Deep Feature Learning for Medical Image Analysis with Convolutional Autoencoder Neural Network
At present, computed tomography (CT) is widely used to assist disease diagnosis. Especially, computer aided diagnosis (CAD) based on artificial intelligence (AI) recently exhibits its importance in intelligent healthcare. However, it is a great challenge to establish an adequate labeled dataset for...
Saved in:
Published in | IEEE transactions on big data Vol. 7; no. 4; pp. 750 - 758 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2332-7790 2372-2096 |
DOI | 10.1109/TBDATA.2017.2717439 |
Cover
Loading…
Abstract | At present, computed tomography (CT) is widely used to assist disease diagnosis. Especially, computer aided diagnosis (CAD) based on artificial intelligence (AI) recently exhibits its importance in intelligent healthcare. However, it is a great challenge to establish an adequate labeled dataset for CT analysis assistance, due to the privacy and security issues. Therefore, this paper proposes a convolutional autoencoder deep learning framework to support unsupervised image features learning for lung nodule through unlabeled data, which only needs a small amount of labeled data for efficient feature learning. Through comprehensive experiments, it shows that the proposed scheme is superior to other approaches, which effectively solves the intrinsic labor-intensive problem during artificial image labeling. Moreover, it verifies that the proposed convolutional autoencoder approach can be extended for similarity measurement of lung nodules images. Especially, the features extracted through unsupervised learning are also applicable in other related scenarios. |
---|---|
AbstractList | At present, computed tomography (CT) is widely used to assist disease diagnosis. Especially, computer aided diagnosis (CAD) based on artificial intelligence (AI) recently exhibits its importance in intelligent healthcare. However, it is a great challenge to establish an adequate labeled dataset for CT analysis assistance, due to the privacy and security issues. Therefore, this paper proposes a convolutional autoencoder deep learning framework to support unsupervised image features learning for lung nodule through unlabeled data, which only needs a small amount of labeled data for efficient feature learning. Through comprehensive experiments, it shows that the proposed scheme is superior to other approaches, which effectively solves the intrinsic labor-intensive problem during artificial image labeling. Moreover, it verifies that the proposed convolutional autoencoder approach can be extended for similarity measurement of lung nodules images. Especially, the features extracted through unsupervised learning are also applicable in other related scenarios. |
Author | Chen, Min Zhang, Yin Guizani, Mohsen Shi, Xiaobo Wu, Di |
Author_xml | – sequence: 1 givenname: Min orcidid: 0000-0002-0960-4447 surname: Chen fullname: Chen, Min email: minchen@ieee.org organization: Wuhan National Laboratory for Optoelectronics (WNLO) and with School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China – sequence: 2 givenname: Xiaobo surname: Shi fullname: Shi, Xiaobo email: xiaoboshi.cs@qq.com organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang, China – sequence: 3 givenname: Yin orcidid: 0000-0002-1772-0763 surname: Zhang fullname: Zhang, Yin email: yin.zhang.cn@ieee.org organization: School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, China – sequence: 4 givenname: Di surname: Wu fullname: Wu, Di email: wudi27@sysu.edu.cn organization: Department of Computer Science, School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China – sequence: 5 givenname: Mohsen orcidid: 0000-0002-8972-8094 surname: Guizani fullname: Guizani, Mohsen email: mguizani@ieee.org organization: Electrical and Computer Engineering Department, University of Idaho, Moscow, ID, USA |
BookMark | eNqFkE1v2zAMhoWhBZa1_QW9CNjZKSXFVnT00vUDyLpLdp3ByFSq1LEySW7Rf18HKXrYpScSxPsQ5PONnfShJ8YuBUyFAHO1-nFdr-qpBKGnUgs9U-YLm0ilZSHBVCeHXslCawNf2UVKWwAQFYAycsL-XhPt-Q1hHiLxJWHsfb_hLkT-i1pvseP3O9wQr3vsXpNP_MXnR74I_XPohuzDOOb1kAP1NrQU-QMNcRw9UH4J8emcnTrsEl281zP25-bnanFXLH_f3i_qZWGl1Llo1ZzACaA1kiVYo3BQzpU0CGi1qtCWys1kq2RFc4NV2brZunVWVc6itajO2Pfj3n0M_wZKudmGIY63pUaWFQilhDRjyhxTNoaUIrnG-oyHJ3JE3zUCmoPR5mi0ORht3o2OrPqP3Ue_w_j6CXV5pDwRfRDalDMQUr0BpX2FqQ |
CODEN | ITBDAX |
CitedBy_id | crossref_primary_10_1002_srin_202400896 crossref_primary_10_1016_j_future_2019_12_033 crossref_primary_10_1007_s10489_020_01944_5 crossref_primary_10_2217_fon_2021_0767 crossref_primary_10_1109_JIOT_2021_3105647 crossref_primary_10_1016_j_jrras_2024_101022 crossref_primary_10_1109_ACCESS_2024_3487851 crossref_primary_10_1016_j_future_2022_11_001 crossref_primary_10_1109_ACCESS_2023_3251105 crossref_primary_10_1109_TNNLS_2020_3029033 crossref_primary_10_1007_s00170_022_09608_z crossref_primary_10_1016_j_techfore_2024_123542 crossref_primary_10_32604_cmes_2022_021225 crossref_primary_10_1007_s11042_024_18418_2 crossref_primary_10_1287_ijoc_2021_1117 crossref_primary_10_1177_14759217221139134 crossref_primary_10_3390_math11112466 crossref_primary_10_1002_hbm_26077 crossref_primary_10_1088_1742_6596_2458_1_012045 crossref_primary_10_1016_j_cmpb_2021_106505 crossref_primary_10_1002_widm_1478 crossref_primary_10_1016_j_engappai_2024_108935 crossref_primary_10_1109_ACCESS_2019_2908991 crossref_primary_10_1061_JCEMD4_COENG_13686 crossref_primary_10_1109_ACCESS_2021_3098510 crossref_primary_10_47164_ijngc_v15i3_1773 crossref_primary_10_1109_JIOT_2023_3262882 crossref_primary_10_1038_s41467_024_49381_z crossref_primary_10_1080_19393555_2021_1883777 crossref_primary_10_1007_s13369_022_06587_x crossref_primary_10_1016_j_neucom_2019_10_067 crossref_primary_10_3390_bdcc5040078 crossref_primary_10_1109_JIOT_2023_3281509 crossref_primary_10_1007_s11036_017_0929_3 crossref_primary_10_1039_D2DD00066K crossref_primary_10_3390_app121910152 crossref_primary_10_1049_hve2_12210 crossref_primary_10_1109_ACCESS_2020_3027812 crossref_primary_10_1029_2024GH001253 crossref_primary_10_1109_TBCAS_2021_3090995 crossref_primary_10_3390_diagnostics12061504 crossref_primary_10_1142_S0218126624501810 crossref_primary_10_1007_s12541_021_00566_2 crossref_primary_10_1016_j_iot_2023_100713 crossref_primary_10_3390_app112311461 crossref_primary_10_1007_s10278_024_01212_9 crossref_primary_10_1016_j_comcom_2019_08_002 crossref_primary_10_5050_KSNVE_2021_31_5_563 crossref_primary_10_1016_j_compbiomed_2024_109301 crossref_primary_10_1109_TBME_2021_3124487 crossref_primary_10_1109_ACCESS_2018_2789428 crossref_primary_10_1175_JTECH_D_21_0007_1 crossref_primary_10_3390_math11081777 crossref_primary_10_1016_j_future_2019_07_012 crossref_primary_10_1016_j_neucom_2018_12_036 crossref_primary_10_1088_2631_8695_ada8f8 crossref_primary_10_22399_ijcesen_1225 crossref_primary_10_1002_spe_3079 crossref_primary_10_1016_j_comcom_2019_12_016 crossref_primary_10_1002_mp_16352 crossref_primary_10_1007_s00500_023_09602_x crossref_primary_10_1007_s10916_018_1088_1 crossref_primary_10_32604_cmc_2023_033417 crossref_primary_10_1109_ACCESS_2018_2888839 crossref_primary_10_1109_TCBB_2022_3201295 crossref_primary_10_1007_s00170_023_11255_x crossref_primary_10_3390_tomography8030108 crossref_primary_10_1007_s11831_022_09785_w crossref_primary_10_1080_00396265_2023_2203024 crossref_primary_10_1109_TBDATA_2022_3225194 crossref_primary_10_3233_JIFS_169910 crossref_primary_10_3390_app13127281 crossref_primary_10_3390_math10050829 crossref_primary_10_1038_s41598_023_37569_0 crossref_primary_10_1109_TCBB_2023_3321593 crossref_primary_10_3390_rs16193562 crossref_primary_10_1109_ACCESS_2020_3007163 crossref_primary_10_1109_ACCESS_2024_3351688 crossref_primary_10_1111_mice_13132 crossref_primary_10_1007_s11042_018_5631_3 crossref_primary_10_1007_s12652_020_02841_y crossref_primary_10_1111_coin_12528 crossref_primary_10_1007_s11042_023_17324_3 crossref_primary_10_1016_j_jbo_2024_100645 crossref_primary_10_1109_TBDATA_2022_3187413 crossref_primary_10_1109_TIM_2023_3249224 crossref_primary_10_1007_s11042_021_10637_1 crossref_primary_10_23838_pfm_2018_00030 crossref_primary_10_1109_JBHI_2022_3208779 crossref_primary_10_1007_s00521_020_05046_8 crossref_primary_10_1016_j_rinp_2021_104287 crossref_primary_10_1007_s11042_019_08118_7 crossref_primary_10_1109_TSM_2020_3013004 crossref_primary_10_1364_OE_475495 crossref_primary_10_1007_s42979_021_00784_5 crossref_primary_10_3390_electronics11233967 crossref_primary_10_1109_ACCESS_2021_3104849 crossref_primary_10_1109_TBDATA_2019_2923243 crossref_primary_10_1109_TSE_2023_3294971 crossref_primary_10_1002_smll_202107620 crossref_primary_10_3390_cancers15020357 crossref_primary_10_1109_ACCESS_2017_2769666 crossref_primary_10_1039_D4CS00844H crossref_primary_10_1109_ACCESS_2019_2909538 crossref_primary_10_1109_TMC_2020_3045266 crossref_primary_10_1121_10_0034857 crossref_primary_10_1007_s11042_017_5362_x crossref_primary_10_1109_TIP_2019_2931461 crossref_primary_10_1109_ACCESS_2022_3158342 crossref_primary_10_32604_cmes_2021_016728 crossref_primary_10_1016_j_patrec_2024_06_003 crossref_primary_10_1007_s11063_021_10490_1 crossref_primary_10_3390_s24030851 crossref_primary_10_1007_s11760_025_03984_1 crossref_primary_10_3390_diagnostics12112569 crossref_primary_10_1007_s12652_020_02328_w crossref_primary_10_1111_jfr3_12683 crossref_primary_10_1016_j_energy_2022_124689 crossref_primary_10_3390_diagnostics13132153 crossref_primary_10_1016_j_promfg_2021_06_005 crossref_primary_10_1007_s12350_022_03007_3 crossref_primary_10_1109_ACCESS_2020_3038764 crossref_primary_10_18006_2023_11_2__226_235 crossref_primary_10_1109_ACCESS_2024_3475480 crossref_primary_10_1016_j_bspc_2024_107273 crossref_primary_10_1109_JSEN_2019_2939908 crossref_primary_10_1109_TFUZZ_2024_3388023 crossref_primary_10_1109_JSEN_2022_3179405 crossref_primary_10_3390_ai5020024 crossref_primary_10_1016_j_engappai_2022_104978 crossref_primary_10_1109_TETC_2021_3068063 crossref_primary_10_1109_ACCESS_2017_2771220 crossref_primary_10_1016_j_jclepro_2022_133638 crossref_primary_10_1016_j_ymssp_2023_110736 crossref_primary_10_1007_s10462_024_10748_9 crossref_primary_10_1186_s40537_023_00705_8 crossref_primary_10_1016_j_compbiomed_2022_106065 crossref_primary_10_1016_j_inffus_2019_06_019 crossref_primary_10_1016_j_array_2023_100287 crossref_primary_10_1007_s11036_018_1114_z crossref_primary_10_1016_j_iswa_2023_200183 crossref_primary_10_1016_j_jcp_2023_112581 crossref_primary_10_3390_app14177822 crossref_primary_10_1016_j_engappai_2023_107045 crossref_primary_10_32604_cmes_2022_022495 crossref_primary_10_1109_TSG_2018_2883795 crossref_primary_10_1103_PhysRevApplied_16_064039 crossref_primary_10_1186_s13634_022_00941_9 crossref_primary_10_1016_j_nxener_2023_100046 crossref_primary_10_1016_j_vrih_2022_01_006 crossref_primary_10_1109_ACCESS_2024_3495732 crossref_primary_10_1109_ACCESS_2020_2999349 crossref_primary_10_1155_2022_4241016 crossref_primary_10_1109_TIM_2020_3028438 crossref_primary_10_1007_s10586_024_04852_2 crossref_primary_10_1109_TITS_2020_3023958 crossref_primary_10_1007_s00138_025_01665_0 crossref_primary_10_1016_j_jrras_2024_100932 crossref_primary_10_1109_MNET_2019_1800371 crossref_primary_10_3389_fcomp_2024_1404494 crossref_primary_10_1109_MNET_011_2000353 crossref_primary_10_1007_s11042_024_19333_2 crossref_primary_10_3390_app11198867 crossref_primary_10_3390_plants13213041 crossref_primary_10_2166_hydro_2023_030 crossref_primary_10_1007_s11548_019_02097_8 crossref_primary_10_1109_ACCESS_2024_3472044 crossref_primary_10_1002_hbm_26799 crossref_primary_10_1016_j_eswa_2025_126481 crossref_primary_10_1016_j_knosys_2024_112121 crossref_primary_10_1088_1361_6579_ac7fd9 crossref_primary_10_3390_app14052063 crossref_primary_10_3390_jimaging9070137 crossref_primary_10_1038_s41598_022_18085_z crossref_primary_10_1109_JTEHM_2021_3077760 crossref_primary_10_1016_j_knosys_2022_109731 crossref_primary_10_4204_EPTCS_361_8 crossref_primary_10_3390_diagnostics11101920 crossref_primary_10_1016_j_bspc_2023_105263 crossref_primary_10_1038_s41598_024_75964_3 crossref_primary_10_1109_TMM_2017_2769807 crossref_primary_10_1007_s11042_024_20171_5 crossref_primary_10_3389_frai_2023_1289669 crossref_primary_10_3390_s22249875 crossref_primary_10_1007_s11263_025_02409_3 crossref_primary_10_1109_ACCESS_2019_2920734 crossref_primary_10_1109_TIP_2020_2967589 crossref_primary_10_3390_bioengineering11060586 crossref_primary_10_1007_s00500_020_05140_y crossref_primary_10_1016_j_energy_2024_130866 crossref_primary_10_3389_fphys_2021_667828 crossref_primary_10_26599_TST_2022_9010016 crossref_primary_10_1109_TSC_2021_3133673 crossref_primary_10_1007_s10462_023_10513_4 crossref_primary_10_1371_journal_pone_0313261 crossref_primary_10_1007_s11053_020_09789_y crossref_primary_10_1016_j_cma_2022_115768 crossref_primary_10_1109_ACCESS_2020_2975198 |
Cites_doi | 10.1016/j.media.2016.10.004 10.1126/science.1127647 10.1109/TMI.2016.2526687 10.1007/978-3-319-19992-4_46 10.1145/1390156.1390294 10.1109/CRV.2015.25 10.1109/ACCESS.2016.2641480 10.1162/neco.2006.18.7.1527 10.1109/TPAMI.2012.231 10.1109/TCSVT.2016.2539698 10.1162/089976602760128018 10.1109/5.726791 10.1118/1.3140589 10.1109/MCOM.2017.1600410CM 10.1016/j.media.2015.02.002 10.1593/tlo.13844 10.3390/bdcc1010002 10.1109/TMI.2016.2532122 10.1109/CVPR.2014.244 10.1117/12.910710 10.1007/978-3-642-21735-7_7 10.1109/TMM.2016.2537782 10.1109/TMI.2015.2494582 10.1016/j.patcog.2016.05.029 10.1109/TPAMI.2013.50 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TBDATA.2017.2717439 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2372-2096 |
EndPage | 758 |
ExternalDocumentID | 10_1109_TBDATA_2017_2717439 7954012 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61572220 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 17LGJC23 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China; National Science Foundation of China grantid: 61572538 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IEDLZ IFIPE IPLJI JAVBF M43 OCL RIA RIE AAYXX CITATION 7SP 8FD L7M |
ID | FETCH-LOGICAL-c227t-d38e0f10ebaece0ba1f058329a0ac736ac53f42d326e89a65df4bdfc36fcacca3 |
IEDL.DBID | RIE |
ISSN | 2332-7790 |
IngestDate | Sun Jun 29 16:33:05 EDT 2025 Tue Jul 01 03:27:37 EDT 2025 Thu Apr 24 22:52:34 EDT 2025 Wed Aug 27 02:27:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c227t-d38e0f10ebaece0ba1f058329a0ac736ac53f42d326e89a65df4bdfc36fcacca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8972-8094 0000-0002-1772-0763 0000-0002-0960-4447 |
PQID | 2560133129 |
PQPubID | 4437220 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2560133129 ieee_primary_7954012 crossref_primary_10_1109_TBDATA_2017_2717439 crossref_citationtrail_10_1109_TBDATA_2017_2717439 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-Oct.-1 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-Oct.-1 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on big data |
PublicationTitleAbbrev | TBData |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 hamidiana (ref8) 2017; 10134 ref37 ref15 ref36 ref14 ref30 ref33 bengio (ref31) 2007; 19 ref11 ref32 han (ref5) 2015 hwang (ref10) 2017 ref2 ref1 ref17 ref38 ref16 ref18 li (ref35) 2013 zhou (ref12) 2015; 12 patel (ref23) 2017; 10134 schlegl (ref28) 2017 ref25 fonseca (ref20) 2015; 9414 ref22 ref21 ciresan (ref19) 2012 gao (ref27) 2016 li (ref26) 2017; 10134 ref29 uemura (ref24) 2017 ref7 ref9 ref4 ref3 ref6 |
References_xml | – start-page: 103 year: 2017 ident: ref24 article-title: Classification of polyp candidates on CTC based on 3D-CNN publication-title: Proc Int Forum Med Imag Asia – ident: ref22 doi: 10.1016/j.media.2016.10.004 – volume: 10134 start-page: 101340901 year: 2017 ident: ref8 article-title: 3D convolutional neural network for automatic detection of lung nodules in chest publication-title: SPIE Med Imag – ident: ref30 doi: 10.1126/science.1127647 – ident: ref36 doi: 10.1109/TMI.2016.2526687 – ident: ref7 doi: 10.1007/978-3-319-19992-4_46 – ident: ref32 doi: 10.1145/1390156.1390294 – ident: ref33 doi: 10.1109/CRV.2015.25 – ident: ref14 doi: 10.1109/ACCESS.2016.2641480 – ident: ref38 doi: 10.1162/neco.2006.18.7.1527 – ident: ref17 doi: 10.1109/TPAMI.2012.231 – ident: ref13 doi: 10.1109/TCSVT.2016.2539698 – ident: ref29 doi: 10.1162/089976602760128018 – ident: ref11 doi: 10.1109/5.726791 – start-page: 14 year: 2015 ident: ref5 article-title: A texture feature analysis for diagnosis of pulmonary nodules using LIDC-IDRI database publication-title: Proc IEEE Int Conf Med Imag Phys Eng – ident: ref6 doi: 10.1118/1.3140589 – ident: ref1 doi: 10.1109/MCOM.2017.1600410CM – start-page: 437 year: 2017 ident: ref28 article-title: Predicting semantic descriptions from medical images with convolutional neural networks publication-title: Proc Int Conf Inf Process Med Imag – ident: ref2 doi: 10.1016/j.media.2015.02.002 – volume: 10134 start-page: 241 year: 2017 ident: ref26 article-title: Lung nodule malignancy prediction using multi-task convolutional neural network publication-title: SPIE Med Imag – ident: ref3 doi: 10.1593/tlo.13844 – ident: ref4 doi: 10.3390/bdcc1010002 – ident: ref34 doi: 10.1109/TMI.2016.2532122 – ident: ref16 doi: 10.1109/CVPR.2014.244 – volume: 10134 start-page: 201 year: 2017 ident: ref23 article-title: Automatic cerebrospinal fluid segmentation in non-contrast CT images using a 3D convolutional network publication-title: SPIE Med Imag – start-page: 1 year: 2016 ident: ref27 article-title: Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks publication-title: Comput Methods Biomech Biomed Eng Imag Vis – ident: ref21 doi: 10.1117/12.910710 – start-page: 2843 year: 2012 ident: ref19 article-title: Deep neural networks segment neuronal membranes in electron microscopy images publication-title: Proc Advances Neural Inf Process Syst – ident: ref37 doi: 10.1007/978-3-642-21735-7_7 – year: 2017 ident: ref10 publication-title: Big Data Analytics for Cloud/IoT and Cognitive Computing – ident: ref15 doi: 10.1109/TMM.2016.2537782 – volume: 9414 start-page: 2801 year: 2015 ident: ref20 article-title: Automatic breast density classification using a convolutional neural network architecture search procedure publication-title: SPIE Med Imag – ident: ref18 doi: 10.1109/TMI.2015.2494582 – ident: ref25 doi: 10.1016/j.patcog.2016.05.029 – start-page: 6079 year: 2013 ident: ref35 article-title: Lung image patch classification with automatic feature learning publication-title: Proc 35th Annu Int Conf IEEE Eng Med Biol Soc – volume: 19 start-page: 153 year: 2007 ident: ref31 article-title: Greedy layer-wise training of deep networks publication-title: Proc 19th Int Conf Neural Inf Process Syst – ident: ref9 doi: 10.1109/TPAMI.2013.50 – volume: 12 start-page: 1253 year: 2015 ident: ref12 article-title: Mobile device-to-device video distribution: Theory and application publication-title: ACM Trans Multimedia Comput Commun Appl |
SSID | ssj0001600392 |
Score | 2.539986 |
Snippet | At present, computed tomography (CT) is widely used to assist disease diagnosis. Especially, computer aided diagnosis (CAD) based on artificial intelligence... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 750 |
SubjectTerms | Artificial intelligence Biomedical imaging Computed tomography Convolutional autoencoder neural network Convolutional codes Deep learning Diagnosis Feature extraction feature learning hand-craft feature Image analysis lung nodule Lungs Medical imaging Neural networks Nodules Training unsupervised learning |
Title | Deep Feature Learning for Medical Image Analysis with Convolutional Autoencoder Neural Network |
URI | https://ieeexplore.ieee.org/document/7954012 https://www.proquest.com/docview/2560133129 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG6Qkxe_0Iii6cEjw9Gylh0RJGgiJ0g8ufTjrQcVCG4e_PW2XYfxI8bbsrRbk-dt-7R9-rwIXQjKLSlgJuoSGdsFSl9GQlsi11dap5oligivtpiyybx3e5_c11B7cxcGALz4DDru0Z_l66Uq3FbZJU8tv3AphbdsmJV3tT73U5i7ZkqCsVA3Ti9nV6PBbODUW7xDuGfeXyYfn03lxxDs55XxLrqrWlTKSZ46RS476v2bWeN_m7yHdgLBxIMyIvZRDRYHaLdK3oBDX26ghxHACjsGWKwBB5vVR2w5LA6HN_jmxQ42uLItwW7LFg-Xi7cQre4vRb50TpjaftnZfNhX01JXfojm4-vZcBKFZAuRIoTnkaZ9iE03BilAQSxF18SJ7e6piIXilAmVUNMj2iIL_VSwRJue1EZRZpSwYUCPUH2xXMAxwrSXpMbyTiXBedsQmRoFwg6knAMjnDURqVDIVHAidwkxnjO_IonTrIQuc9BlAbomam8qrUojjr-LNxwYm6IBhyZqVXBnobO-Zn5VSqllPie_1zpF28RJWbyGr4Xq-bqAM8tFcnnug_ADdo3djw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swGP2E2AEulFEQHbD5wJGU1E7s5tjBUIHSU5E4LfKPzxy2tVWX7MBfj-04RQw07RZFdmLpfbaf7ef3AZxKJhwp4DYZUJW6BcpQJdI4IjfUxhSG55rKoLaY8vF9dvOQP2zA2fouDCIG8Rn2_WM4yzcLXfutsnNROH7hUwp_cPN-lje3tV52VLi_aEqjtdAgLc5nXy9Hs5HXb4k-FYF7v5p-Qj6VN4NwmFmuOnDXtqkRlPzo15Xq66e_7Br_t9G7sBMpJhk1MfERNnC-B502fQOJvbkL3y8Rl8RzwHqFJBqtPhLHYkk8viHXv9xwQ1rjEuI3bcnFYv4nxqv_S10tvBemcV_2Rh_u1bRRlu_D_dW32cU4iekWEk2pqBLDhpjaQYpKosZUyYFNc9fhC5lKLRiXOmc2o8Zhi8NC8tzYTBmrGbdaukBgB7A5X8zxEAjL8sI65qkVencbqgqrUbqhVAjkVPAe0BaFUkcvcp8S42cZ1iRpUTbQlR66MkLXg7N1pWVjxfHv4l0PxrpoxKEHxy3cZeyuv8uwLmXMcZ9P79f6Alvj2d2knFxPb49gm3phS1D0HcNmtarxxDGTSn0OAfkMNT3g3A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Feature+Learning+for+Medical+Image+Analysis+with+Convolutional+Autoencoder+Neural+Network&rft.jtitle=IEEE+transactions+on+big+data&rft.au=Chen%2C+Min&rft.au=Shi%2C+Xiaobo&rft.au=Zhang%2C+Yin&rft.au=Wu%2C+Di&rft.date=2021-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2372-2096&rft.volume=7&rft.issue=4&rft.spage=750&rft_id=info:doi/10.1109%2FTBDATA.2017.2717439&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7790&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7790&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7790&client=summon |