Design of Curie point written magnetoresistance random access memory cells

Very high density magnetoresistance random access memory (MRAM) cells may be subject to thermal upset. This article describes designs that enhance thermal stability and increase ultimate density by using the combination of heat and magnetic field for writing data. The basic storage mechanism can be...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 93; no. 10; pp. 7304 - 7306
Main Authors Daughton, J. M., Pohm, A. V.
Format Journal Article
LanguageEnglish
Published 15.05.2003
Online AccessGet full text

Cover

Loading…
Abstract Very high density magnetoresistance random access memory (MRAM) cells may be subject to thermal upset. This article describes designs that enhance thermal stability and increase ultimate density by using the combination of heat and magnetic field for writing data. The basic storage mechanism can be shape anisotropy, the coupling between an antiferromagnetic layer and a ferromagnetic layer, or a combination of the two. Two designs are described in this article. The first uses a low Curie point material with high shape anisotropy at room temperature. These cells use active semiconductor devices to restrict heating current to only one cell in an array. The second approach employs the interface coupling between a ferromagnetic film and an antiferromagnetic film as the storage mechansism. A cell may be written by heating above the Néel temperature and cooling the interface in a magnetic field by using orthogonal lines for heating and magnetic field. Heating and cooling times are a few nanoseconds. These design approaches could lead to stable MRAM cells with diameters less than 0.1 μm and requiring lower drive currents.
AbstractList Very high density magnetoresistance random access memory (MRAM) cells may be subject to thermal upset. This article describes designs that enhance thermal stability and increase ultimate density by using the combination of heat and magnetic field for writing data. The basic storage mechanism can be shape anisotropy, the coupling between an antiferromagnetic layer and a ferromagnetic layer, or a combination of the two. Two designs are described in this article. The first uses a low Curie point material with high shape anisotropy at room temperature. These cells use active semiconductor devices to restrict heating current to only one cell in an array. The second approach employs the interface coupling between a ferromagnetic film and an antiferromagnetic film as the storage mechansism. A cell may be written by heating above the Néel temperature and cooling the interface in a magnetic field by using orthogonal lines for heating and magnetic field. Heating and cooling times are a few nanoseconds. These design approaches could lead to stable MRAM cells with diameters less than 0.1 μm and requiring lower drive currents.
Author Daughton, J. M.
Pohm, A. V.
Author_xml – sequence: 1
  givenname: J. M.
  surname: Daughton
  fullname: Daughton, J. M.
– sequence: 2
  givenname: A. V.
  surname: Pohm
  fullname: Pohm, A. V.
BookMark eNptkL1OwzAURi1UJNLCwBt4ZUjra9exM6Lwr0osMEeuc10ZJXZlG6G-PUV0Qkzfcr4znDmZhRiQkGtgS2CNWMESpFRCiTNSAdNtraRkM1IxxqHWrWovyDznD8YAtGgr8nKH2e8CjY52n8kj3UcfCv1KvhQMdDK7gCWmI5SLCRZpMmGIEzXWYs50wimmA7U4jvmSnDszZrw67YK8P9y_dU_15vXxubvd1JZzVWqDKBshnBaoLGyNRgbKOaOktsNaCtsMA3ILErExnG-HVjfg1k5tORi-FmJBbn69NsWcE7p-n_xk0qEH1v9E6KE_RTiyqz-s9cUUH0NJxo__PL4BullhNw
CitedBy_id crossref_primary_10_1016_j_crhy_2005_10_007
crossref_primary_10_1063_1_1850392
crossref_primary_10_1063_1_1667413
crossref_primary_10_1209_0295_5075_78_67006
crossref_primary_10_1088_0953_8984_19_16_165218
crossref_primary_10_1002_adma_201402527
crossref_primary_10_1088_0268_1242_31_11_113006
crossref_primary_10_1109_TMAG_2007_893140
crossref_primary_10_1016_j_jmmm_2008_10_026
crossref_primary_10_1063_1_1851954
crossref_primary_10_1109_TMAG_2009_2033674
crossref_primary_10_1063_1_3340509
crossref_primary_10_1088_0022_3727_40_19_003
crossref_primary_10_1038_nmat2024
crossref_primary_10_1063_1_2165581
crossref_primary_10_1038_nmat1350
crossref_primary_10_1109_TMAG_2004_834239
