Coupling RBF-based meshless method and Landweber iteration algorithm for approximating a space-dependent source term in a time fractional diffusion equation

The problem of determining a space-dependent source term in a time fractional diffusion equation is considered from the measured data at the final time. To find an approximation of the source term, a methodology involving minimization of the cost functional is applied. Also, in order to construct th...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 417; p. 114531
Main Author Salehi Shayegan, Amir Hossein
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The problem of determining a space-dependent source term in a time fractional diffusion equation is considered from the measured data at the final time. To find an approximation of the source term, a methodology involving minimization of the cost functional is applied. Also, in order to construct the Landweber iteration algorithm, an explicit formula for the gradient of the cost functional J is given via the solution of an adjoint problem. The resulting adjoint problem is treated by a radial basis function method for spatial dimension and a finite difference scheme for the time fractional derivative followed by an iterative domain decomposition method to achieve a desired accuracy. In addition, Lipschitz continuity of the gradient of the cost functional, monotonicity and convergence of Landweber iteration algorithm are proved. At the end, a numerical example is given to show the validation of the iterative algorithm.
AbstractList The problem of determining a space-dependent source term in a time fractional diffusion equation is considered from the measured data at the final time. To find an approximation of the source term, a methodology involving minimization of the cost functional is applied. Also, in order to construct the Landweber iteration algorithm, an explicit formula for the gradient of the cost functional J is given via the solution of an adjoint problem. The resulting adjoint problem is treated by a radial basis function method for spatial dimension and a finite difference scheme for the time fractional derivative followed by an iterative domain decomposition method to achieve a desired accuracy. In addition, Lipschitz continuity of the gradient of the cost functional, monotonicity and convergence of Landweber iteration algorithm are proved. At the end, a numerical example is given to show the validation of the iterative algorithm.
ArticleNumber 114531
Author Salehi Shayegan, Amir Hossein
Author_xml – sequence: 1
  givenname: Amir Hossein
  surname: Salehi Shayegan
  fullname: Salehi Shayegan, Amir Hossein
  email: ah.salehi@mail.kntu.ac.ir
  organization: Mathematics Department, Faculty of Basic Science, Khatam-ol-Anbia (PBU) University, Tehran, Iran
BookMark eNp9kMtOAyEUhompiW31AdzxAjPC3JjGlTZWTZqYGF0TBg4tzcwwAvXyLj6sjHXlopvDSf58P_DN0KS3PSB0SUlKCa2udqkUXZqRLEspLcqcnqAprdkioYzVEzQlOWMJKTJ2hmbe7wgh1YIWU_S9tPuhNf0GP9-ukkZ4ULgDv23B-7iErVVY9Aqv4_iABhw2AZwIxvZYtBvrTNh2WFuHxTA4-2m6mMU2gf0gJCQKBugV9AF7u3cScKQ7bCKMg-kAayfkWCZarIzWez8Ww9v-94ZzdKpF6-Hi75yj19Xdy_IhWT_dPy5v1onMMhYSpUtRa8G0olAqQjOhakWbImrIK8l0lZVFWUjWxFADbRZ1oWSui1ooWkHN8jlih17prPcONJcm_L4gOGFaTgkfJfMdj5L5KJkfJEeS_iMHFxW4r6PM9YGB-KV3A457aaCXoIwDGbiy5gj9A8uNmx4
CitedBy_id crossref_primary_10_1007_s10915_024_02634_x
crossref_primary_10_1515_cmam_2022_0178
crossref_primary_10_1016_j_cam_2023_115094
crossref_primary_10_1007_s12190_024_02361_4
crossref_primary_10_1177_1045389X241233800
crossref_primary_10_1016_j_cam_2023_115214
crossref_primary_10_1080_10407790_2024_2306264
Cites_doi 10.2478/s13540-011-0028-2
10.1002/num.20112
10.1007/s11075-015-0065-8
10.1016/S0955-7997(03)00102-4
10.1002/mma.4468
10.1016/0898-1221(90)90271-K
10.1016/S0022-247X(02)00155-5
10.4208/cicp.020709.221209a
10.1080/17415977.2017.1417406
10.1023/A:1018919824891
10.1137/080714130
10.1515/jiip-2019-0006
10.1002/cpa.3160440203
10.1002/mma.4719
10.1007/s11075-020-00952-3
10.1080/17415977.2017.1384826
10.1016/j.jmaa.2006.08.018
10.1002/num.22081
10.1007/s10492-014-0081-3
10.3934/mcrf.2011.1.509
10.1016/j.jmva.2012.09.007
10.1142/9789812708632_0024
10.1088/0266-5611/10/5/009
10.1002/num.20169
10.1088/0266-5611/12/3/002
10.1016/0898-1221(90)90270-T
10.1016/j.camwa.2018.03.014
10.1007/s10092-016-0181-4
10.1002/cnm.653
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cam.2022.114531
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
ExternalDocumentID 10_1016_j_cam_2022_114531
S0377042722002618
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
5VS
AAFWJ
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
EJD
FGOYB
G-2
HZ~
NHB
R2-
RIG
SEW
SSH
SSZ
WUQ
ZY4
ID FETCH-LOGICAL-c227t-df5a8fa7fd1e5d012ad8d1b445336c7f625454c7b5d0fe1b984dc3f48ad16e873
IEDL.DBID .~1
ISSN 0377-0427
IngestDate Thu Apr 24 22:59:00 EDT 2025
Tue Jul 01 04:27:18 EDT 2025
Fri Feb 23 02:39:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Radial basis functions
Inverse source problem
35R30
Meshless method
Time fractional diffusion equation
Landweber iteration algorithm
65M32
Lipschitz continuity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c227t-df5a8fa7fd1e5d012ad8d1b445336c7f625454c7b5d0fe1b984dc3f48ad16e873
ParticipantIDs crossref_citationtrail_10_1016_j_cam_2022_114531
crossref_primary_10_1016_j_cam_2022_114531
elsevier_sciencedirect_doi_10_1016_j_cam_2022_114531
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hasanov (b3) 2007; 330
Zeghal (b7) 2002; 272
Torebek, Tapdigoglu (b13) 2017; 40
Liu, Gu (b14) 2005
Kinash, Janno (b11) 2018; 41
Ford, Xiao, Yan (b25) 2011; 14
Esmaeilbeigi, Garmanjani (b18) 2016; 32
Deng (b30) 2008; 47
Isakov (b5) 1991; 54
Cheng, Yuan, Liang (b9) 2020; 28
Kansa (b16) 1990; 19
Kaya (b6) 2014; 59
Hon, Wei (b22) 2004; 28
Sakamoto, Yamamoto (b12) 2011; 1
Shanazari, Banei (b15) 2021; 86
Salehi Shayegan, Zakeri (b27) 2018; 26
Fasshuaer (b32) 2007; 6
Li (b23) 2004; 20
Feng, Zhuang, Liu, Turner, Gu (b31) 2016; 72
Li, Xu (b26) 2010; 8
Ervin, Roop (b29) 2007; 23
Can, Luc, Baleanu, Zhou, Long (b8) 2020
Buhmann (b33) 2003
Esmaeilbeigi, Garmanjani (b19) 2017; 54
Furati, Iyiola, Kirane (b10) 2014; 249
Kansa (b17) 1990; 19
Choulli, Yamamoto (b2) 1996; 12
Hasanov Hasanoglu, Romanov (b4) 2017
Fasshuaer (b20) 1999; 11
Ervin, Roop (b28) 2006; 22
Wang, Ran (b34) 2018; 26
Valencia, Yuan (b24) 2013; 116
Chulli (b1) 1994; 10
Garmanjani, Cavoretto, Esmaeilbeigi (b21) 2018; 75
Ervin (10.1016/j.cam.2022.114531_b28) 2006; 22
Kansa (10.1016/j.cam.2022.114531_b16) 1990; 19
Zeghal (10.1016/j.cam.2022.114531_b7) 2002; 272
Buhmann (10.1016/j.cam.2022.114531_b33) 2003
Furati (10.1016/j.cam.2022.114531_b10) 2014; 249
Kaya (10.1016/j.cam.2022.114531_b6) 2014; 59
Chulli (10.1016/j.cam.2022.114531_b1) 1994; 10
Wang (10.1016/j.cam.2022.114531_b34) 2018; 26
Salehi Shayegan (10.1016/j.cam.2022.114531_b27) 2018; 26
Fasshuaer (10.1016/j.cam.2022.114531_b32) 2007; 6
Torebek (10.1016/j.cam.2022.114531_b13) 2017; 40
Garmanjani (10.1016/j.cam.2022.114531_b21) 2018; 75
Choulli (10.1016/j.cam.2022.114531_b2) 1996; 12
Kinash (10.1016/j.cam.2022.114531_b11) 2018; 41
Valencia (10.1016/j.cam.2022.114531_b24) 2013; 116
Li (10.1016/j.cam.2022.114531_b26) 2010; 8
Hasanov Hasanoglu (10.1016/j.cam.2022.114531_b4) 2017
Liu (10.1016/j.cam.2022.114531_b14) 2005
Li (10.1016/j.cam.2022.114531_b23) 2004; 20
Isakov (10.1016/j.cam.2022.114531_b5) 1991; 54
Hasanov (10.1016/j.cam.2022.114531_b3) 2007; 330
Can (10.1016/j.cam.2022.114531_b8) 2020
Fasshuaer (10.1016/j.cam.2022.114531_b20) 1999; 11
Hon (10.1016/j.cam.2022.114531_b22) 2004; 28
Deng (10.1016/j.cam.2022.114531_b30) 2008; 47
Feng (10.1016/j.cam.2022.114531_b31) 2016; 72
Sakamoto (10.1016/j.cam.2022.114531_b12) 2011; 1
Ervin (10.1016/j.cam.2022.114531_b29) 2007; 23
Cheng (10.1016/j.cam.2022.114531_b9) 2020; 28
Esmaeilbeigi (10.1016/j.cam.2022.114531_b18) 2016; 32
Ford (10.1016/j.cam.2022.114531_b25) 2011; 14
Esmaeilbeigi (10.1016/j.cam.2022.114531_b19) 2017; 54
Shanazari (10.1016/j.cam.2022.114531_b15) 2021; 86
Kansa (10.1016/j.cam.2022.114531_b17) 1990; 19
References_xml – volume: 10
  start-page: 1123
  year: 1994
  end-page: 1132
  ident: b1
  article-title: An inverse problem for a semilinear parabolic equation
  publication-title: Inverse Problems
– volume: 86
  start-page: 1747
  year: 2021
  end-page: 1767
  ident: b15
  article-title: A meshfree method with a non-overlapping domain decomposition method based on TPS for solving the forward–backward heat equation in two-dimension
  publication-title: Numer. Algorithms
– volume: 22
  start-page: 558
  year: 2006
  end-page: 576
  ident: b28
  article-title: Variational formulation for the stationary fractional advection dispersion equation
  publication-title: Numer. Methods Partial Differential Equations
– volume: 272
  start-page: 240
  year: 2002
  end-page: 248
  ident: b7
  article-title: Existence result for inverse problems associated with a nonlinear parabolic equation
  publication-title: J. Math. Anal. Appl.
– volume: 28
  start-page: 489
  year: 2004
  end-page: 495
  ident: b22
  article-title: A fundamental solution method for inverse heat conduction problem
  publication-title: Eng. Anal. Bound. Elem.
– volume: 28
  start-page: 17
  year: 2020
  end-page: 32
  ident: b9
  article-title: Inverse source problem for a distributed-order time fractional diffusion equation
  publication-title: J. Inverse Ill-Posed Probl.
– volume: 19
  start-page: 127
  year: 1990
  end-page: 145
  ident: b16
  article-title: Multiquadrics, a scattered data approximation scheme with applications to computational fluid dynamics-I. Surface approximations and partial derivatives estimates
  publication-title: Comput. Math. Appl.
– start-page: 18
  year: 2020
  ident: b8
  article-title: Inverse source problem for time fractional diffusion equation with Mittag-Leffler kernel
  publication-title: Adv. Difference Equ.
– volume: 32
  start-page: 1622
  year: 2016
  end-page: 1646
  ident: b18
  article-title: A shift-adaptive meshfree method for solving a class of initial–boundary value problems with moving boundaries in one-dimensional domain
  publication-title: Numer. Methods Partial Differential Equations
– volume: 8
  start-page: 1016
  year: 2010
  end-page: 1051
  ident: b26
  article-title: Existence and uniqueness of the weak solution of the space–time fractional diffusion equation and a spectral method approximation
  publication-title: Commun. Comput. Phys.
– year: 2005
  ident: b14
  article-title: An Introduction to Meshfree Methods and their Programming
– volume: 23
  start-page: 256
  year: 2007
  end-page: 281
  ident: b29
  article-title: Variational solution of fractional advection dispersion equations on bounded domains in
  publication-title: Numer. Methods Partial Differential Equations
– volume: 54
  start-page: 185
  year: 1991
  end-page: 209
  ident: b5
  article-title: Inverse parabolic problems with the final overdetermination
  publication-title: Comm. Pure Appl. Math.
– volume: 59
  start-page: 715
  year: 2014
  end-page: 728
  ident: b6
  article-title: Determination of the unknown source term in a linear parabolic problem from the measured data at the final time
  publication-title: Appl. Math.
– volume: 47
  start-page: 204
  year: 2008
  end-page: 226
  ident: b30
  article-title: Finite element method for the space and time fractional Fokker–Planck equation
  publication-title: SIAM J. Numer. Anal.
– volume: 19
  start-page: 147
  year: 1990
  end-page: 161
  ident: b17
  article-title: Multiquadrics, a scattered data approximation scheme with applications to computational fluid dynamics-II. Solutions to parabolic, hyper-bolic and elliptic partial differential equations
  publication-title: Comput. Math. Appl.
– volume: 330
  start-page: 766
  year: 2007
  end-page: 779
  ident: b3
  article-title: Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: Weak solution approach
  publication-title: J. Math. Anal. Appl.
– volume: 26
  start-page: 1130
  year: 2018
  end-page: 1154
  ident: b27
  article-title: A numerical method for determining a quasi solution of a backward time-fractional diffusion equation
  publication-title: Inverse Probl. Sci. Eng.
– volume: 12
  start-page: 195
  year: 1996
  end-page: 205
  ident: b2
  article-title: Generic well-posedness of an inverse parabolic problem-the Hölder-space approach
  publication-title: Inverse Problems
– volume: 54
  start-page: 155
  year: 2017
  end-page: 166
  ident: b19
  article-title: Gaussian radial basis function interpolant for the different data sites and basis centers
  publication-title: Calcolo
– volume: 1
  start-page: 509
  year: 2011
  end-page: 518
  ident: b12
  article-title: Inverse source problem with a final overdetermination for a fractional diffusion equation
  publication-title: Math. Control Relat. Fields
– year: 2003
  ident: b33
  article-title: Radial Basis Functions: Theory and Implementations
– volume: 20
  start-page: 51
  year: 2004
  end-page: 61
  ident: b23
  article-title: A radial basis meshless method for solving inverse boundary value problems
  publication-title: Commun. Numer. Methods Eng.
– year: 2017
  ident: b4
  article-title: Introduction to Inverse Problems for Differential Equations
– volume: 249
  start-page: 24
  year: 2014
  end-page: 31
  ident: b10
  article-title: An inverse problem for a generalized fractional diffusion
  publication-title: Appl. Math. Comput.
– volume: 116
  start-page: 92
  year: 2013
  end-page: 108
  ident: b24
  article-title: Radial basis function regularization for linear inverse problems with random noise
  publication-title: J. Multivariate Anal.
– volume: 26
  start-page: 1509
  year: 2018
  end-page: 1521
  ident: b34
  article-title: An iterative method for an inverse source problem of time-fractional diffusion equation
  publication-title: Inverse Probl. Sci. Eng.
– volume: 75
  start-page: 4066
  year: 2018
  end-page: 4090
  ident: b21
  article-title: A RBF partition of unity collocation method based on finite difference for initial–boundary value problems
  publication-title: Comput. Math. Appl.
– volume: 14
  start-page: 454
  year: 2011
  end-page: 474
  ident: b25
  article-title: A finite element method for time fractional partial differential equations
  publication-title: Fract. Calc. Appl. Anal.
– volume: 41
  start-page: 1925
  year: 2018
  end-page: 1943
  ident: b11
  article-title: Inverse problems for a perturbed time fractional diffusion equation with final overdetermination
  publication-title: Math. Methods Appl. Sci.
– volume: 72
  start-page: 749
  year: 2016
  end-page: 767
  ident: b31
  article-title: Finite element method for space–time fractional diffusion equation
  publication-title: Numer. Algorithms
– volume: 6
  year: 2007
  ident: b32
  article-title: Meshfree approximation methods with MATLAB
  publication-title: Interdiscip. Math. Sci.
– volume: 11
  start-page: 139
  year: 1999
  end-page: 159
  ident: b20
  article-title: Solving differential equationswith radial basis functions: multilevel methods and smoothing
  publication-title: Adv. Comput. Math.
– volume: 40
  start-page: 6468
  year: 2017
  end-page: 6479
  ident: b13
  article-title: Some inverse problems for the nonlocal heat equation with Caputo fractional derivative
  publication-title: Math. Methods Appl. Sci.
– start-page: 18
  issue: 210
  year: 2020
  ident: 10.1016/j.cam.2022.114531_b8
  article-title: Inverse source problem for time fractional diffusion equation with Mittag-Leffler kernel
  publication-title: Adv. Difference Equ.
– volume: 14
  start-page: 454
  issue: 3
  year: 2011
  ident: 10.1016/j.cam.2022.114531_b25
  article-title: A finite element method for time fractional partial differential equations
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.2478/s13540-011-0028-2
– volume: 22
  start-page: 558
  issue: 3
  year: 2006
  ident: 10.1016/j.cam.2022.114531_b28
  article-title: Variational formulation for the stationary fractional advection dispersion equation
  publication-title: Numer. Methods Partial Differential Equations
  doi: 10.1002/num.20112
– volume: 72
  start-page: 749
  issue: 3
  year: 2016
  ident: 10.1016/j.cam.2022.114531_b31
  article-title: Finite element method for space–time fractional diffusion equation
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-015-0065-8
– volume: 28
  start-page: 489
  year: 2004
  ident: 10.1016/j.cam.2022.114531_b22
  article-title: A fundamental solution method for inverse heat conduction problem
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/S0955-7997(03)00102-4
– volume: 40
  start-page: 6468
  issue: 18
  year: 2017
  ident: 10.1016/j.cam.2022.114531_b13
  article-title: Some inverse problems for the nonlocal heat equation with Caputo fractional derivative
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.4468
– volume: 19
  start-page: 147
  year: 1990
  ident: 10.1016/j.cam.2022.114531_b17
  article-title: Multiquadrics, a scattered data approximation scheme with applications to computational fluid dynamics-II. Solutions to parabolic, hyper-bolic and elliptic partial differential equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(90)90271-K
– volume: 272
  start-page: 240
  issue: 1
  year: 2002
  ident: 10.1016/j.cam.2022.114531_b7
  article-title: Existence result for inverse problems associated with a nonlinear parabolic equation
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/S0022-247X(02)00155-5
– volume: 8
  start-page: 1016
  issue: 5
  year: 2010
  ident: 10.1016/j.cam.2022.114531_b26
  article-title: Existence and uniqueness of the weak solution of the space–time fractional diffusion equation and a spectral method approximation
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.020709.221209a
– volume: 26
  start-page: 1509
  issue: 10
  year: 2018
  ident: 10.1016/j.cam.2022.114531_b34
  article-title: An iterative method for an inverse source problem of time-fractional diffusion equation
  publication-title: Inverse Probl. Sci. Eng.
  doi: 10.1080/17415977.2017.1417406
– year: 2017
  ident: 10.1016/j.cam.2022.114531_b4
– volume: 11
  start-page: 139
  issue: 2
  year: 1999
  ident: 10.1016/j.cam.2022.114531_b20
  article-title: Solving differential equationswith radial basis functions: multilevel methods and smoothing
  publication-title: Adv. Comput. Math.
  doi: 10.1023/A:1018919824891
– volume: 47
  start-page: 204
  issue: 1
  year: 2008
  ident: 10.1016/j.cam.2022.114531_b30
  article-title: Finite element method for the space and time fractional Fokker–Planck equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080714130
– volume: 28
  start-page: 17
  issue: 1
  year: 2020
  ident: 10.1016/j.cam.2022.114531_b9
  article-title: Inverse source problem for a distributed-order time fractional diffusion equation
  publication-title: J. Inverse Ill-Posed Probl.
  doi: 10.1515/jiip-2019-0006
– volume: 54
  start-page: 185
  year: 1991
  ident: 10.1016/j.cam.2022.114531_b5
  article-title: Inverse parabolic problems with the final overdetermination
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160440203
– year: 2003
  ident: 10.1016/j.cam.2022.114531_b33
– volume: 41
  start-page: 1925
  issue: 5
  year: 2018
  ident: 10.1016/j.cam.2022.114531_b11
  article-title: Inverse problems for a perturbed time fractional diffusion equation with final overdetermination
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.4719
– volume: 86
  start-page: 1747
  issue: 4
  year: 2021
  ident: 10.1016/j.cam.2022.114531_b15
  article-title: A meshfree method with a non-overlapping domain decomposition method based on TPS for solving the forward–backward heat equation in two-dimension
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-020-00952-3
– volume: 26
  start-page: 1130
  issue: 8
  year: 2018
  ident: 10.1016/j.cam.2022.114531_b27
  article-title: A numerical method for determining a quasi solution of a backward time-fractional diffusion equation
  publication-title: Inverse Probl. Sci. Eng.
  doi: 10.1080/17415977.2017.1384826
– volume: 330
  start-page: 766
  issue: 2
  year: 2007
  ident: 10.1016/j.cam.2022.114531_b3
  article-title: Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: Weak solution approach
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2006.08.018
– volume: 249
  start-page: 24
  year: 2014
  ident: 10.1016/j.cam.2022.114531_b10
  article-title: An inverse problem for a generalized fractional diffusion
  publication-title: Appl. Math. Comput.
– volume: 32
  start-page: 1622
  issue: 6
  year: 2016
  ident: 10.1016/j.cam.2022.114531_b18
  article-title: A shift-adaptive meshfree method for solving a class of initial–boundary value problems with moving boundaries in one-dimensional domain
  publication-title: Numer. Methods Partial Differential Equations
  doi: 10.1002/num.22081
– volume: 59
  start-page: 715
  issue: 6
  year: 2014
  ident: 10.1016/j.cam.2022.114531_b6
  article-title: Determination of the unknown source term in a linear parabolic problem from the measured data at the final time
  publication-title: Appl. Math.
  doi: 10.1007/s10492-014-0081-3
– volume: 1
  start-page: 509
  issue: 4
  year: 2011
  ident: 10.1016/j.cam.2022.114531_b12
  article-title: Inverse source problem with a final overdetermination for a fractional diffusion equation
  publication-title: Math. Control Relat. Fields
  doi: 10.3934/mcrf.2011.1.509
– volume: 116
  start-page: 92
  year: 2013
  ident: 10.1016/j.cam.2022.114531_b24
  article-title: Radial basis function regularization for linear inverse problems with random noise
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2012.09.007
– volume: 6
  year: 2007
  ident: 10.1016/j.cam.2022.114531_b32
  article-title: Meshfree approximation methods with MATLAB
  publication-title: Interdiscip. Math. Sci.
  doi: 10.1142/9789812708632_0024
– volume: 10
  start-page: 1123
  year: 1994
  ident: 10.1016/j.cam.2022.114531_b1
  article-title: An inverse problem for a semilinear parabolic equation
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/10/5/009
– volume: 23
  start-page: 256
  issue: 2
  year: 2007
  ident: 10.1016/j.cam.2022.114531_b29
  article-title: Variational solution of fractional advection dispersion equations on bounded domains in Rd
  publication-title: Numer. Methods Partial Differential Equations
  doi: 10.1002/num.20169
– volume: 12
  start-page: 195
  issue: 3
  year: 1996
  ident: 10.1016/j.cam.2022.114531_b2
  article-title: Generic well-posedness of an inverse parabolic problem-the Hölder-space approach
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/12/3/002
– year: 2005
  ident: 10.1016/j.cam.2022.114531_b14
– volume: 19
  start-page: 127
  year: 1990
  ident: 10.1016/j.cam.2022.114531_b16
  article-title: Multiquadrics, a scattered data approximation scheme with applications to computational fluid dynamics-I. Surface approximations and partial derivatives estimates
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(90)90270-T
– volume: 75
  start-page: 4066
  issue: 11
  year: 2018
  ident: 10.1016/j.cam.2022.114531_b21
  article-title: A RBF partition of unity collocation method based on finite difference for initial–boundary value problems
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.03.014
– volume: 54
  start-page: 155
  issue: 1
  year: 2017
  ident: 10.1016/j.cam.2022.114531_b19
  article-title: Gaussian radial basis function interpolant for the different data sites and basis centers
  publication-title: Calcolo
  doi: 10.1007/s10092-016-0181-4
– volume: 20
  start-page: 51
  issue: 1
  year: 2004
  ident: 10.1016/j.cam.2022.114531_b23
  article-title: A radial basis meshless method for solving inverse boundary value problems
  publication-title: Commun. Numer. Methods Eng.
  doi: 10.1002/cnm.653
SSID ssj0006914
Score 2.4231052
Snippet The problem of determining a space-dependent source term in a time fractional diffusion equation is considered from the measured data at the final time. To...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 114531
SubjectTerms Inverse source problem
Landweber iteration algorithm
Lipschitz continuity
Meshless method
Radial basis functions
Time fractional diffusion equation
Title Coupling RBF-based meshless method and Landweber iteration algorithm for approximating a space-dependent source term in a time fractional diffusion equation
URI https://dx.doi.org/10.1016/j.cam.2022.114531
Volume 417
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXNpDBW1RgYLmwKmSu3nYcXKkK1ZbKBwKSNwixw8I2gcsWYlTf0l_LDNxQqlUeuCSQ-KxLM9oZuzMfB9j-7GRTuu04IlNFEejKHiOeuYii6zH9DbzGTUnn5xm4wtxdCkvV9iw74WhssrO9wef3nrr7s2g283BbV0PzqJUKWKKSJL2IEENv0IosvKvv_6UeWRFwPfGwZxG93822xovo6kZPUkIMVem8b9j07N4M1pn77pEEQ7CWjbYipu9Z29PnlBW7z-w38P5khpqr-DntxGneGRh6u6vJ-i9IFBDg55Z-IEP9JZuAQFDGVUBenI1X9TN9RQwa4UWWfyhpolxNg3oZozjPUFuA-GKH8iNQ43CQJT04BehKwKXSTwrS7p4A3cXwMM_sovR4flwzDu2BW6SRDXceqlzr5W3sZMW45a2uY0rgRuTZkZ5PCgJKYyq8KN3cVXkwprUi1zbOHO5SjfZ6mw-c58Y6MgrKZyW0htRGFERS6WrIqOiwqa62mJRv8-l6aDIiRFjUvY1ZzclqqYk1ZRBNVvsy5PIbcDh-N9g0Suv_MuYSowTL4ttv05sh70hDvpwL_OZrTaLpdvFTKWp9lpT3GNrB9-Px6ePddbqgQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoPbQcqtKHoKUwh54quZuHHSfHdsVqobscWpC4RY4fELTs0iUrceKX8GOZiRPaSm0PXHJIPJblcWbG9sz3MfYxNtJpnRY8sYniuCgKnqOeucgi6zG8zXxGxcnTo2x8Ig5P5ekaG_a1MJRW2dn-YNNba929GXSzObiq68GPKFWKmCKSpN1I5E_YU4G_L9EYfL79leeRFQHgG1tzat5fbbZJXkZTNXqSEGSuTOO_O6ffHM7oJXvRRYrwJQxmk625-Su2MX2AWb1-ze6GixVV1J7B968jTg7JwqW7Pp-h-YLADQ16bmGCDzSXbgkBRBl1AXp2tljWzfklYNgKLbT4TU0dY28a0M4Yx3uG3AbCGT-QHYcahYE46cEvQ1kEDpOIVlZ08gbuZ0APf8NORvvHwzHv6Ba4SRLVcOulzr1W3sZOWnRc2uY2rgROTJoZ5XGnJKQwqsKP3sVVkQtrUi9ybePM5Sp9y9bni7nbYqAjr6RwWkpvRGFERTSVroqMigqb6mqbRf08l6bDIidKjFnZJ51dlKiaklRTBtVss08PIlcBiON_jUWvvPKP1VSio_i32LvHie2xZ-Pj6aScHBx9e8-eEyF9OKTZYevNcuU-YNjSVLvtsrwH3B_sDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+RBF-based+meshless+method+and+Landweber+iteration+algorithm+for+approximating+a+space-dependent+source+term+in+a+time+fractional+diffusion+equation&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Salehi+Shayegan%2C+Amir+Hossein&rft.date=2023-01-01&rft.issn=0377-0427&rft.volume=417&rft.spage=114531&rft_id=info:doi/10.1016%2Fj.cam.2022.114531&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2022_114531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon