 Li, Wang, Wang, Liang, Pan, Qiang, Fan (b0165) 2019; 41 Niu, Sui, Wu, Cao, Liu (b0565) 2022; 5 Pan, Bartova, LaGrange, Butorin, Hyatt, Stennett, Kvashnina, Bernier-Latmani (b0735) 2020; 11 Chen, Liu, Zhang, Zhang, Tang, Yuan, Xie, Liu, Wang, Fedorovich, Wang (b0625) 2021; 31 Yu, Zhu, Wang, Wang, Xu, Song, Dong, Zhang (b0705) 2022; 301 Xu, Cui, Zhang, Chen, Jiang, Liang, Qiu (b0645) 2021; 419 Yu, Zhang, Dong, Xiong, Wang, Liu, Cao, Dong, Liu, Liu (b0275) 2021; 298 Zhang, Liu, Dong, Dai, Xiong, Liu, Wang, Wang, Liu (b0340) 2020; 520 Yu, Jiang, Yuan, He, Zhu, Wang (b0185) 2021; 288 Wu, Sun, Han, Xie, Zhong, Quan, Zhao, Liu, Fan, Guo (b0060) 2021 Liu, Pang, Li, Zhang, Zhang, Miao, Qiu, Hu, Yang, Wang (b0635) 2021; 2 Gao, Xu, Zhou, Zhang, Zhou (b0615) 2020; 570 Xiong, Di, Xia, Zhu, Li (b0490) 2018; 28 Gong, Xie, Xiong, Liu, Li, Le (b0680) 2019; 322 Rao, Liu, Liu (b0295) 2022; 331 Salomone, Meichtry, Litter (b0145) 2015; 270 Chen, Lai, Zhang, Fan, He, Tan, Zhang (b0540) 2020; 4 Bonato, Allen, Scott (b0570) 2008; 3 Jiang, Yu, Yuan, He, Sun, Tao, Wang, Zhu (b0180) 2021; 9 Lu, Chen, Wu, Fan, Liu, Le, Jiang, Song (b0460) 2016; 360 Li, Li, Chen, Duan, Yao, Zheng, Dai, Zhu (b0170) 2018; 347 Yu, Zhu, Wang, Peng, Xu, Tao, Xiong, Fan, Luo (b0050) 2021; 412 Chen, Zhang, Ge, Li, Li, Liu, Duan, He, Zhu (b0325) 2020; 384 Liu, Du, Pan, Dang, Qian, Liu, Liu, Zhao (b0125) 2018; 231 Xu, Zhang, Liu, Liu, Chen, Yu, Zhu, Li, Wang (b0380) 2021; 416 Wu, Jiang, Song, Sun (b0465) 2018; 430 Liang, Yuan, Deng, Wang, Wang, Li, Luo, Shi (b0665) 2020; 267 Li, Hu, Shen, Cai, Ji, Tan, Liu, Zhao, Hu, Wang (b0205) 2021; 64 M. Hao, X. Liu, X. Liu, J. Zhang, H. Yang, G. I. N. Waterhouse, X. Wang, S. Ma, Converging cooperative functions into the nanospace of covalent organic frameworks for efficient uranium extraction from seawater. CCS Chem. 2022, Doi.org/10.31635/ccschem.022.202201897. Lu, Zhang, Jiang, Wu, Song, Zhu, Lou, Li, Liu, Liu, Wang, Le (b0455) 2017; 200 Yu, Tang, Cao, Guo, Zhang, Li, Dong, Gong, Chen, He, Zhu (b0715) 2022 Liu, Mao (b0020) 2021; 13 Fang, Tan, Liu, Hu, Wang (b0190) 2021; 2021 Meng, Yang, Wu, Chen, Li, He, Zhu, Zhu, Duan (b0310) 2022; 422 Zhong, Liu, Wang, Zhu, Hu (b0355) 2021; 279 Cui, Zhang, Xu, Chen, Jiang, Li, Liang, Zhang, Qiu (b0650) 2021; 294 Kumar, Singh, Kim, Kwon, Younis (b0080) 2021; 447 Liu, Hsu, Xie, Zhao, Wu, Wang, Liu, Zhang, Chu, Cui (b0730) 2017; 2 Cai, Zhang, Lv, Zhang, Gao, Fang, Kong, Liu, Tan, Hu, Wang (b0090) 2022; 310 Cheng, Zhang, Zhao, Chai, Hu, Han, Ai, Wang (b0750) 2021; 66 nanocomposites for degradation of different chromo 10.1016/j.ccr.2022.214615_b0435 Yu (10.1016/j.ccr.2022.214615_b0050) 2021; 412 Qiu (10.1016/j.ccr.2022.214615_b0675) 2021; 196 Li (10.1016/j.ccr.2022.214615_b0280) 2017; 51 Yu (10.1016/j.ccr.2022.214615_b0210) 2018; 6 Cheng (10.1016/j.ccr.2022.214615_b0095) 2021; 66 Bai (10.1016/j.ccr.2022.214615_b0495) 2018; 53 Fang (10.1016/j.ccr.2022.214615_b0190) 2021; 2021 Xiang (10.1016/j.ccr.2022.214615_b0690) 2020; 3 Jing (10.1016/j.ccr.2022.214615_b0515) 2022; 69 Gong (10.1016/j.ccr.2022.214615_b0470) 2021; 9 Cheng (10.1016/j.ccr.2022.214615_b0150) 2020; 20 Le (10.1016/j.ccr.2022.214615_b0685) 2020; 260 Yuan (10.1016/j.ccr.2022.214615_b0055) 2019; 58 Kumar (10.1016/j.ccr.2022.214615_b0080) 2021; 447 Ke (10.1016/j.ccr.2022.214615_b0130) 2017; 205 Rao (10.1016/j.ccr.2022.214615_b0295) 2022; 331 Li (10.1016/j.ccr.2022.214615_b0300) 2021; 303 10.1016/j.ccr.2022.214615_b0700 Li (10.1016/j.ccr.2022.214615_b0330) 2021; 425 He (10.1016/j.ccr.2022.214615_b0430) 2022; 61 Lu (10.1016/j.ccr.2022.214615_b0455) 2017; 200 Liu (10.1016/j.ccr.2022.214615_b0545) 2019; 319 Cheng (10.1016/j.ccr.2022.214615_b0750) 2021; 66 Zhang (10.1016/j.ccr.2022.214615_b0070) 2020; 279 Li (10.1016/j.ccr.2022.214615_b0360) 2021; 302 Yu (10.1016/j.ccr.2022.214615_b0505) 2020; 7 Yuan (10.1016/j.ccr.2022.214615_b0770) 2020; 59 Liang (10.1016/j.ccr.2022.214615_b0305) 2021; 420 Pan (10.1016/j.ccr.2022.214615_b0735) 2020; 11 Zhong (10.1016/j.ccr.2022.214615_b0405) 2019; 258 Wang (10.1016/j.ccr.2022.214615_b0350) 2022; 331 Liu (10.1016/j.ccr.2022.214615_b0375) 2021; 11 Kumar (10.1016/j.ccr.2022.214615_b0525) 2021; 16 Tatarchuk (10.1016/j.ccr.2022.214615_b0035) 2019; 293 Xie (10.1016/j.ccr.2022.214615_b0245) 2021; 4 Liu (10.1016/j.ccr.2022.214615_b0020) 2021; 13 Jain (10.1016/j.ccr.2022.214615_b0520) 2022; 3 Xu (10.1016/j.ccr.2022.214615_b0380) 2021; 416 Bai (10.1016/j.ccr.2022.214615_b0400) 2015; 27 Xin (10.1016/j.ccr.2022.214615_b0595) 2021; 33 White (10.1016/j.ccr.2022.214615_b0250) 2015; 115 Salomone (10.1016/j.ccr.2022.214615_b0145) 2015; 270 Low (10.1016/j.ccr.2022.214615_b0370) 2017; 1 Mei (10.1016/j.ccr.2022.214615_b0725) 2022; 64 Chen (10.1016/j.ccr.2022.214615_b0230) 2018; 202 Zhang (10.1016/j.ccr.2022.214615_b0510) 2021; 4 Li (10.1016/j.ccr.2022.214615_b0165) 2019; 41 Niu (10.1016/j.ccr.2022.214615_b0565) 2022; 5 Li (10.1016/j.ccr.2022.214615_b0205) 2021; 64 Yu (10.1016/j.ccr.2022.214615_b0705) 2022; 301 Bonato (10.1016/j.ccr.2022.214615_b0570) 2008; 3 Amadelli (10.1016/j.ccr.2022.214615_b0100) 1991; 87 Chen (10.1016/j.ccr.2022.214615_b0110) 2021; 420 Chen (10.1016/j.ccr.2022.214615_b0550) 2019; 359 Dai (10.1016/j.ccr.2022.214615_b0140) 2021; 415 Cui (10.1016/j.ccr.2022.214615_b0650) 2021; 294 Chen (10.1016/j.ccr.2022.214615_b0325) 2020; 384 Cheng (10.1016/j.ccr.2022.214615_b0535) 2021; 4 Gong (10.1016/j.ccr.2022.214615_b0680) 2019; 322 Abney (10.1016/j.ccr.2022.214615_b0075) 2017; 117 Xiong (10.1016/j.ccr.2022.214615_b0490) 2018; 28 Guo (10.1016/j.ccr.2022.214615_b0670) 2016; 310 Wu (10.1016/j.ccr.2022.214615_b0365) 2021; 329 Wu (10.1016/j.ccr.2022.214615_b0060) 2021 Yu (10.1016/j.ccr.2022.214615_b0715) 2022 Zhang (10.1016/j.ccr.2022.214615_b0720) 2019; 58 Chen (10.1016/j.ccr.2022.214615_b0115) 2021; 406 Low (10.1016/j.ccr.2022.214615_b0240) 2017; 29 Liu (10.1016/j.ccr.2022.214615_b0610) 2021; 282 Zhao (10.1016/j.ccr.2022.214615_b0765) 2019; 58 Deng (10.1016/j.ccr.2022.214615_b0290) 2019; 2 Li (10.1016/j.ccr.2022.214615_b0590) 2021; 33 Feng (10.1016/j.ccr.2022.214615_b0445) 2018; 212 Lu (10.1016/j.ccr.2022.214615_b0460) 2016; 360 Jiang (10.1016/j.ccr.2022.214615_b0475) 2017; 217 Chen (10.1016/j.ccr.2022.214615_b0540) 2020; 4 Hu (10.1016/j.ccr.2022.214615_b0285) 2018; 428 Wang (10.1016/j.ccr.2022.214615_b0745) 2019; 29 Xu (10.1016/j.ccr.2022.214615_b0645) 2021; 419 Guo (10.1016/j.ccr.2022.214615_b0410) 2017; 46 10.1016/j.ccr.2022.214615_b0530 Yang (10.1016/j.ccr.2022.214615_b0585) 2019; 258 Gao (10.1016/j.ccr.2022.214615_b0615) 2020; 570 Wang (10.1016/j.ccr.2022.214615_b0695) 2022; 330 Lei (10.1016/j.ccr.2022.214615_b0155) 2021; 416 Liu (10.1016/j.ccr.2022.214615_b0730) 2017; 2 Wang (10.1016/j.ccr.2022.214615_b0045) 2019; 18 Xie (10.1016/j.ccr.2022.214615_b0135) 2019; 103 Li (10.1016/j.ccr.2022.214615_b0315) 2019; 7 Yu (10.1016/j.ccr.2022.214615_b0555) 2014; 136 Zhang (10.1016/j.ccr.2022.214615_b0575) 2013; 42 Lei (10.1016/j.ccr.2022.214615_b0605) 2021; 426 Yu (10.1016/j.ccr.2022.214615_b0185) 2021; 288 Qian (10.1016/j.ccr.2022.214615_b0085) 2018; 6 Dong (10.1016/j.ccr.2022.214615_b0425) 2021; 8 Cui (10.1016/j.ccr.2022.214615_b0630) 2021; 1 Wang (10.1016/j.ccr.2022.214615_b0040) 2020; 383 Chen (10.1016/j.ccr.2022.214615_b0625) 2021; 31 Li (10.1016/j.ccr.2022.214615_b0660) 2020; 326 Zhang (10.1016/j.ccr.2022.214615_b0320) 2020; 44 Wang (10.1016/j.ccr.2022.214615_b0450) 2020; 262 Liu (10.1016/j.ccr.2022.214615_b0620) 2022; 15 10.1016/j.ccr.2022.214615_b0760 Qi (10.1016/j.ccr.2022.214615_b0225) 2021; 4 Dai (10.1016/j.ccr.2022.214615_b0420) 2020; 254 Yu (10.1016/j.ccr.2022.214615_b0600) 2022; 426 Yu (10.1016/j.ccr.2022.214615_b0275) 2021; 298 He (10.1016/j.ccr.2022.214615_b0255) 2020; 260 Wu (10.1016/j.ccr.2022.214615_b0465) 2018; 430 Li (10.1016/j.ccr.2022.214615_b0655) 2019; 254 Gaya (10.1016/j.ccr.2022.214615_b0265) 2008; 9 Jiang (10.1016/j.ccr.2022.214615_b0180) 2021; 9 Xue (10.1016/j.ccr.2022.214615_b0485) 2022; 48 Filippov (10.1016/j.ccr.2022.214615_b0120) 2018; 558 Huang (10.1016/j.ccr.2022.214615_b0395) 2021 Dong (10.1016/j.ccr.2022.214615_b0195) 2021; 13 Feng (10.1016/j.ccr.2022.214615_b0710) 2022; 13 Li (10.1016/j.ccr.2022.214615_b0390) 2022; 346 Jiang (10.1016/j.ccr.2022.214615_b0005) 2018; 228 Li (10.1016/j.ccr.2022.214615_b0015) 2019; 365 Yang (10.1016/j.ccr.2022.214615_b0755) 2021; 33 Liu (10.1016/j.ccr.2022.214615_b0635) 2021; 2 Li (10.1016/j.ccr.2022.214615_b0010) 2019; 483 Cui (10.1016/j.ccr.2022.214615_b0640) 2020; 59 Wu (10.1016/j.ccr.2022.214615_b0270) 2021; 5 Zhong (10.1016/j.ccr.2022.214615_b0355) 2021; 279 Li (10.1016/j.ccr.2022.214615_b0030) 2019; 364 Zhu (10.1016/j.ccr.2022.214615_b0215) 2019; 355 Singh (10.1016/j.ccr.2022.214615_b0560) 2020; 3 10.1016/j.ccr.2022.214615_b0065 Zhang (10.1016/j.ccr.2022.214615_b0340) 2020; 520 Wang (10.1016/j.ccr.2022.214615_b0480) 2021; 410 Moniz (10.1016/j.ccr.2022.214615_b0260) 2015; 8 10.1016/j.ccr.2022.214615_b0740 Yu (10.1016/j.ccr.2022.214615_b0200) 2020; 392 Cai (10.1016/j.ccr.2022.214615_b0090) 2022; 310 Meng (10.1016/j.ccr.2022.214615_b0310) 2022; 422 Zhu (10.1016/j.ccr.2022.214615_b0175) 2018; 339 Li (10.1016/j.ccr.2022.214615_b0025) 2021; 414 Guo (10.1016/j.ccr.2022.214615_b0105) 2021; 278 Li (10.1016/j.ccr.2022.214615_b0170) 2018; 347 Wang (10.1016/j.ccr.2022.214615_b0580) 2020; 120 Liu (10.1016/j.ccr.2022.214615_b0335) 2021; 537 Li (10.1016/j.ccr.2022.214615_b0385) 2021; 298 Gong (10.1016/j.ccr.2022.214615_b0440) 2022; 423 Liu (10.1016/j.ccr.2022.214615_b0125) 2018; 231 Zhang (10.1016/j.ccr.2022.214615_b0345) 2021; 328 Wang (10.1016/j.ccr.2022.214615_b0160) 2020; 402 Chen (10.1016/j.ccr.2022.214615_b0220) 2019; 30 Litter (10.1016/j.ccr.2022.214615_b0500) 2017; 6 Liang (10.1016/j.ccr.2022.214615_b0665) 2020; 267 Zhu (10.1016/j.ccr.2022.214615_b0415) 2019; 248 Wang (10.1016/j.ccr.2022.214615_b0235) 2020; 308 |
References_xml | – volume: 205 start-page: 319 year: 2017 end-page: 326 ident: b0130 article-title: Graphene-like sulfur-doped g-C publication-title: Appl. Catal. B Environ. – volume: 7 start-page: 2000204 year: 2020 ident: b0505 article-title: Enhanced solar photothermal catalysis over solution plasma activated TiO publication-title: Adv. Sci. – volume: 308 year: 2020 ident: b0235 article-title: Efficient recovery of uranium from saline lake brine through photocatalytic reduction publication-title: J. Mol. Liq. – volume: 200 start-page: 378 year: 2017 end-page: 385 ident: b0455 article-title: Photocatalytic reduction elimination of UO publication-title: Appl. Catal. B Environ. – volume: 196 year: 2021 ident: b0675 article-title: The photocatalytic reduction of U(VI) into U(IV) by ZIF-8/g-C publication-title: Environ. Res. – volume: 423 year: 2022 ident: b0440 article-title: Introduction of cation vacancies and iron doping into TiO publication-title: J. Hazard. Mater. – volume: 279 year: 2020 ident: b0070 article-title: Highly efficient removal of U(VI) by the photoreduction of SnO publication-title: Appl. Catal. B Environ. – volume: 416 year: 2021 ident: b0155 article-title: Enhanced photoreduction of U(VI) on WO publication-title: Chem. Eng. J. – volume: 430 start-page: 371 year: 2018 end-page: 379 ident: b0465 article-title: Constructing effective photocatalytic purification system with P-introduced g-C publication-title: Appl. Surf. Sci. – volume: 279 start-page: 1383 year: 2021 end-page: 5866 ident: b0355 article-title: In-situ growth of COF on BiOBr 2D material with excellent visible-light-responsive activity for U(VI) photocatalytic reduction publication-title: Sep. Purif. Technol. – volume: 13 start-page: 1389 year: 2022 ident: b0710 article-title: Halogen hydrogen-bonded organic framework (XHOF) constructed by singlet open-shell diradical for efficient photoreduction of U(VI) publication-title: Nat. Commun. – volume: 30 start-page: 1361 year: 2019 end-page: 6528 ident: b0220 article-title: Biomass-derived composite aerogels with novel structure for removal/recovery of uranium from simulated radioactive wastewater publication-title: Nanotechnology – volume: 570 start-page: 125 year: 2020 end-page: 134 ident: b0615 article-title: Metal organic framework derived heteroatoms and cyano (-C equivalent to N) group co-decorated porous g-C publication-title: J. Colloid and Interf. Sci. – volume: 2 start-page: 17007 year: 2017 ident: b0730 article-title: “A half-wave rectified alternating current electrochemical method for uranium extraction from seawater publication-title: Nat. Energy – volume: 8 start-page: 2372 year: 2021 ident: b0425 article-title: 3D structure aerogels constructed by reduced graphene oxide and hollow TiO publication-title: Environ. Sci.: Nano – volume: 8 start-page: 731 year: 2015 end-page: 759 ident: b0260 article-title: Visible-light driven heterojunction photocatalysts for water splitting - a critical review publication-title: Energ. Environ. Sci. – volume: 270 start-page: 28 year: 2015 end-page: 35 ident: b0145 article-title: Heterogeneous photocatalytic removal of U(VI) in the presence of formic acid: U(III) formation publication-title: Chem. Eng. J. – volume: 420 year: 2021 ident: b0110 article-title: Harmonizing the energy band between adsorbent and semiconductor enables efficient uranium extraction publication-title: Chem. Eng. J. – volume: 11 start-page: 4810 year: 2021 end-page: 4817 ident: b0375 article-title: Synthesis of g-C publication-title: RSC Adv. – volume: 4 start-page: 173 year: 2021 end-page: 185 ident: b0245 article-title: Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption publication-title: Adv. Compos. Hybrid Mater. – volume: 294 year: 2021 ident: b0650 article-title: Rational design of covalent organic frameworks as a groundbreaking uranium capture platform through three synergistic mechanisms publication-title: Appl. Catal. B Environ. – volume: 278 start-page: 130411 year: 2021 ident: b0105 article-title: Carbon materials for extraction of uranium from seawater publication-title: Chemosphere – volume: 412 year: 2021 ident: b0050 article-title: Tunable perylene-based donor-acceptor conjugated microporous polymer to significantly enhance photocatalytic uranium extraction from seawater publication-title: Chem. Eng. J. – volume: 3 start-page: 57 year: 2008 end-page: 61 ident: b0570 article-title: Reduction of u(VI) to U(IV) on the surface of TiO publication-title: Micro Nano Lett. – volume: 33 start-page: 2000086 year: 2021 ident: b0590 article-title: Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis publication-title: Adv. Mater. – volume: 260 year: 2020 ident: b0255 article-title: Fabrication of the novel Ag-doped SnS publication-title: Chemosphere – volume: 7 start-page: 16902 year: 2019 end-page: 16911 ident: b0315 article-title: Graphene oxide based dopamine mussel-like cross-linked polyethylene imine nanocomposite coating with enhanced hexavalent uranium adsorption publication-title: J. Mater. Chem. A – reference: nanocomposites for degradation of different chromophoric organic pollutants in aqueous suspension. Adv. Compos. Hybrid. Ma. 2020, 3, 570-582, https://doi.org/doi:10.1007/s42114-020-00187-9. – reference: W. Cui, C. Zhang, R. Xu, X. Chen, J. Qiu, Rational design of covalent organic frameworks as a groundbreaking uranium capture platform through three synergistic mechanisms. Appl. Catal. B Environ. 2021, 294, 120250, https://doi.org/10.1016/j.apcatb.2021.120250. – volume: 9 start-page: 9809 year: 2021 end-page: 9814 ident: b0180 article-title: Encapsulating Ag nanoparticles into ZIF-8 as an efficient strategy to boost uranium photoreduction without sacrificial agents dagger publication-title: J. Mater. Chem. A – volume: 59 start-page: 1220 year: 2020 end-page: 1227 ident: b0770 article-title: Photoinduced multiple effects to enhance uranium extraction from natural seawater by black phosphorus nanosheets publication-title: Angew. Chem. Int. Edit. – volume: 58 start-page: 11785 year: 2019 end-page: 11790 ident: b0055 article-title: Ultrafast and highly selective uranium extraction from seawater by hydrogel-like spidroin-based protein fiber publication-title: Angew Chem Int Ed Engl – volume: 331 start-page: 263 year: 2022 end-page: 273 ident: b0295 article-title: Fabrication of MoS publication-title: J. Radioanal. Nucl. Chem. – volume: 425 start-page: 13858947 year: 2021 ident: b0330 article-title: Ultrafast recovery of aqueous uranium: Photocatalytic U(VI) reduction over CdS/g-C publication-title: Chem. Eng. J. – volume: 1 start-page: 1700080 year: 2017 ident: b0370 article-title: A review of direct Z-scheme photocatalysts publication-title: Small Methods – volume: 53 start-page: 296 year: 2018 end-page: 336 ident: b0495 article-title: Defect engineering in photocatalytic materials publication-title: Nano Energy – volume: 5 start-page: 450 year: 2022 end-page: 460 ident: b0565 article-title: GaAs quantum dot/TiO publication-title: Adv. Compos. Hybrid. Ma. – volume: 120 start-page: 919 year: 2020 end-page: 985 ident: b0580 article-title: Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies publication-title: Chem. Rev. – volume: 415 year: 2021 ident: b0140 article-title: ZnFe publication-title: Chem. Eng. J. – volume: 360 start-page: 1016 year: 2016 end-page: 1022 ident: b0460 article-title: Boron doped g-C publication-title: Appl. Surf. Sci. – volume: 46 start-page: 14762 year: 2017 end-page: 14770 ident: b0410 article-title: Enhanced photocatalytic reduction activity of uranium(VI) from aqueous solution using Fe publication-title: Dalton T. – volume: 267 year: 2020 ident: b0665 article-title: Photocatalytic reduction of Uranium(VI) by magnetic ZnFe publication-title: Appl. Catal. B Environ. – volume: 66 start-page: 1994 year: 2021 end-page: 2001 ident: b0095 article-title: Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity publication-title: Sci. Bull. – volume: 302 year: 2021 ident: b0360 article-title: Synthesis of MoS publication-title: J. Solid State Chem. – volume: 18 start-page: 437 year: 2019 end-page: 452 ident: b0045 article-title: Extraction and adsorption of U(VI) from aqueous solution using affinity ligand-based technologies: an overview publication-title: Rev. Environ. Sci. Bio. – volume: 20 start-page: 6097 year: 2020 end-page: 6103 ident: b0150 article-title: Surface nitrogen-injection engineering for high formation rate of CO publication-title: Nano Lett. – volume: 16 start-page: 288 year: 2021 end-page: 300 ident: b0525 article-title: Spindle-like Co3O4-ZnO nanocomposites scaffold for hydrazine sensing and photocatalytic degradation of rhodamine B dye publication-title: Eng. Sci. – volume: 303 year: 2021 ident: b0300 article-title: CuS/TiO2 nanotube arrays heterojunction for the photoreduction of uranium (VI) publication-title: J. Solid State Chem. – volume: 346 year: 2022 ident: b0390 article-title: Modifying g-C publication-title: J. Mol. Liq. – volume: 254 year: 2020 ident: b0420 article-title: Photocatalytic reduction of U(VI) in wastewater by mGO/g-C publication-title: Chemosphere – volume: 33 start-page: 2106621 year: 2021 ident: b0755 article-title: Functionalized iron–nitrogen–carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater publication-title: Adv. Mater. – volume: 329 start-page: 1125 year: 2021 end-page: 1133 ident: b0365 article-title: The enhanced photocatalytic reduction of uranium(VI) by ZnS@g-C publication-title: J. Radioanal. Nucl. Ch. – volume: 301 year: 2022 ident: b0705 article-title: Novel donor-acceptor-acceptor ternary conjugated microporous polymers with boosting forward charge separation and suppressing backward charge recombination for photocatalytic reduction of uranium (VI) publication-title: Appl. Catal. B Environ. – year: 2021 ident: b0060 article-title: Negative permittivity behavior in flexible carbon nanofibers-polydimethylsiloxane films publication-title: Eng. Sci. – volume: 136 start-page: 8839 year: 2014 end-page: 8842 ident: b0555 article-title: Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed 001 and 101 facets publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 419 year: 2021 end-page: 430 ident: b0270 article-title: Precise regulation of weakly negative permittivity in CaCu publication-title: Adv. Compos. Hybrid Mater. – volume: 4 start-page: 1226 year: 2021 end-page: 1238 ident: b0225 article-title: Lightweight Fe publication-title: Adv. Compos. Hybrid Mater. – volume: 28 start-page: 1801983 year: 2018 ident: b0490 article-title: Surface defect engineering in 2D nanomaterials for photocatalysis publication-title: Adv. Funct. Mater. – volume: 355 start-page: 777 year: 2019 end-page: 783 ident: b0215 article-title: Procedural growth of fungal hyphae/Fe publication-title: Chem. Eng. J. – volume: 254 start-page: 47 year: 2019 end-page: 54 ident: b0655 article-title: Powerful uranium extraction strategy with combined ligand complexation and photocatalytic reduction by postsynthetically modified photoactive metal-organic frameworks publication-title: Appl. Catal. B Environ. – volume: 4 start-page: 1330 year: 2021 end-page: 1342 ident: b0510 article-title: Microwave hydrothermally synthesized WO publication-title: Adv. Compos. Hybrid. Ma. – volume: 310 start-page: 883 year: 2016 end-page: 890 ident: b0670 article-title: Adsorption and photocatalytic reduction activity of Uranium(VI) on zinc oxide/rectorite composite enhanced with methanol as sacrificial organics publication-title: J. Radioanal. Nucl. Ch. – volume: 262 year: 2020 ident: b0450 article-title: Visible light driven Ti publication-title: Environ. Pollut. – volume: 6 start-page: 24676 year: 2018 end-page: 24685 ident: b0085 article-title: Highly efficient uranium adsorption by salicylaldoxime/polydopamine graphene oxide nanocomposites publication-title: J. Mater. Chem. A – volume: 41 year: 2019 ident: b0165 article-title: An overview and recent progress in the heterogeneous photocatalytic reduction of U(VI) publication-title: J. Photoch. Photobio C – volume: 87 start-page: 3267 year: 1991 ident: b0100 article-title: Photodeposition of uranium oxides onto TiO publication-title: J. Chem. Soc., Faraday Trans. – volume: 339 start-page: 214 year: 2018 end-page: 222 ident: b0175 article-title: Bioassembly of fungal hyphae/carbon nanotubes composite as a versatile adsorbent for water pollution control publication-title: Chem. Eng. J. – volume: 4 start-page: 243 year: 2020 end-page: 256 ident: b0540 article-title: Phase engineering of nanomaterials publication-title: Nat. Rev. Chem. – volume: 217 start-page: 388 year: 2017 end-page: 406 ident: b0475 article-title: Doping of graphitic carbon nitride for photocatalysis: A reveiw publication-title: Appl. Catal. B Environ. – volume: 328 start-page: 9 year: 2021 end-page: 17 ident: b0345 article-title: Visible-light induced photocatalytic removal of U(VI) from aqueous solution by MoS publication-title: J. Radioanal. Nucl. Ch. – volume: 447 start-page: 0010 year: 2021 end-page: 8545 ident: b0080 article-title: Metal-organic frameworks for photocatalytic detoxification of chromium and uranium in water publication-title: Coord. Chem. Rev. – volume: 384 year: 2020 ident: b0325 article-title: Efficient extraction of uranium in organics-containing wastewater over g-C publication-title: J. Hazard. Mater. – volume: 258 year: 2019 ident: b0585 article-title: Ti publication-title: Appl. Catal. B Environ. – volume: 419 year: 2021 ident: b0645 article-title: Vinylene-linked covalent organic frameworks with enhanced uranium adsorption through three synergistic mechanisms publication-title: Chem. Eng. J. – volume: 51 start-page: 5666 year: 2017 end-page: 5674 ident: b0280 article-title: Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO publication-title: Environ. Sci. Technol. – volume: 260 year: 2020 ident: b0685 article-title: Self-cleaning isotype g-C publication-title: Environ. Pollut. – volume: 13 start-page: 11968 year: 2021 end-page: 11976 ident: b0195 article-title: Efficient photocatalytic extraction of uranium over ethylenediamine capped cadmium sulfide telluride nanobelts publication-title: ACS Appl. Mater. Inter. – volume: 29 start-page: 1901009 year: 2019 ident: b0745 article-title: A marine-inspired hybrid sponge for highly efficient uranium extraction from seawater publication-title: Adv. Funct. Mater. – volume: 359 start-page: 944 year: 2019 end-page: 954 ident: b0550 article-title: Interaction mechanism between different facet TiO publication-title: Chem. Eng. J. – volume: 117 start-page: 13935 year: 2017 end-page: 14013 ident: b0075 article-title: Materials for the Recovery of Uranium from Seawater publication-title: Chem. rev. – volume: 537 year: 2021 ident: b0335 article-title: Study on photocatalytic performance of hexagonal SnS publication-title: Appl. Surf. Sci. – volume: 2 start-page: 2283 year: 2019 end-page: 2294 ident: b0290 article-title: Nanolayered Ti publication-title: ACS Appl. Nano Mater. – volume: 27 start-page: 3444 year: 2015 end-page: 3452 ident: b0400 article-title: Toward enhanced photocatalytic oxygen evolution: synergetic utilization of plasmonic effect and Schottky junction via interfacing facet selection publication-title: Adv. Mater. – volume: 48 start-page: 49 year: 2022 end-page: 65 ident: b0485 article-title: Bromine doped g-C publication-title: Res. Chem. Intermediat. – volume: 326 start-page: 1805 year: 2020 end-page: 1817 ident: b0660 article-title: Gas-sculpted g-C publication-title: J. Radioanal. Nucl. Ch. – volume: 426 year: 2022 ident: b0600 article-title: Enhanced uranium photoreduction on Ti publication-title: J. Hazard. Mater. – volume: 558 start-page: 81 year: 2018 end-page: 90 ident: b0120 article-title: Photocatalytic and photochemical processes on the surface of uranyl-modified oxides: An in situ XPS study publication-title: Appl. Catal. A-Gen. – volume: 64 start-page: 1323 year: 2021 end-page: 1331 ident: b0205 article-title: Rapid and selective uranium extratction from aqueous solution under visible light in the absence of solid photocatalyst publication-title: Sci. Total Environ. – volume: 1 start-page: 440 year: 2021 end-page: 448 ident: b0630 article-title: High-efficiency photoenhanced extraction of uranium from natural seawater by olefin-linked covalent organic frameworks publication-title: ACS ES&T Water – volume: 9 year: 2021 ident: b0470 article-title: Fabrication of g-C publication-title: J. Environ. Chem. Eng. – start-page: 2200315 year: 2022 ident: b0715 article-title: Semiconducting metal-organic frameworks decorated with spatially separated dual cocatalysts for efficient uranium(VI) photoreduction publication-title: Adv. Funct. Mater. – reference: L. Devi, R. Kavitha, A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity. Appl. Catal. B Environ. 2013, 140, 559-587, https://doi.org/0.1016/j.apcatb.2013.04.035. – volume: 31 start-page: 2100106 year: 2021 ident: b0625 article-title: Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel publication-title: Adv. Funct. Mater. – volume: 402 year: 2020 ident: b0160 article-title: Graphene aerogel for photocatalysis-assist uranium elimination under visible light and air atmosphere publication-title: Chem. Eng. J. – volume: 15 start-page: 2943 year: 2022 end-page: 2951 ident: b0620 article-title: Hydrogen-incorporated vanadium dioxide nanosheets enable efficient uranium confinement and photoreduction publication-title: Nano Res. – volume: 364 start-page: 139 year: 2019 end-page: 145 ident: b0030 article-title: Integration of bio-inspired adsorption and photodegradation for the treatment of organics-containing radioactive wastewater publication-title: Chem. Eng. J. – volume: 248 start-page: 448 year: 2019 end-page: 455 ident: b0415 article-title: K publication-title: Environ. Pollut. – volume: 483 start-page: 670 year: 2019 end-page: 676 ident: b0010 article-title: Heterostructure of anatase-rutile aggregates boosting the photoreduction of U(VI) publication-title: Appl. Surf. Sci. – volume: 44 start-page: 19961 year: 2020 end-page: 19976 ident: b0320 article-title: Graphitic carbon nitride-based materials for photocatalytic reduction of U(VI) publication-title: New J. Chem. – volume: 64 start-page: 1 year: 2022 end-page: 7 ident: b0725 article-title: Operando HERFD-XANES and surface sensitive Δμ analyses identify the structural evolution of copper(II) phthalocyanine for electroreduction of CO publication-title: J. Energy Chem. – volume: 2 year: 2021 ident: b0635 article-title: Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions publication-title: The Innovation – volume: 330 year: 2022 ident: b0695 article-title: Uranyl(VI) boosting 3D g-C publication-title: J. Clean Prod. – year: 2021 ident: b0395 article-title: The synthesis of Z-scheme MoS publication-title: Catal. Lett. – volume: 11 start-page: 4001 year: 2020 ident: b0735 article-title: Nanoscale mechanism of UO publication-title: Nat. Commun. – volume: 298 year: 2021 ident: b0385 article-title: Efficient photoreduction strategy for uranium immobilization based on graphite carbon nitride/perovskite oxide heterojunction nanocomposites publication-title: Appl. Catal. B Environ. – volume: 365 start-page: 231 year: 2019 end-page: 241 ident: b0015 article-title: Photoconversion of U(VI) by TiO publication-title: Chem. Eng. J. – volume: 310 year: 2022 ident: b0090 article-title: Highly efficient uranium extraction by a piezo catalytic reduction-oxidation process publication-title: Appl. Catal. B: Environ. – volume: 6 start-page: 15359 year: 2018 end-page: 15370 ident: b0210 article-title: Bayberry tannin immobilized bovine serum albumin nanospheres: characterization, irradiation stability and selective removal of uranyl ions from radioactive wastewater publication-title: J. Mater. Chem. A – volume: 2021 start-page: 9794329 year: 2021 ident: b0190 article-title: Recent progress on metal-enhanced photocatalysis: a review on the mechanism publication-title: Research – volume: 3 start-page: 127 year: 2020 end-page: 140 ident: b0560 article-title: Graphene-supported TiO publication-title: Adv. Compos. Hybrid. Ma. – volume: 383 year: 2020 ident: b0040 article-title: Tunable mesoporous g-C publication-title: Chem. Eng. J. – reference: S. Yu, H. Tang, D. Zhang, S. Wang, M. Qiu, G. Song, D. Fu, B. Hu, X. Wang, MXenes as emerging nanomaterials in water purification and environmental remediation. Sci. Total Environ. 2022, 811, 152280. – volume: 61 start-page: 2242 year: 2022 end-page: 2250 ident: b0430 article-title: Synergistic effect of the sulfur vacancy and Schottky heterojunction on photocatalytic uranium immobilization: the thermodynamics and kinetics publication-title: Inorg. Chem. – volume: 410 year: 2021 ident: b0480 article-title: Carbon-doped boron nitride nanosheets with adjustable band structure for efficient photocatalytic U(VI) reduction under visible light publication-title: Chem. Eng. J. – volume: 42 start-page: 689 year: 2013 end-page: 690 ident: b0575 article-title: Photocatalytic reduction of uranyl ions over anatase and rutile nanostructured TiO publication-title: Chem. Lett. – volume: 347 start-page: 407 year: 2018 end-page: 414 ident: b0170 article-title: Bioassembly of fungal hypha/graphene oxide aerogel as high performance adsorbents for U(VI) removal publication-title: Chem. Eng. J. – volume: 392 year: 2020 ident: b0200 article-title: Superhydrophilic and highly elastic monolithic sponge for efficient solar-driven radioactive wastewater treatment under one sun publication-title: J. Hazard. Mater. – volume: 298 year: 2021 ident: b0275 article-title: Fabrication of heterostructured CdS/TiO publication-title: J. Solid State Chem. – volume: 69 start-page: 111 year: 2022 end-page: 122 ident: b0515 article-title: In-situ constructing visible light CdS/Cd-MOF photocatalyst with enhanced photodegradation of methylene blue publication-title: Particuology – reference: M. Hao, X. Liu, X. Liu, J. Zhang, H. Yang, G. I. N. Waterhouse, X. Wang, S. Ma, Converging cooperative functions into the nanospace of covalent organic frameworks for efficient uranium extraction from seawater. CCS Chem. 2022, Doi.org/10.31635/ccschem.022.202201897. – volume: 3 start-page: 231 year: 2022 end-page: 242 ident: b0520 article-title: Zinc oxide nanoparticle incorporated on graphene oxide: an efficient and stable photocatalyst for water treatment through the Fenton process publication-title: Adv. Compos. Hybrid. Ma. – reference: M. Danish, M. Qamar, MH. Suliman, M. Muneer, Photoelectrochemical and photocatalytic properties of Fe@ZnSQDs/TiO – volume: 228 start-page: 29 year: 2018 end-page: 38 ident: b0005 article-title: Simultaneous photoreduction of Uranium(VI) and photooxidation of Arsenic (III) in aqueous solution over g-C publication-title: Appl. Catal. B Environ – volume: 4 start-page: 150 year: 2021 end-page: 161 ident: b0535 article-title: One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal-organic frameworks for enhanced photochemical properties publication-title: Adv. Compos. Hybrid. Ma. – volume: 282 year: 2021 ident: b0610 article-title: Sunlight-induced uranium extraction with triazine-based carbon nitride as both photocatalyst and adsorbent publication-title: Appl. Catal. B Environ. – volume: 13 start-page: 3 year: 2021 end-page: 22 ident: b0020 article-title: Graphene oxide-based nanomaterials for uranium adsorptive uptake publication-title: ES Mater. Manuf. – volume: 212 start-page: 114 year: 2018 end-page: 123 ident: b0445 article-title: Photocatalytic reduction of Uranium(VI) under visible light with Sn-doped In publication-title: Chemosphere – volume: 406 year: 2021 ident: b0115 article-title: Efficient uranium reduction of bacterial cellulose-MoS publication-title: Chem. Eng. J. – volume: 426 year: 2021 ident: b0605 article-title: Tellurium nanowires wrapped by surface oxidized tin disulfide nanosheets achieves efficient photocatalytic reduction of U(VI) publication-title: Chem. Eng. J. – volume: 293 year: 2019 ident: b0035 article-title: A review on removal of uranium(VI) ions using titanium dioxide based sorbents publication-title: J. Mol. Liq. – volume: 420 year: 2021 ident: b0305 article-title: Photocatalytic reduction of uranium(VI) under visible light with 2D/ 1D Ti publication-title: Chem. Eng. J. – volume: 428 start-page: 819 year: 2018 end-page: 824 ident: b0285 article-title: Integration of adsorption and reduction for uranium uptake based on SrTiO publication-title: Appl. Surf. Sci. – volume: 58 start-page: 14979 year: 2019 end-page: 14985 ident: b0765 article-title: A dual-surface amidoximated halloysite nanotube for high-efficiency economical uranium extraction from seawater publication-title: Angew. Chem. Int. Edit. – volume: 29 start-page: 1601694 year: 2017 ident: b0240 article-title: Heterojunction photocatalysts publication-title: Adv. Mater. – volume: 414 year: 2021 ident: b0025 article-title: Carboxyl groups on g-C publication-title: Chem. Eng. J. – volume: 59 start-page: 17684 year: 2020 end-page: 17690 ident: b0640 article-title: Regenerable covalent organic frameworks for photo-enhanced uranium adsorption from seawater publication-title: Angew. Chem. Int. Edit. – volume: 3 start-page: 1131 year: 2020 end-page: 1138 ident: b0690 article-title: Photocatalytic removal of U(VI) from wastewater via synergistic carbon-supported zero-valent iron nanoparticles and S. putrefaciens publication-title: ACS Appl. Nano Mater. – volume: 319 start-page: 147 year: 2019 end-page: 158 ident: b0545 article-title: Characteristics and mechanism of uranium photocatalytic removal enhanced by chelating hole scavenger citric acid in a TiO publication-title: J. Radioanal. Nucl. Ch. – volume: 115 start-page: 12888 year: 2015 end-page: 12935 ident: b0250 article-title: Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes publication-title: Chem. Rev. – volume: 231 start-page: 11 year: 2018 end-page: 22 ident: b0125 article-title: Immobilization of uranium(VI) by niobate/titanate nanoflakes heterojunction through combined adsorption and solar-light-driven photocatalytic reduction publication-title: Appl. Catal. B Environ – volume: 58 start-page: 16110 year: 2019 end-page: 16114 ident: b0720 article-title: Three mechanisms in one material: uranium capture by a polyoxo-metalate-organic framework through combined complexation, chemical reduction, and photocatalytic reduction publication-title: Angew. Chem. Int. Edit. – volume: 202 start-page: 425 year: 2018 end-page: 433 ident: b0230 article-title: Natural polymer konjac glucomannan mediated assembly of graphene oxide as versatile sponges for water pollution control publication-title: Carbohyd. Polym. – volume: 288 year: 2021 ident: b0185 article-title: Cu-based nanocrystals on ZnO for uranium photoreduction: Plasmon-assisted activity and entropy-driven stability publication-title: Appl. Catal. B Environ. – volume: 331 start-page: 577 year: 2022 end-page: 586 ident: b0350 article-title: A facile synthesis of g-C publication-title: J Radioanal. Nucl. Chem. – volume: 416 start-page: 125812 year: 2021 ident: b0380 article-title: Surface hybridization of π-conjugate structure cyclized polyacrylonitrile and radial microsphere shaped TiO publication-title: J. Hazard. Mater. – volume: 258 year: 2019 ident: b0405 article-title: The pulsed laser-induced Schottky junction via in-situ forming Cd clusters on CdS surfaces toward efficient visible light-driven photocatalytic hydrogen evolution publication-title: Appl. Catal. B Environ. – volume: 33 start-page: 200815 year: 2021 ident: b0595 article-title: Copper-based plasmonic catalysis: Recent advances and future perspectives publication-title: Adv. Mater. – reference: B. Chen, G. Zhang, L. Chen, J. Kang, Y. Wang, S. Chen, Y. Jin, H. Yan, C. Xia, Visible light driven photocatalytic removal of uranium(VI) in strongly acidic solution, J. Hazard. Mater., 2022, 426, 127851, – volume: 103 start-page: 180 year: 2019 end-page: 234 ident: b0135 article-title: Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation publication-title: Prog. Mater. Sci. – volume: 6 start-page: 150 year: 2017 end-page: 158 ident: b0500 article-title: Last advances on TiO publication-title: Curr. Opin. Green Sustainable Chem. – volume: 9 start-page: 1 year: 2008 end-page: 12 ident: b0265 article-title: Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems publication-title: J. Photochem. Photobiol. C Rev. – reference: . – volume: 422 year: 2022 ident: b0310 article-title: Metal-free 2D/2D C publication-title: J. Hazard. Mater. – volume: 520 year: 2020 ident: b0340 article-title: Synthesis of flower-like MoS publication-title: Appl. Surf. Sci. – volume: 66 start-page: 1994 year: 2021 end-page: 2001 ident: b0750 article-title: Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity publication-title: Sci. Bull. – volume: 322 start-page: 1115 year: 2019 end-page: 1125 ident: b0680 article-title: Efficient photocatalytic removal of U(VI) over π-electron-incorporated g-C publication-title: J. Radioanal. Nucl. Ch. – volume: 270 start-page: 28 year: 2015 ident: 10.1016/j.ccr.2022.214615_b0145 article-title: Heterogeneous photocatalytic removal of U(VI) in the presence of formic acid: U(III) formation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.01.118 – volume: 347 start-page: 407 year: 2018 ident: 10.1016/j.ccr.2022.214615_b0170 article-title: Bioassembly of fungal hypha/graphene oxide aerogel as high performance adsorbents for U(VI) removal publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.140 – volume: 217 start-page: 388 year: 2017 ident: 10.1016/j.ccr.2022.214615_b0475 article-title: Doping of graphitic carbon nitride for photocatalysis: A reveiw publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.06.003 – volume: 59 start-page: 17684 issue: 40 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0640 article-title: Regenerable covalent organic frameworks for photo-enhanced uranium adsorption from seawater publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.202007895 – volume: 30 start-page: 1361 issue: 45 year: 2019 ident: 10.1016/j.ccr.2022.214615_b0220 article-title: Biomass-derived composite aerogels with novel structure for removal/recovery of uranium from simulated radioactive wastewater publication-title: Nanotechnology doi: 10.1088/1361-6528/ab3991 – volume: 426 year: 2022 ident: 10.1016/j.ccr.2022.214615_b0600 article-title: Enhanced uranium photoreduction on Ti3C2Tx MXene by modulation of surface functional groups and deposition of plasmonic metal nanoparticles publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.127823 – volume: 29 start-page: 1601694 issue: 20 year: 2017 ident: 10.1016/j.ccr.2022.214615_b0240 article-title: Heterojunction photocatalysts publication-title: Adv. Mater. doi: 10.1002/adma.201601694 – volume: 3 start-page: 127 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0560 article-title: Graphene-supported TiO2: study of promotion of charge carrier in photocatalytic water splitting and methylene blue dye degradation publication-title: Adv. Compos. Hybrid. Ma. doi: 10.1007/s42114-020-00140-w – volume: 4 start-page: 173 issue: 1 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0245 article-title: Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-020-00202-z – ident: 10.1016/j.ccr.2022.214615_b0435 doi: 10.1016/j.apcatb.2013.04.035 – volume: 420 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0305 article-title: Photocatalytic reduction of uranium(VI) under visible light with 2D/ 1D Ti3C2/CdS publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129831 – year: 2021 ident: 10.1016/j.ccr.2022.214615_b0395 article-title: The synthesis of Z-scheme MoS2/g-C3N4 heterojunction for enhanced visible-light-driven photoreduction of uranium publication-title: Catal. Lett. – volume: 228 start-page: 29 year: 2018 ident: 10.1016/j.ccr.2022.214615_b0005 article-title: Simultaneous photoreduction of Uranium(VI) and photooxidation of Arsenic (III) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.01.062 – volume: 319 start-page: 147 issue: 1 year: 2019 ident: 10.1016/j.ccr.2022.214615_b0545 article-title: Characteristics and mechanism of uranium photocatalytic removal enhanced by chelating hole scavenger citric acid in a TiO2 suspension system publication-title: J. Radioanal. Nucl. Ch. doi: 10.1007/s10967-018-6237-y – volume: 4 start-page: 1330 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0510 article-title: Microwave hydrothermally synthesized WO3/UiO-66 nanocomposites toward enhanced photocatalytic degradation of rhodamine B publication-title: Adv. Compos. Hybrid. Ma. doi: 10.1007/s42114-021-00346-6 – volume: 322 start-page: 1115 issue: 2 year: 2019 ident: 10.1016/j.ccr.2022.214615_b0680 article-title: Efficient photocatalytic removal of U(VI) over π-electron-incorporated g-C3N4 under visible light irradiation publication-title: J. Radioanal. Nucl. Ch. doi: 10.1007/s10967-019-06817-x – volume: 360 start-page: 1016 year: 2016 ident: 10.1016/j.ccr.2022.214615_b0460 article-title: Boron doped g-C3N4 with enhanced photocatalytic UO22+ reduction performance publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.11.112 – volume: 1 start-page: 440 issue: 2 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0630 article-title: High-efficiency photoenhanced extraction of uranium from natural seawater by olefin-linked covalent organic frameworks publication-title: ACS ES&T Water doi: 10.1021/acsestwater.0c00176 – ident: 10.1016/j.ccr.2022.214615_b0740 doi: 10.1016/j.apcatb.2021.120250 – ident: 10.1016/j.ccr.2022.214615_b0530 doi: 10.1007/s42114-020-00187-9 – volume: 3 start-page: 231 year: 2022 ident: 10.1016/j.ccr.2022.214615_b0520 article-title: Zinc oxide nanoparticle incorporated on graphene oxide: an efficient and stable photocatalyst for water treatment through the Fenton process publication-title: Adv. Compos. Hybrid. Ma. doi: 10.1007/s42114-020-00153-5 – volume: 120 start-page: 919 issue: 2 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0580 article-title: Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00201 – volume: 419 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0645 article-title: Vinylene-linked covalent organic frameworks with enhanced uranium adsorption through three synergistic mechanisms publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129550 – volume: 64 start-page: 1 year: 2022 ident: 10.1016/j.ccr.2022.214615_b0725 article-title: Operando HERFD-XANES and surface sensitive Δμ analyses identify the structural evolution of copper(II) phthalocyanine for electroreduction of CO2 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.04.049 – volume: 202 start-page: 425 year: 2018 ident: 10.1016/j.ccr.2022.214615_b0230 article-title: Natural polymer konjac glucomannan mediated assembly of graphene oxide as versatile sponges for water pollution control publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2018.08.133 – volume: 279 start-page: 1383 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0355 article-title: In-situ growth of COF on BiOBr 2D material with excellent visible-light-responsive activity for U(VI) photocatalytic reduction publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119627 – volume: 328 start-page: 9 issue: 1 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0345 article-title: Visible-light induced photocatalytic removal of U(VI) from aqueous solution by MoS2/g-C3N4 nanocomposites publication-title: J. Radioanal. Nucl. Ch. doi: 10.1007/s10967-020-07567-x – volume: 310 start-page: 883 issue: 2 year: 2016 ident: 10.1016/j.ccr.2022.214615_b0670 article-title: Adsorption and photocatalytic reduction activity of Uranium(VI) on zinc oxide/rectorite composite enhanced with methanol as sacrificial organics publication-title: J. Radioanal. Nucl. Ch. doi: 10.1007/s10967-016-4820-7 – volume: 4 start-page: 1226 issue: 4 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0225 article-title: Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-021-00368-0 – volume: 425 start-page: 13858947 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0330 article-title: Ultrafast recovery of aqueous uranium: Photocatalytic U(VI) reduction over CdS/g-C3N4 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131552 – volume: 415 issue: 42 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0140 article-title: ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium(VI) removal publication-title: Chem. Eng. J. – volume: 212 start-page: 114 year: 2018 ident: 10.1016/j.ccr.2022.214615_b0445 article-title: Photocatalytic reduction of Uranium(VI) under visible light with Sn-doped In2S3 microspheres publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.08.070 – volume: 3 start-page: 57 issue: 2 year: 2008 ident: 10.1016/j.ccr.2022.214615_b0570 article-title: Reduction of u(VI) to U(IV) on the surface of TiO2 anatase nanotubes publication-title: Micro Nano Lett. doi: 10.1049/mnl:20080007 – volume: 428 start-page: 819 year: 2018 ident: 10.1016/j.ccr.2022.214615_b0285 article-title: Integration of adsorption and reduction for uranium uptake based on SrTiO3/TiO2 electrospun nanofibers publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.09.216 – volume: 136 start-page: 8839 issue: 25 year: 2014 ident: 10.1016/j.ccr.2022.214615_b0555 article-title: Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed 001 and 101 facets publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5044787 – volume: 248 start-page: 448 year: 2019 ident: 10.1016/j.ccr.2022.214615_b0415 article-title: K2Ti6O13 hybridized graphene oxide: Effective enhancement in photodegradation of RhB and photoreduction of U(VI) publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.02.025 – volume: 6 start-page: 150 year: 2017 ident: 10.1016/j.ccr.2022.214615_b0500 article-title: Last advances on TiO2-photocatalytic removal of chromium, uranium and arsenic publication-title: Curr. Opin. Green Sustainable Chem. doi: 10.1016/j.cogsc.2017.04.002 – volume: 262 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0450 article-title: Visible light driven Ti3+ self-doped TiO2 for adsorption-photocatalysis of aqueous U(VI) publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114373 – volume: 205 start-page: 319 year: 2017 ident: 10.1016/j.ccr.2022.214615_b0130 article-title: Graphene-like sulfur-doped g-C3N4 for photocatalytic reduction elimination of UO22+ under visible Light publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.12.043 – volume: 33 start-page: 2000086 issue: 6 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0590 article-title: Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.202000086 – volume: 293 year: 2019 ident: 10.1016/j.ccr.2022.214615_b0035 article-title: A review on removal of uranium(VI) ions using titanium dioxide based sorbents publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.111563 – volume: 58 start-page: 11785 year: 2019 ident: 10.1016/j.ccr.2022.214615_b0055 article-title: Ultrafast and highly selective uranium extraction from seawater by hydrogel-like spidroin-based protein fiber publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201906191 – volume: 20 start-page: 6097 issue: 8 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0150 article-title: Surface nitrogen-injection engineering for high formation rate of CO2 reduction to formate publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c02144 – volume: 294 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0650 article-title: Rational design of covalent organic frameworks as a groundbreaking uranium capture platform through three synergistic mechanisms publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120250 – volume: 13 start-page: 1389 year: 2022 ident: 10.1016/j.ccr.2022.214615_b0710 article-title: Halogen hydrogen-bonded organic framework (XHOF) constructed by singlet open-shell diradical for efficient photoreduction of U(VI) publication-title: Nat. Commun. doi: 10.1038/s41467-022-29107-9 – volume: 29 start-page: 1901009 issue: 32 year: 2019 ident: 10.1016/j.ccr.2022.214615_b0745 article-title: A marine-inspired hybrid sponge for highly efficient uranium extraction from seawater publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901009 – volume: 5 start-page: 450 year: 2022 ident: 10.1016/j.ccr.2022.214615_b0565 article-title: GaAs quantum dot/TiO2 heterojunction for visible-light photocatalytic hydrogen evolution: promotion of oxygen vacancy publication-title: Adv. Compos. Hybrid. Ma. doi: 10.1007/s42114-021-00296-z – volume: 33 start-page: 2106621 issue: 51 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0755 article-title: Functionalized iron–nitrogen–carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater publication-title: Adv. Mater. doi: 10.1002/adma.202106621 – volume: 298 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0385 article-title: Efficient photoreduction strategy for uranium immobilization based on graphite carbon nitride/perovskite oxide heterojunction nanocomposites publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120625 – volume: 258 year: 2019 ident: 10.1016/j.ccr.2022.214615_b0585 article-title: Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.117956 – volume: 2021 start-page: 9794329 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0190 article-title: Recent progress on metal-enhanced photocatalysis: a review on the mechanism publication-title: Research doi: 10.34133/2021/9794329 – volume: 87 start-page: 3267 issue: 19 year: 1991 ident: 10.1016/j.ccr.2022.214615_b0100 article-title: Photodeposition of uranium oxides onto TiO2 from aqueous uranyl solutions publication-title: J. Chem. Soc., Faraday Trans. doi: 10.1039/ft9918703267 – volume: 200 start-page: 378 year: 2017 ident: 10.1016/j.ccr.2022.214615_b0455 article-title: Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.07.036 – volume: 346 year: 2022 ident: 10.1016/j.ccr.2022.214615_b0390 article-title: Modifying g-C3N4 with oxidized Ti3C2 MXene for boosting photocatalytic U(VI) reduction performance publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2021.117937 – volume: 1 start-page: 1700080 issue: 5 year: 2017 ident: 10.1016/j.ccr.2022.214615_b0370 article-title: A review of direct Z-scheme photocatalysts publication-title: Small Methods doi: 10.1002/smtd.201700080 – volume: 103 start-page: 180 year: 2019 ident: 10.1016/j.ccr.2022.214615_b0135 article-title: Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2019.01.005 – volume: 447 start-page: 0010 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0080 article-title: Metal-organic frameworks for photocatalytic detoxification of chromium and uranium in water publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.214148 – volume: 31 start-page: 2100106 issue: 22 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0625 article-title: Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100106 – volume: 423 year: 2022 ident: 10.1016/j.ccr.2022.214615_b0440 article-title: Introduction of cation vacancies and iron doping into TiO2 enabling efficient uranium photoreduction publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126935 – volume: 9 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.ccr.2022.214615_b0265 article-title: Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems publication-title: J. Photochem. Photobiol. C Rev. doi: 10.1016/j.jphotochemrev.2007.12.003 – volume: 2 start-page: 17007 issue: 4 year: 2017 ident: 10.1016/j.ccr.2022.214615_b0730 article-title: “A half-wave rectified alternating current electrochemical method for uranium extraction from seawater publication-title: Nat. Energy doi: 10.1038/nenergy.2017.7 – volume: 53 start-page: 296 year: 2018 ident: 10.1016/j.ccr.2022.214615_b0495 article-title: Defect engineering in photocatalytic materials publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.058 – ident: 10.1016/j.ccr.2022.214615_b0700 doi: 10.1016/j.jhazmat.2021.127851 – volume: 231 start-page: 11 year: 2018 ident: 10.1016/j.ccr.2022.214615_b0125 article-title: Immobilization of uranium(VI) by niobate/titanate nanoflakes heterojunction through combined adsorption and solar-light-driven photocatalytic reduction publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.02.062 – ident: 10.1016/j.ccr.2022.214615_b0760 doi: 10.31635/ccschem.022.202201897 – volume: 303 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0300 article-title: CuS/TiO2 nanotube arrays heterojunction for the photoreduction of uranium (VI) publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2021.122499 – volume: 61 start-page: 2242 issue: 4 year: 2022 ident: 10.1016/j.ccr.2022.214615_b0430 article-title: Synergistic effect of the sulfur vacancy and Schottky heterojunction on photocatalytic uranium immobilization: the thermodynamics and kinetics publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c03552 – volume: 310 year: 2022 ident: 10.1016/j.ccr.2022.214615_b0090 article-title: Highly efficient uranium extraction by a piezo catalytic reduction-oxidation process publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2022.121343 – volume: 430 start-page: 371 year: 2018 ident: 10.1016/j.ccr.2022.214615_b0465 article-title: Constructing effective photocatalytic purification system with P-introduced g-C3N4 for elimination of UO22+ publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.06.065 – volume: 16 start-page: 288 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0525 article-title: Spindle-like Co3O4-ZnO nanocomposites scaffold for hydrazine sensing and photocatalytic degradation of rhodamine B dye publication-title: Eng. Sci. – volume: 42 start-page: 689 issue: 7 year: 2013 ident: 10.1016/j.ccr.2022.214615_b0575 article-title: Photocatalytic reduction of uranyl ions over anatase and rutile nanostructured TiO2 publication-title: Chem. Lett. doi: 10.1246/cl.130180 – volume: 7 start-page: 16902 year: 2019 ident: 10.1016/j.ccr.2022.214615_b0315 article-title: Graphene oxide based dopamine mussel-like cross-linked polyethylene imine nanocomposite coating with enhanced hexavalent uranium adsorption publication-title: J. Mater. Chem. A doi: 10.1039/C9TA04562G – volume: 258 year: 2019 ident: 10.1016/j.ccr.2022.214615_b0405 article-title: The pulsed laser-induced Schottky junction via in-situ forming Cd clusters on CdS surfaces toward efficient visible light-driven photocatalytic hydrogen evolution publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.117967 – volume: 8 start-page: 2372 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0425 article-title: 3D structure aerogels constructed by reduced graphene oxide and hollow TiO2 spheres for efficient visible-light-driven photoreduction of U(vi) in air-equilibrated wastewater publication-title: Environ. Sci.: Nano – volume: 355 start-page: 777 year: 2019 ident: 10.1016/j.ccr.2022.214615_b0215 article-title: Procedural growth of fungal hyphae/Fe3O4/graphene oxide as orderedstructure composites for water purification publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.215 – volume: 254 start-page: 47 year: 2019 ident: 10.1016/j.ccr.2022.214615_b0655 article-title: Powerful uranium extraction strategy with combined ligand complexation and photocatalytic reduction by postsynthetically modified photoactive metal-organic frameworks publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.04.087 – volume: 278 start-page: 130411 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0105 article-title: Carbon materials for extraction of uranium from seawater publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130411 – volume: 329 start-page: 1125 issue: 2 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0365 article-title: The enhanced photocatalytic reduction of uranium(VI) by ZnS@g-C3N4 heterojunctions under sunlight publication-title: J. Radioanal. Nucl. Ch. doi: 10.1007/s10967-021-07784-y – start-page: 2200315 year: 2022 ident: 10.1016/j.ccr.2022.214615_b0715 article-title: Semiconducting metal-organic frameworks decorated with spatially separated dual cocatalysts for efficient uranium(VI) photoreduction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200315 – volume: 13 start-page: 11968 issue: 10 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0195 article-title: Efficient photocatalytic extraction of uranium over ethylenediamine capped cadmium sulfide telluride nanobelts publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.0c22800 – volume: 11 start-page: 4001 issue: 1 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0735 article-title: Nanoscale mechanism of UO2 formation through uranium reduction by magnetite publication-title: Nat. Commun. doi: 10.1038/s41467-020-17795-0 – volume: 9 issue: 1 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0470 article-title: Fabrication of g-C3N4-based conjugated copolymers for efficient photocatalytic reduction of U(VI) publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2020.104638 – volume: 64 start-page: 1323 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0205 article-title: Rapid and selective uranium extratction from aqueous solution under visible light in the absence of solid photocatalyst publication-title: Sci. Total Environ. – volume: 69 start-page: 111 year: 2022 ident: 10.1016/j.ccr.2022.214615_b0515 article-title: In-situ constructing visible light CdS/Cd-MOF photocatalyst with enhanced photodegradation of methylene blue publication-title: Particuology doi: 10.1016/j.partic.2021.11.013 – volume: 3 start-page: 1131 issue: 2 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0690 article-title: Photocatalytic removal of U(VI) from wastewater via synergistic carbon-supported zero-valent iron nanoparticles and S. putrefaciens publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b01581 – volume: 331 start-page: 263 year: 2022 ident: 10.1016/j.ccr.2022.214615_b0295 article-title: Fabrication of MoS2@TiO2 hollow-sphere heterostructures with enhanced visible light photocatalytic reduction of U(VI) publication-title: J. Radioanal. Nucl. Chem. doi: 10.1007/s10967-021-08091-2 – volume: 384 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0325 article-title: Efficient extraction of uranium in organics-containing wastewater over g-C3N4/GO hybrid nanosheets with type-II band structure publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121383 – volume: 51 start-page: 5666 issue: 10 year: 2017 ident: 10.1016/j.ccr.2022.214615_b0280 article-title: Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05313 – volume: 254 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0420 article-title: Photocatalytic reduction of U(VI) in wastewater by mGO/g-C3N4 nanocomposite under visible LED light irradiation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126671 – volume: 260 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0255 article-title: Fabrication of the novel Ag-doped SnS2@InVO4 composite with high adsorption-photocatalysis for the removal of uranium (VI) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127548 – volume: 308 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0235 article-title: Efficient recovery of uranium from saline lake brine through photocatalytic reduction publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.113007 – volume: 66 start-page: 1994 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0750 article-title: Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity publication-title: Sci. Bull. doi: 10.1016/j.scib.2021.05.012 – volume: 558 start-page: 81 year: 2018 ident: 10.1016/j.ccr.2022.214615_b0120 article-title: Photocatalytic and photochemical processes on the surface of uranyl-modified oxides: An in situ XPS study publication-title: Appl. Catal. A-Gen. doi: 10.1016/j.apcata.2018.03.015 – volume: 18 start-page: 437 issue: 3 year: 2019 ident: 10.1016/j.ccr.2022.214615_b0045 article-title: Extraction and adsorption of U(VI) from aqueous solution using affinity ligand-based technologies: an overview publication-title: Rev. Environ. Sci. Bio. doi: 10.1007/s11157-019-09507-y – volume: 331 start-page: 577 year: 2022 ident: 10.1016/j.ccr.2022.214615_b0350 article-title: A facile synthesis of g-C3N4/WS2 heterojunctions with enhanced photocatalytic reduction activity of U(VI) publication-title: J Radioanal. Nucl. Chem. doi: 10.1007/s10967-021-08118-8 – volume: 383 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0040 article-title: Tunable mesoporous g-C3N4 nanosheets as a metal-free catalyst for enhanced visible-light-driven photocatalytic reduction of U(VI) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123193 – volume: 537 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0335 article-title: Study on photocatalytic performance of hexagonal SnS2/g-C3N4 nanosheets and its application to reduce U (VI) in sunlight publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147754 – volume: 402 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0160 article-title: Graphene aerogel for photocatalysis-assist uranium elimination under visible light and air atmosphere publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126256 – volume: 58 start-page: 16110 issue: 45 year: 2019 ident: 10.1016/j.ccr.2022.214615_b0720 article-title: Three mechanisms in one material: uranium capture by a polyoxo-metalate-organic framework through combined complexation, chemical reduction, and photocatalytic reduction publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201909718 – volume: 46 start-page: 14762 issue: 43 year: 2017 ident: 10.1016/j.ccr.2022.214615_b0410 article-title: Enhanced photocatalytic reduction activity of uranium(VI) from aqueous solution using Fe2O3-Graphene oxide nanocomposite publication-title: Dalton T. doi: 10.1039/C7DT02639K – volume: 326 start-page: 1805 issue: 3 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0660 article-title: Gas-sculpted g-C3N4 for efficient photocatalytic reduction of U(VI) publication-title: J. Radioanal. Nucl. Ch. doi: 10.1007/s10967-020-07458-1 – volume: 279 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0070 article-title: Highly efficient removal of U(VI) by the photoreduction of SnO2/CdCO3/CdS nanocomposite under visible light irradiation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119390 – volume: 298 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0275 article-title: Fabrication of heterostructured CdS/TiO2 nanotube arrays composites for photoreduction of U(VI) under visible light publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2021.122053 – volume: 13 start-page: 3 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0020 article-title: Graphene oxide-based nanomaterials for uranium adsorptive uptake publication-title: ES Mater. Manuf. – volume: 117 start-page: 13935 issue: 23 year: 2017 ident: 10.1016/j.ccr.2022.214615_b0075 article-title: Materials for the Recovery of Uranium from Seawater publication-title: Chem. rev. doi: 10.1021/acs.chemrev.7b00355 – volume: 302 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0360 article-title: Synthesis of MoS2/P-g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of uranium (VI) publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2021.122305 – volume: 414 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0025 article-title: Carboxyl groups on g-C3N4 for boosting the photocatalytic U(VI) reduction in the presence of carbonates publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128810 – volume: 416 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0155 article-title: Enhanced photoreduction of U(VI) on WO3 nanosheets by oxygen defect engineering publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129164 – ident: 10.1016/j.ccr.2022.214615_b0065 doi: 10.1016/j.scitotenv.2021.152280 – volume: 260 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0685 article-title: Self-cleaning isotype g-C3N4 heterojunction for efficient photocatalytic reduction of hexavalent uranium under visible light publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114070 – volume: 412 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0050 article-title: Tunable perylene-based donor-acceptor conjugated microporous polymer to significantly enhance photocatalytic uranium extraction from seawater publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127558 – volume: 9 start-page: 9809 issue: 15 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0180 article-title: Encapsulating Ag nanoparticles into ZIF-8 as an efficient strategy to boost uranium photoreduction without sacrificial agents dagger publication-title: J. Mater. Chem. A doi: 10.1039/D1TA00386K – volume: 33 start-page: 200815 issue: 32 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0595 article-title: Copper-based plasmonic catalysis: Recent advances and future perspectives publication-title: Adv. Mater. doi: 10.1002/adma.202008145 – volume: 58 start-page: 14979 issue: 42 year: 2019 ident: 10.1016/j.ccr.2022.214615_b0765 article-title: A dual-surface amidoximated halloysite nanotube for high-efficiency economical uranium extraction from seawater publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201908762 – volume: 4 start-page: 243 issue: 5 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0540 article-title: Phase engineering of nanomaterials publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-020-0173-4 – volume: 11 start-page: 4810 issue: 8 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0375 article-title: Synthesis of g-C3N4/TiO2 nanostructures for enhanced photocatalytic reduction of U(VI) in water publication-title: RSC Adv. doi: 10.1039/D0RA10694A – volume: 28 start-page: 1801983 issue: 39 year: 2018 ident: 10.1016/j.ccr.2022.214615_b0490 article-title: Surface defect engineering in 2D nanomaterials for photocatalysis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201801983 – volume: 422 year: 2022 ident: 10.1016/j.ccr.2022.214615_b0310 article-title: Metal-free 2D/2D C3N5/GO nanosheets with customized energy-level structure for radioactive nuclear wastewater treatment publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126912 – volume: 570 start-page: 125 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0615 article-title: Metal organic framework derived heteroatoms and cyano (-C equivalent to N) group co-decorated porous g-C3N4 nanosheets for improved photocatalytic H2 evolution and uranium (VI) reduction publication-title: J. Colloid and Interf. Sci. doi: 10.1016/j.jcis.2020.02.091 – volume: 27 start-page: 3444 issue: 22 year: 2015 ident: 10.1016/j.ccr.2022.214615_b0400 article-title: Toward enhanced photocatalytic oxygen evolution: synergetic utilization of plasmonic effect and Schottky junction via interfacing facet selection publication-title: Adv. Mater. doi: 10.1002/adma.201501200 – volume: 416 start-page: 125812 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0380 article-title: Surface hybridization of π-conjugate structure cyclized polyacrylonitrile and radial microsphere shaped TiO2 for reducing U(VI) to U(IV) publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125812 – volume: 392 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0200 article-title: Superhydrophilic and highly elastic monolithic sponge for efficient solar-driven radioactive wastewater treatment under one sun publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122350 – year: 2021 ident: 10.1016/j.ccr.2022.214615_b0060 article-title: Negative permittivity behavior in flexible carbon nanofibers-polydimethylsiloxane films publication-title: Eng. Sci. doi: 10.30919/es8d576 – volume: 2 start-page: 2283 issue: 4 year: 2019 ident: 10.1016/j.ccr.2022.214615_b0290 article-title: Nanolayered Ti3C2 and SrTiO3 composites for photocatalytic reduction and removal of uranium(VI) publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b00205 – volume: 426 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0605 article-title: Tellurium nanowires wrapped by surface oxidized tin disulfide nanosheets achieves efficient photocatalytic reduction of U(VI) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130756 – volume: 6 start-page: 24676 year: 2018 ident: 10.1016/j.ccr.2022.214615_b0085 article-title: Highly efficient uranium adsorption by salicylaldoxime/polydopamine graphene oxide nanocomposites publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09486A – volume: 365 start-page: 231 year: 2019 ident: 10.1016/j.ccr.2022.214615_b0015 article-title: Photoconversion of U(VI) by TiO2: An efficient strategy for seawater uranium extraction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.02.013 – volume: 66 start-page: 1994 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0095 article-title: Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity publication-title: Sci. Bull. doi: 10.1016/j.scib.2021.05.012 – volume: 4 start-page: 150 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0535 article-title: One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal-organic frameworks for enhanced photochemical properties publication-title: Adv. Compos. Hybrid. Ma. doi: 10.1007/s42114-020-00199-5 – volume: 288 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0185 article-title: Cu-based nanocrystals on ZnO for uranium photoreduction: Plasmon-assisted activity and entropy-driven stability publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.119978 – volume: 41 year: 2019 ident: 10.1016/j.ccr.2022.214615_b0165 article-title: An overview and recent progress in the heterogeneous photocatalytic reduction of U(VI) publication-title: J. Photoch. Photobio C doi: 10.1016/j.jphotochemrev.2019.100320 – volume: 6 start-page: 15359 issue: 31 year: 2018 ident: 10.1016/j.ccr.2022.214615_b0210 article-title: Bayberry tannin immobilized bovine serum albumin nanospheres: characterization, irradiation stability and selective removal of uranyl ions from radioactive wastewater publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05000G – volume: 301 year: 2022 ident: 10.1016/j.ccr.2022.214615_b0705 article-title: Novel donor-acceptor-acceptor ternary conjugated microporous polymers with boosting forward charge separation and suppressing backward charge recombination for photocatalytic reduction of uranium (VI) publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120819 – volume: 359 start-page: 944 year: 2019 ident: 10.1016/j.ccr.2022.214615_b0550 article-title: Interaction mechanism between different facet TiO2 and U(VI): Experimental and density-functional theory investigation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.092 – volume: 406 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0115 article-title: Efficient uranium reduction of bacterial cellulose-MoS2 heterojunction via the synergistically effect of Schottky junction and S-vacancies engineering publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126791 – volume: 48 start-page: 49 year: 2022 ident: 10.1016/j.ccr.2022.214615_b0485 article-title: Bromine doped g-C3N4 with enhanced photocatalytic reduction in U(VI) publication-title: Res. Chem. Intermediat. doi: 10.1007/s11164-021-04568-7 – volume: 115 start-page: 12888 issue: 23 year: 2015 ident: 10.1016/j.ccr.2022.214615_b0250 article-title: Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00370 – volume: 8 start-page: 731 issue: 3 year: 2015 ident: 10.1016/j.ccr.2022.214615_b0260 article-title: Visible-light driven heterojunction photocatalysts for water splitting - a critical review publication-title: Energ. Environ. Sci. doi: 10.1039/C4EE03271C – volume: 2 issue: 1 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0635 article-title: Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions publication-title: The Innovation doi: 10.1016/j.xinn.2021.100076 – volume: 282 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0610 article-title: Sunlight-induced uranium extraction with triazine-based carbon nitride as both photocatalyst and adsorbent publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.119523 – volume: 420 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0110 article-title: Harmonizing the energy band between adsorbent and semiconductor enables efficient uranium extraction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127645 – volume: 330 year: 2022 ident: 10.1016/j.ccr.2022.214615_b0695 article-title: Uranyl(VI) boosting 3D g-C3N4 photocatalytic H2O2 production for U (VI) immobilization publication-title: J. Clean Prod. doi: 10.1016/j.jclepro.2021.129821 – volume: 339 start-page: 214 year: 2018 ident: 10.1016/j.ccr.2022.214615_b0175 article-title: Bioassembly of fungal hyphae/carbon nanotubes composite as a versatile adsorbent for water pollution control publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.134 – volume: 5 start-page: 419 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0270 article-title: Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-021-00378-y – volume: 15 start-page: 2943 issue: 4 year: 2022 ident: 10.1016/j.ccr.2022.214615_b0620 article-title: Hydrogen-incorporated vanadium dioxide nanosheets enable efficient uranium confinement and photoreduction publication-title: Nano Res. doi: 10.1007/s12274-021-3916-8 – volume: 520 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0340 article-title: Synthesis of flower-like MoS2/g-C3N4 nanosheet heterojunctions with enhanced photocatalytic reduction activity of Uranium(VI) publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146352 – volume: 196 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0675 article-title: The photocatalytic reduction of U(VI) into U(IV) by ZIF-8/g-C3N4 composites at visible light publication-title: Environ. Res. doi: 10.1016/j.envres.2020.110349 – volume: 364 start-page: 139 year: 2019 ident: 10.1016/j.ccr.2022.214615_b0030 article-title: Integration of bio-inspired adsorption and photodegradation for the treatment of organics-containing radioactive wastewater publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.169 – volume: 44 start-page: 19961 issue: 46 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0320 article-title: Graphitic carbon nitride-based materials for photocatalytic reduction of U(VI) publication-title: New J. Chem. doi: 10.1039/D0NJ04519E – volume: 59 start-page: 1220 issue: 3 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0770 article-title: Photoinduced multiple effects to enhance uranium extraction from natural seawater by black phosphorus nanosheets publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201913644 – volume: 410 year: 2021 ident: 10.1016/j.ccr.2022.214615_b0480 article-title: Carbon-doped boron nitride nanosheets with adjustable band structure for efficient photocatalytic U(VI) reduction under visible light publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128280 – volume: 483 start-page: 670 year: 2019 ident: 10.1016/j.ccr.2022.214615_b0010 article-title: Heterostructure of anatase-rutile aggregates boosting the photoreduction of U(VI) publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.03.330 – volume: 7 start-page: 2000204 issue: 16 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0505 article-title: Enhanced solar photothermal catalysis over solution plasma activated TiO2 publication-title: Adv. Sci. doi: 10.1002/advs.202000204 – volume: 267 year: 2020 ident: 10.1016/j.ccr.2022.214615_b0665 article-title: Photocatalytic reduction of Uranium(VI) by magnetic ZnFe2O4 under visible light publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.118688 |
SSID | ssj0016992 |
Score | 2.7149844 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•The influencing factors on photocatalytic uranium extraction was evaluated.•The design strategy of photocatalysts for uranium extraction was... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 214615 |
SubjectTerms | Heterogeneous catalysis Photocatalysts Photoreduction Uranium extraction |
Title | Advanced photocatalysts for uranium extraction: Elaborate design and future perspectives |
URI | https://dx.doi.org/10.1016/j.ccr.2022.214615 |
Volume | 467 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsCCeIpn5YEJKW3iOE7CVlWtCohOVOpm-RVRBGnUpgMLv51z4hSQgIExkU-Kzqe7c_x93yF0FUuoA0oQj2R-6EE9Tj3pJ9qy0VImEjiAhJaN_DBh4ym9m0WzFho0XBgLq3S5v87pVbZ2b3rOm71iPrccX4uct4rg1cHFMsopjW2Ud983MI-ApWmtGA75xq5ubjYrjJdSVhKUkG413jr6uTZ9qTejPbTrGkXcr79lH7VMfoC2B818tkM067vre1w8LcpF9R_mbVWuMLSheA0laL5-xZB6lzV14QYP3YYbrCvYBha5xrWmCC4-OZerIzQdDR8HY8_NSfAUIXHpGZLBKYbKSAsRyJhKbUXOmIgNYdL4aahYkFEtCdNKpDE0CSIjVCpKBTQHVIXHqJ0vcnOCMGxpADVNxaGhVPtZEspQMiWlICpNRHaK_MZDXDkRcTvL4oU3aLFnDk7l1qm8duoput6YFLWCxl-LaeN2_i0MOGT4383O_md2jnbsk4V_BNEFapfLtbmEHqOUnSqIOmirf3s_nnwApk_Q2A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdigL4inK0wMTUmjiOE7CVlWtWvqYWqlb5EciiiCN2nTg32MnTgEJGFiTnGSdrfvu4vu-A7jzucIBwbCFE9u1FB6HFrcDqdloIWWBKkBczUaeTOlgTp4W3qIG3YoLo9sqTewvY3oRrc2TtvFmO1suNcdXd85rRfCicPH3oKHVqbw6NDrD0WC6u0ygYViKhquQow2qy82izUsIrQqK8UMx4dr7GZ6-QE7_EA5Mrog65XKOoBanx9DsViPaTmDRMTf4KHte5aviV8z7Jt8glYmirUKh5fYNqei7LtkLj6hn9jxGsujcQCyVqJQVQdkn7XJzCvN-b9YdWGZUgiUw9nMrxokqZAj3JGMO9wmXWueMMj_GlMd26ArqJERyTKVgoa_yBJZgwgUhTOUHRLhnUE9XaXwOSO2qo2BN-G5MiLSTwOUup4JzhkUYsKQFduWhSBgdcT3O4jWqGsZeIuXUSDs1Kp3agvudSVaKaPz1MancHn07CZEK8r-bXfzP7Baag9lkHI2H09El7Os3uhvE8a6gnq-38bVKOXJ-Y47UB9ww04k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+photocatalysts+for+uranium+extraction%3A+Elaborate+design+and+future+perspectives&rft.jtitle=Coordination+chemistry+reviews&rft.au=Chen%2C+Tao&rft.au=Yu%2C+Kaifu&rft.au=Dong%2C+Changxue&rft.au=Yuan%2C+Xin&rft.date=2022-09-15&rft.pub=Elsevier+B.V&rft.issn=0010-8545&rft.eissn=1873-3840&rft.volume=467&rft_id=info:doi/10.1016%2Fj.ccr.2022.214615&rft.externalDocID=S0010854522002107 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-8545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-8545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-8545&client=summon |