crossref_primary_10_1063_1_1646211
crossref_primary_10_1146_annurev_matsci_082908_145355
crossref_primary_10_1016_j_cap_2006_01_018
crossref_primary_10_1109_TMAG_2008_2003068
crossref_primary_10_1002_adma_201003636
crossref_primary_10_1088_1361_6528_ac2e75
crossref_primary_10_1109_TMAG_2006_879726
crossref_primary_10_1109_TMAG_2004_830395
Cites_doi 10.1109/20.706424
10.1063/1.334915
10.1063/1.373356
10.1109/20.706566
10.1063/1.372720
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1063/1.1557373
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
EndPage 7306
ExternalDocumentID 10_1063_1_1557373
GroupedDBID -DZ
-~X
.DC
186
1UP
2-P
29J
4.4
53G
5GY
5VS
6TJ
85S
AAAAW
AABDS
AAGWI
AAIKC
AAMNW
AAPUP
AAYIH
AAYJJ
AAYXX
ABFTF
ABJGX
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEGXH
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D0L
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
MVM
N9A
NPSNA
O-B
OHT
P0-
P2P
RIP
RNS
ROL
RQS
RXW
SC5
TAE
TN5
TWZ
UHB
UPT
VOH
WH7
XSW
YQT
YZZ
ZCA
ZCG
~02
ID FETCH-LOGICAL-c227t-aee5633f83e7c1ba8e017ffa758cd453c6dde2c15ee6a22bd9861f4f7b21a2433
ISSN 0021-8979
IngestDate Tue Jul 01 04:36:42 EDT 2025
Thu Apr 24 23:08:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c227t-aee5633f83e7c1ba8e017ffa758cd453c6dde2c15ee6a22bd9861f4f7b21a2433
PageCount 3
ParticipantIDs crossref_primary_10_1063_1_1557373
crossref_citationtrail_10_1063_1_1557373
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-05-15
PublicationDateYYYYMMDD 2003-05-15
PublicationDate_xml – month: 05
  year: 2003
  text: 2003-05-15
  day: 15
PublicationDecade 2000
PublicationTitle Journal of applied physics
PublicationYear 2003
References (2024020921005268400_r1) 1985; 57
(2024020921005268400_r4) 1998; 34
(2024020921005268400_r2) 2000; 87
(2024020921005268400_r5) 1998; 34
2024020921005268400_r6
(2024020921005268400_r3) 2000; 87
References_xml – volume: 34
  start-page: 1153
  year: 1998
  ident: 2024020921005268400_r4
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.706424
– volume: 57
  start-page: 3913
  year: 1985
  ident: 2024020921005268400_r1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.334915
– volume: 87
  start-page: 5398
  year: 2000
  ident: 2024020921005268400_r2
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.373356
– volume: 34
  start-page: 1414
  year: 1998
  ident: 2024020921005268400_r5
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.706566
– volume: 87
  start-page: 6403
  year: 2000
  ident: 2024020921005268400_r3
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.372720
– ident: 2024020921005268400_r6
SSID ssj0011839
Score 1.9161497
Snippet Very high density magnetoresistance random access memory (MRAM) cells may be subject to thermal upset. This article describes designs that enhance thermal...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 7304
Title Design of Curie point written magnetoresistance random access memory cells
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swEBZZymB7GGu30W5dEWMPA2MvlizZfmtoV0poxmDt6FuQFGkrLHZpXcb263vSOZ67tND1xTi24hB98uk76e4-Qt47nmurhIgNAxclUyqPtQQiZ_TI-VRKJwLS08_y8CSbnIrTwWC3n13S6MT8uTWv5CGowjXA1WfJ_gey3UPhApwDvnAEhOF4L4z3Q_hFiKjwynPReX1WNdEv8PeBCUcL9b2y4FJDI08B4QWGeWleLyIVRBKjhQ-y_R35pfvLOziqajkqrn_0NOivwKXH_fpJEk2TzsDWP8L4GifRt-TGgkII38OUyi7AP42LEjVeEot2cVSUcS6wRuzScKK04XKAjHpmEMxG1ptS4aO81VwDP_IrBwmQmpyjpMnNktj_TFVdAGHYOpd8ls7arz4iawwcBTYka-P96dHXbifJM0AM88E_tawuJfnH7nd7nKRHLo6fk2dtj9MxQrxOBrbaIE97tSI3yOMviMELMkHYae1ogJ0G2GkLO12BnSLsFGGnCDsNsL8kJwefjvcO41YSA94lljexslZIzl3BbW5SrQoLFtU5BV6fmWeCGwnTFTOpsFYqxvS8LGTqMpdrliqWcf6KDKu6spuEWl0WJVMaCKkvUifgdlo644WLjJkXbot8WHbKzLT14r1syc_ZSudvkXdd03MskrLa6PV9Gr0hT_4OyW0ybC6u7FtgfY3eaYG9BuebVi8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+Curie+point+written+magnetoresistance+random+access+memory+cells&rft.jtitle=Journal+of+applied+physics&rft.au=Daughton%2C+J.+M.&rft.au=Pohm%2C+A.+V.&rft.date=2003-05-15&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=93&rft.issue=10&rft.spage=7304&rft.epage=7306&rft_id=info:doi/10.1063%2F1.1557373&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_1557373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon