Design of Curie point written magnetoresistance random access memory cells
Very high density magnetoresistance random access memory (MRAM) cells may be subject to thermal upset. This article describes designs that enhance thermal stability and increase ultimate density by using the combination of heat and magnetic field for writing data. The basic storage mechanism can be...
Saved in:
Published in | Journal of applied physics Vol. 93; no. 10; pp. 7304 - 7306 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
15.05.2003
|
Online Access | Get full text |
Cover
Loading…
Abstract | Very high density magnetoresistance random access memory (MRAM) cells may be subject to thermal upset. This article describes designs that enhance thermal stability and increase ultimate density by using the combination of heat and magnetic field for writing data. The basic storage mechanism can be shape anisotropy, the coupling between an antiferromagnetic layer and a ferromagnetic layer, or a combination of the two. Two designs are described in this article. The first uses a low Curie point material with high shape anisotropy at room temperature. These cells use active semiconductor devices to restrict heating current to only one cell in an array. The second approach employs the interface coupling between a ferromagnetic film and an antiferromagnetic film as the storage mechansism. A cell may be written by heating above the Néel temperature and cooling the interface in a magnetic field by using orthogonal lines for heating and magnetic field. Heating and cooling times are a few nanoseconds. These design approaches could lead to stable MRAM cells with diameters less than 0.1 μm and requiring lower drive currents. |
---|---|
AbstractList | Very high density magnetoresistance random access memory (MRAM) cells may be subject to thermal upset. This article describes designs that enhance thermal stability and increase ultimate density by using the combination of heat and magnetic field for writing data. The basic storage mechanism can be shape anisotropy, the coupling between an antiferromagnetic layer and a ferromagnetic layer, or a combination of the two. Two designs are described in this article. The first uses a low Curie point material with high shape anisotropy at room temperature. These cells use active semiconductor devices to restrict heating current to only one cell in an array. The second approach employs the interface coupling between a ferromagnetic film and an antiferromagnetic film as the storage mechansism. A cell may be written by heating above the Néel temperature and cooling the interface in a magnetic field by using orthogonal lines for heating and magnetic field. Heating and cooling times are a few nanoseconds. These design approaches could lead to stable MRAM cells with diameters less than 0.1 μm and requiring lower drive currents. |
Author | Daughton, J. M. Pohm, A. V. |
Author_xml | – sequence: 1 givenname: J. M. surname: Daughton fullname: Daughton, J. M. – sequence: 2 givenname: A. V. surname: Pohm fullname: Pohm, A. V. |
BookMark | eNptkL1OwzAURi1UJNLCwBt4ZUjra9exM6Lwr0osMEeuc10ZJXZlG6G-PUV0Qkzfcr4znDmZhRiQkGtgS2CNWMESpFRCiTNSAdNtraRkM1IxxqHWrWovyDznD8YAtGgr8nKH2e8CjY52n8kj3UcfCv1KvhQMdDK7gCWmI5SLCRZpMmGIEzXWYs50wimmA7U4jvmSnDszZrw67YK8P9y_dU_15vXxubvd1JZzVWqDKBshnBaoLGyNRgbKOaOktsNaCtsMA3ILErExnG-HVjfg1k5tORi-FmJBbn69NsWcE7p-n_xk0qEH1v9E6KE_RTiyqz-s9cUUH0NJxo__PL4BullhNw |
CitedBy_id | crossref_primary_10_1016_j_crhy_2005_10_007 crossref_primary_10_1063_1_1850392 crossref_primary_10_1063_1_1667413 crossref_primary_10_1209_0295_5075_78_67006 crossref_primary_10_1088_0953_8984_19_16_165218 crossref_primary_10_1002_adma_201402527 crossref_primary_10_1088_0268_1242_31_11_113006 crossref_primary_10_1109_TMAG_2007_893140 crossref_primary_10_1016_j_jmmm_2008_10_026 crossref_primary_10_1063_1_1851954 crossref_primary_10_1109_TMAG_2009_2033674 crossref_primary_10_1063_1_3340509 crossref_primary_10_1088_0022_3727_40_19_003 crossref_primary_10_1038_nmat2024 crossref_primary_10_1063_1_2165581 crossref_primary_10_1038_nmat1350 crossref_primary_10_1109_TMAG_2004_834239 crossref_primary_10_1063_1_1646211 crossref_primary_10_1146_annurev_matsci_082908_145355 crossref_primary_10_1016_j_cap_2006_01_018 crossref_primary_10_1109_TMAG_2008_2003068 crossref_primary_10_1002_adma_201003636 crossref_primary_10_1088_1361_6528_ac2e75 crossref_primary_10_1109_TMAG_2006_879726 crossref_primary_10_1109_TMAG_2004_830395 |
Cites_doi | 10.1109/20.706424 10.1063/1.334915 10.1063/1.373356 10.1109/20.706566 10.1063/1.372720 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1063/1.1557373 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
EndPage | 7306 |
ExternalDocumentID | 10_1063_1_1557373 |
GroupedDBID | -DZ -~X .DC 186 1UP 2-P 29J 4.4 53G 5GY 5VS 6TJ 85S AAAAW AABDS AAGWI AAIKC AAMNW AAPUP AAYIH AAYJJ AAYXX ABFTF ABJGX ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEGXH AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D0L DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 MVM N9A NPSNA O-B OHT P0- P2P RIP RNS ROL RQS RXW SC5 TAE TN5 TWZ UHB UPT VOH WH7 XSW YQT YZZ ZCA ZCG ~02 |
ID | FETCH-LOGICAL-c227t-aee5633f83e7c1ba8e017ffa758cd453c6dde2c15ee6a22bd9861f4f7b21a2433 |
ISSN | 0021-8979 |
IngestDate | Tue Jul 01 04:36:42 EDT 2025 Thu Apr 24 23:08:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c227t-aee5633f83e7c1ba8e017ffa758cd453c6dde2c15ee6a22bd9861f4f7b21a2433 |
PageCount | 3 |
ParticipantIDs | crossref_primary_10_1063_1_1557373 crossref_citationtrail_10_1063_1_1557373 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2003-05-15 |
PublicationDateYYYYMMDD | 2003-05-15 |
PublicationDate_xml | – month: 05 year: 2003 text: 2003-05-15 day: 15 |
PublicationDecade | 2000 |
PublicationTitle | Journal of applied physics |
PublicationYear | 2003 |
References | (2024020921005268400_r1) 1985; 57 (2024020921005268400_r4) 1998; 34 (2024020921005268400_r2) 2000; 87 (2024020921005268400_r5) 1998; 34 2024020921005268400_r6 (2024020921005268400_r3) 2000; 87 |
References_xml | – volume: 34 start-page: 1153 year: 1998 ident: 2024020921005268400_r4 publication-title: IEEE Trans. Magn. doi: 10.1109/20.706424 – volume: 57 start-page: 3913 year: 1985 ident: 2024020921005268400_r1 publication-title: J. Appl. Phys. doi: 10.1063/1.334915 – volume: 87 start-page: 5398 year: 2000 ident: 2024020921005268400_r2 publication-title: J. Appl. Phys. doi: 10.1063/1.373356 – volume: 34 start-page: 1414 year: 1998 ident: 2024020921005268400_r5 publication-title: IEEE Trans. Magn. doi: 10.1109/20.706566 – volume: 87 start-page: 6403 year: 2000 ident: 2024020921005268400_r3 publication-title: J. Appl. Phys. doi: 10.1063/1.372720 – ident: 2024020921005268400_r6 |
SSID | ssj0011839 |
Score | 1.9161497 |
Snippet | Very high density magnetoresistance random access memory (MRAM) cells may be subject to thermal upset. This article describes designs that enhance thermal... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 7304 |
Title | Design of Curie point written magnetoresistance random access memory cells |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swEBZZymB7GGu30W5dEWMPA2MvlizZfmtoV0poxmDt6FuQFGkrLHZpXcb263vSOZ67tND1xTi24hB98uk76e4-Qt47nmurhIgNAxclUyqPtQQiZ_TI-VRKJwLS08_y8CSbnIrTwWC3n13S6MT8uTWv5CGowjXA1WfJ_gey3UPhApwDvnAEhOF4L4z3Q_hFiKjwynPReX1WNdEv8PeBCUcL9b2y4FJDI08B4QWGeWleLyIVRBKjhQ-y_R35pfvLOziqajkqrn_0NOivwKXH_fpJEk2TzsDWP8L4GifRt-TGgkII38OUyi7AP42LEjVeEot2cVSUcS6wRuzScKK04XKAjHpmEMxG1ptS4aO81VwDP_IrBwmQmpyjpMnNktj_TFVdAGHYOpd8ls7arz4iawwcBTYka-P96dHXbifJM0AM88E_tawuJfnH7nd7nKRHLo6fk2dtj9MxQrxOBrbaIE97tSI3yOMviMELMkHYae1ogJ0G2GkLO12BnSLsFGGnCDsNsL8kJwefjvcO41YSA94lljexslZIzl3BbW5SrQoLFtU5BV6fmWeCGwnTFTOpsFYqxvS8LGTqMpdrliqWcf6KDKu6spuEWl0WJVMaCKkvUifgdlo644WLjJkXbot8WHbKzLT14r1syc_ZSudvkXdd03MskrLa6PV9Gr0hT_4OyW0ybC6u7FtgfY3eaYG9BuebVi8 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+Curie+point+written+magnetoresistance+random+access+memory+cells&rft.jtitle=Journal+of+applied+physics&rft.au=Daughton%2C+J.+M.&rft.au=Pohm%2C+A.+V.&rft.date=2003-05-15&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=93&rft.issue=10&rft.spage=7304&rft.epage=7306&rft_id=info:doi/10.1063%2F1.1557373&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_1557373 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |