Estimating time-varying parameters in uncertain differential equations

•A set of estimates of the time-varying parameters was obtained based on rewritten least squares estimates.•The idea of regression fitting was proposed to obtain time-varying parameter functions by fitting estimates of the time-varying parameters.•An uncertain differential equation model for human b...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 425; p. 127084
Main Authors Zhang, Guidong, Sheng, Yuhong
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.07.2022
Subjects
Online AccessGet full text
ISSN0096-3003
DOI10.1016/j.amc.2022.127084

Cover

Loading…
Abstract •A set of estimates of the time-varying parameters was obtained based on rewritten least squares estimates.•The idea of regression fitting was proposed to obtain time-varying parameter functions by fitting estimates of the time-varying parameters.•An uncertain differential equation model for human blood alcohol metabolism was derived, as well as an uncertain differential equation model for the spread of COVID-19. Research on the estimation of unknown parameters in uncertain differential equations has been a concerned subject for scholars in recent years. For this reason, some scholars have proposed many methods to estimate the unknown parameters. However, these unknown parameters are constants. This paper considers estimation methods for time-varying parameters, the least squares estimation method is rewritten. Firstly, estimates of a set of time-varying parameters are obtained. Secondly, the fit function for this set of estimates, which is obtained by means of a regression fit is considered to be a time-varying parameter. Meanwhile, the criteria is given to determine whether the fit function is reasonable. Finally, two numerical examples of uncertain differential equations are presented to verify the feasibility of the above method.
AbstractList •A set of estimates of the time-varying parameters was obtained based on rewritten least squares estimates.•The idea of regression fitting was proposed to obtain time-varying parameter functions by fitting estimates of the time-varying parameters.•An uncertain differential equation model for human blood alcohol metabolism was derived, as well as an uncertain differential equation model for the spread of COVID-19. Research on the estimation of unknown parameters in uncertain differential equations has been a concerned subject for scholars in recent years. For this reason, some scholars have proposed many methods to estimate the unknown parameters. However, these unknown parameters are constants. This paper considers estimation methods for time-varying parameters, the least squares estimation method is rewritten. Firstly, estimates of a set of time-varying parameters are obtained. Secondly, the fit function for this set of estimates, which is obtained by means of a regression fit is considered to be a time-varying parameter. Meanwhile, the criteria is given to determine whether the fit function is reasonable. Finally, two numerical examples of uncertain differential equations are presented to verify the feasibility of the above method.
ArticleNumber 127084
Author Sheng, Yuhong
Zhang, Guidong
Author_xml – sequence: 1
  givenname: Guidong
  orcidid: 0000-0002-0610-4914
  surname: Zhang
  fullname: Zhang, Guidong
– sequence: 2
  givenname: Yuhong
  orcidid: 0000-0001-7268-8519
  surname: Sheng
  fullname: Sheng, Yuhong
  email: shengyuhong1@sina.com
BookMark eNp9kD1PwzAQhj0UibbwA9jyBxLOlw8nYkJVC0iVWGC2XPuMHLVJsd1K_fe4lImh0703PKf3uRmbDONAjD1wKDjw5rEv1E4XCIgFRwFtNWFTgK7JS4Dyls1C6AFANLyastUyRLdT0Q1fWQqUH5U_nZe98mpHkXzI3JAdBk0-qpSMs5Y8DdGpbUbfh4SOQ7hjN1ZtA93_zTn7XC0_Fq_5-v3lbfG8zjWiiHlnK7IdKAMoBKCphemUJqw3tkLTbuoWRYnIawFNSVYYrniNpqkNUtsJU84Zv9zVfgzBk5V7n-r7k-Qgz_Kyl0lenuXlRT4x4h-jXfytHb1y26vk04WkpHR05GXQjtIrjPOkozSju0L_AKzWeMs
CitedBy_id crossref_primary_10_1007_s12652_024_04828_5
crossref_primary_10_3233_JIFS_230288
crossref_primary_10_1049_gtd2_13097
Cites_doi 10.1109/TFUZZ.2019.2939984
10.1007/s00500-022-06766-w
10.1186/2195-5468-1-1
10.1007/s10700-016-9253-9
10.1007/s10700-019-09310-y
10.1007/s10700-010-9073-2
10.1080/01969722.2010.511552
10.1007/s00500-018-03678-6
10.3233/JIFS-202891
10.3233/IFS-120688
10.1016/j.chaos.2020.110026
10.1007/s10700-020-09337-6
10.1002/mma.7370
10.3233/JIFS-202522
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.amc.2022.127084
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_amc_2022_127084
S0096300322001680
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
AXJTR
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSH
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
5VS
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
RIG
SEW
TAE
VH1
VOH
WUQ
ID FETCH-LOGICAL-c227t-9f4ef90ad027702d57d9ace25bf42d8b5827322157063ef7d1a152d65d2e897d3
IEDL.DBID .~1
ISSN 0096-3003
IngestDate Tue Jul 01 01:36:25 EDT 2025
Thu Apr 24 22:56:00 EDT 2025
Sun Apr 06 06:52:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Regression analysis
Time-varying parameters
Least squares estimation
Uncertainty theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c227t-9f4ef90ad027702d57d9ace25bf42d8b5827322157063ef7d1a152d65d2e897d3
ORCID 0000-0001-7268-8519
0000-0002-0610-4914
ParticipantIDs crossref_primary_10_1016_j_amc_2022_127084
crossref_citationtrail_10_1016_j_amc_2022_127084
elsevier_sciencedirect_doi_10_1016_j_amc_2022_127084
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-15
PublicationDateYYYYMMDD 2022-07-15
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied mathematics and computation
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhang (bib0016) 2021; 41
Liu (bib0003) 2013; 1
Liu (bib0004) 2009; 3
Lio, Liu (bib0012) 2021; 20
Zhang, Yang (bib0007) 2020; 24
Yang, Liu, Park (bib0014) 2020; 139
Yang, Yao (bib0006) 2017; 16
Zhang, Sheng, Wang (bib0017) 2021; 41
Sheng, Yao, Chen (bib0009) 2020; 28
Y. Liu, B. Liu, Estimating Unknown Parameters in Uncertain Differential Equation by Maximum Likelihood Estimation, 2021, Technical Report.
Yao, Liu (bib0010) 2020; 19
Liu (bib0011) 2021; 392
Liu (bib0002) 2008; 2
Yao (bib0008) 2016
Zhu (bib0005) 2010; 41
Sheng, Zhang (bib0015) 2021; 44
Yao, Chen (bib0021) 2013; 25
Liu (bib0001) 2007
Chen, Liu (bib0024) 2010; 9
Liu (10.1016/j.amc.2022.127084_sbref0003) 2013; 1
Yao (10.1016/j.amc.2022.127084_bib0010) 2020; 19
Yao (10.1016/j.amc.2022.127084_bib0008) 2016
Liu (10.1016/j.amc.2022.127084_bib0004) 2009; 3
Zhu (10.1016/j.amc.2022.127084_bib0005) 2010; 41
Liu (10.1016/j.amc.2022.127084_bib0001) 2007
Yao (10.1016/j.amc.2022.127084_bib0021) 2013; 25
Zhang (10.1016/j.amc.2022.127084_bib0016) 2021; 41
Sheng (10.1016/j.amc.2022.127084_bib0015) 2021; 44
Liu (10.1016/j.amc.2022.127084_bib0002) 2008; 2
Zhang (10.1016/j.amc.2022.127084_bib0017) 2021; 41
Yang (10.1016/j.amc.2022.127084_bib0006) 2017; 16
Sheng (10.1016/j.amc.2022.127084_bib0009) 2020; 28
Lio (10.1016/j.amc.2022.127084_bib0012) 2021; 20
Chen (10.1016/j.amc.2022.127084_bib0024) 2010; 9
10.1016/j.amc.2022.127084_bib0013
Yang (10.1016/j.amc.2022.127084_bib0014) 2020; 139
Liu (10.1016/j.amc.2022.127084_bib0011) 2021; 392
Zhang (10.1016/j.amc.2022.127084_bib0007) 2020; 24
References_xml – year: 2016
  ident: bib0008
  article-title: Uncertain differential equations
– volume: 28
  start-page: 2651
  year: 2020
  end-page: 2655
  ident: bib0009
  article-title: Least squares estimation in uncertain differential equations
  publication-title: IEEE Trans Fuzzy Syst.
– volume: 392
  start-page: 125724
  year: 2021
  ident: bib0011
  article-title: Generalized moment estimation for uncertain differential equations
  publication-title: Appl Math Comput.
– volume: 139
  start-page: 110026
  year: 2020
  ident: bib0014
  article-title: Parameter estimation of uncertain differential equation with application to financial market
  publication-title: Chaos Soliton Fract.
– volume: 24
  start-page: 2417
  year: 2020
  end-page: 2423
  ident: bib0007
  article-title: Uncertain population model
  publication-title: Soft Comput.
– volume: 19
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib0010
  article-title: Parameter estimation in uncertain differential equations
  publication-title: Fuzzy Optim Decis Making.
– volume: 25
  start-page: 825
  year: 2013
  end-page: 832
  ident: bib0021
  article-title: A numerical method for solving uncertain differential equations
  publication-title: J Intell Fuzzy Syst.
– year: 2007
  ident: bib0001
  article-title: Uncertainty Theory
– volume: 16
  start-page: 379
  year: 2017
  end-page: 403
  ident: bib0006
  article-title: Uncertain partial differential equation with application to heat conduction
  publication-title: Fuzzy Optim Decis Making.
– volume: 41
  start-page: 535
  year: 2010
  end-page: 547
  ident: bib0005
  article-title: Uncertain optimal control with application to a portfolio selection model
  publication-title: Cybern Syst.
– volume: 41
  start-page: 2865
  year: 2021
  end-page: 2878
  ident: bib0016
  article-title: Parameter estimation in multifactor uncertain differential equation
  publication-title: J Intell Fuzzy Syst.
– reference: Y. Liu, B. Liu, Estimating Unknown Parameters in Uncertain Differential Equation by Maximum Likelihood Estimation, 2021, Technical Report.
– volume: 2
  start-page: 3
  year: 2008
  end-page: 16
  ident: bib0002
  article-title: Fuzzy process, hybrid process and uncertain process
  publication-title: Uncertain Syst.
– volume: 3
  start-page: 3
  year: 2009
  end-page: 10
  ident: bib0004
  article-title: Some research problems in uncertainty theory
  publication-title: J. Uncertain Syst.
– volume: 1
  year: 2013
  ident: bib0003
  article-title: Toward uncertain finance theory
  publication-title: J. Uncertain. Anal. Appl.
– volume: 44
  start-page: 9441
  year: 2021
  end-page: 9452
  ident: bib0015
  article-title: Parameter estimation in uncertain differential equations based on the solution
  publication-title: Math Meth Appl Sci.
– volume: 20
  start-page: 177
  year: 2021
  end-page: 188
  ident: bib0012
  article-title: Initial value estimation of uncertain differential equations and zero-day of COVID-19 spread in china
  publication-title: Fuzzy Optim Decis Making.
– volume: 9
  start-page: 69
  year: 2010
  end-page: 81
  ident: bib0024
  article-title: Existence and uniqueness theorem for uncertain differential equations
  publication-title: Fuzzy Optim Decis Making.
– volume: 41
  start-page: 2755
  year: 2021
  end-page: 2764
  ident: bib0017
  article-title: Least squares estimation of high-order uncertain differential equations
  publication-title: J Intell Fuzzy Syst.
– volume: 28
  start-page: 2651
  issue: 10
  year: 2020
  ident: 10.1016/j.amc.2022.127084_bib0009
  article-title: Least squares estimation in uncertain differential equations
  publication-title: IEEE Trans Fuzzy Syst.
  doi: 10.1109/TFUZZ.2019.2939984
– ident: 10.1016/j.amc.2022.127084_bib0013
  doi: 10.1007/s00500-022-06766-w
– volume: 1
  year: 2013
  ident: 10.1016/j.amc.2022.127084_sbref0003
  article-title: Toward uncertain finance theory
  publication-title: J. Uncertain. Anal. Appl.
  doi: 10.1186/2195-5468-1-1
– volume: 16
  start-page: 379
  issue: 3
  year: 2017
  ident: 10.1016/j.amc.2022.127084_bib0006
  article-title: Uncertain partial differential equation with application to heat conduction
  publication-title: Fuzzy Optim Decis Making.
  doi: 10.1007/s10700-016-9253-9
– volume: 19
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.amc.2022.127084_bib0010
  article-title: Parameter estimation in uncertain differential equations
  publication-title: Fuzzy Optim Decis Making.
  doi: 10.1007/s10700-019-09310-y
– volume: 9
  start-page: 69
  issue: 1
  year: 2010
  ident: 10.1016/j.amc.2022.127084_bib0024
  article-title: Existence and uniqueness theorem for uncertain differential equations
  publication-title: Fuzzy Optim Decis Making.
  doi: 10.1007/s10700-010-9073-2
– volume: 41
  start-page: 535
  issue: 7
  year: 2010
  ident: 10.1016/j.amc.2022.127084_bib0005
  article-title: Uncertain optimal control with application to a portfolio selection model
  publication-title: Cybern Syst.
  doi: 10.1080/01969722.2010.511552
– volume: 24
  start-page: 2417
  issue: 4
  year: 2020
  ident: 10.1016/j.amc.2022.127084_bib0007
  article-title: Uncertain population model
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-03678-6
– volume: 392
  start-page: 125724
  year: 2021
  ident: 10.1016/j.amc.2022.127084_bib0011
  article-title: Generalized moment estimation for uncertain differential equations
  publication-title: Appl Math Comput.
– volume: 41
  start-page: 2865
  year: 2021
  ident: 10.1016/j.amc.2022.127084_bib0016
  article-title: Parameter estimation in multifactor uncertain differential equation
  publication-title: J Intell Fuzzy Syst.
  doi: 10.3233/JIFS-202891
– volume: 25
  start-page: 825
  issue: 3
  year: 2013
  ident: 10.1016/j.amc.2022.127084_bib0021
  article-title: A numerical method for solving uncertain differential equations
  publication-title: J Intell Fuzzy Syst.
  doi: 10.3233/IFS-120688
– volume: 139
  start-page: 110026
  year: 2020
  ident: 10.1016/j.amc.2022.127084_bib0014
  article-title: Parameter estimation of uncertain differential equation with application to financial market
  publication-title: Chaos Soliton Fract.
  doi: 10.1016/j.chaos.2020.110026
– year: 2007
  ident: 10.1016/j.amc.2022.127084_bib0001
– volume: 2
  start-page: 3
  issue: 1
  year: 2008
  ident: 10.1016/j.amc.2022.127084_bib0002
  article-title: Fuzzy process, hybrid process and uncertain process
  publication-title: Uncertain Syst.
– volume: 20
  start-page: 177
  year: 2021
  ident: 10.1016/j.amc.2022.127084_bib0012
  article-title: Initial value estimation of uncertain differential equations and zero-day of COVID-19 spread in china
  publication-title: Fuzzy Optim Decis Making.
  doi: 10.1007/s10700-020-09337-6
– volume: 3
  start-page: 3
  issue: 1
  year: 2009
  ident: 10.1016/j.amc.2022.127084_bib0004
  article-title: Some research problems in uncertainty theory
  publication-title: J. Uncertain Syst.
– volume: 44
  start-page: 9441
  year: 2021
  ident: 10.1016/j.amc.2022.127084_bib0015
  article-title: Parameter estimation in uncertain differential equations based on the solution
  publication-title: Math Meth Appl Sci.
  doi: 10.1002/mma.7370
– year: 2016
  ident: 10.1016/j.amc.2022.127084_bib0008
– volume: 41
  start-page: 2755
  issue: 2
  year: 2021
  ident: 10.1016/j.amc.2022.127084_bib0017
  article-title: Least squares estimation of high-order uncertain differential equations
  publication-title: J Intell Fuzzy Syst.
  doi: 10.3233/JIFS-202522
SSID ssj0007614
Score 2.4019723
Snippet •A set of estimates of the time-varying parameters was obtained based on rewritten least squares estimates.•The idea of regression fitting was proposed to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 127084
SubjectTerms Least squares estimation
Regression analysis
Time-varying parameters
Uncertainty theory
Title Estimating time-varying parameters in uncertain differential equations
URI https://dx.doi.org/10.1016/j.amc.2022.127084
Volume 425
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IXvRgfEZ8ZQ-eTBaWbkvbIyEQ1MhJEm6bbh8GAysCevS3O7MP1EQ9eOymTTaz05mvO1-_IeRKydgYZjQ2NBEhZHwVKs5tKE3Ht1NuRaRztsWoMxyz2wmf1EivuguDtMoy9hcxPY_W5ZNWac3WYjrFO74K9aLAIxG3SDy3MybQy5vvnzQPOKYXSswKOV5RXFU2c46XnqOKIaVNrL9K9nNu-pJvBntktwSKQbd4l31Sc9kB2bnfqKyuDsmgD_sTB9ljgD3iwze9xFtLAep5z5HnsgqmWQCZq6j7B1U3FNjVs8C9FCrfqyMyHvQfesOw7IsQGkrFOlSeOa8ibbH-GlHLhVXaOMpTz6iVKZeASSjkcgH4w3lh2xqytO1wS51UwsbHpJ49Z-6EBHFbm9irFICDZ8xFWjnpYKpWzAtACg0SVRZJTCkajr0rZknFDntKwIgJGjEpjNgg15sli0Ix46_JrDJz8u2zJxDRf192-r9lZ2QbR_hrts3PSX29fHUXgCnW6WXuNJdkq3tzNxx9AGEAydw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QOKgH4zPiswdPJpV2u0u7R0IgRR4nSLg1230YDFQE9Pc7Q1uiiXrw2HYnaaa7M992vv2GkHsRBUoxJbGhSehCxheu4Fy7kWpaP-U69OSWbTFqxhP2NOXTCmmXZ2GQVlnE_jymb6N1cadReLOxnM3wjK9AvSiYkYhbIti311CdildJrdXrx6NdQIadei7GLJDm5QVlcXNL85ILFDKk9BFLsBH7OT19STndI3JYYEWnlb_OMamY7IQcDHdCq-tT0u3AEsWL7NnBNvHuh1zhwSUHJb0XSHVZO7PMgeSVl_6dsiEKLOy5Y95yoe_1GZl0O-N27BatEVxFabhxhWXGCk9qLMF6VPNQC6kM5allVEcpjwCWUEjnIUAQY0PtS0jUusk1NZEIdXBOqtlrZi6IE_hSBVakgB0sY8aTwkQGhkrBbAhgoU680iOJKnTDsX3FPCkJYi8JODFBJya5E-vkYWeyzEUz_hrMSjcn3758AkH9d7PL_5ndkb14PBwkg96of0X28Qn-qfX5NaluVu_mBiDGJr0tptAnYgjMjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+time-varying+parameters+in+uncertain+differential+equations&rft.jtitle=Applied+mathematics+and+computation&rft.au=Zhang%2C+Guidong&rft.au=Sheng%2C+Yuhong&rft.date=2022-07-15&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.volume=425&rft_id=info:doi/10.1016%2Fj.amc.2022.127084&rft.externalDocID=S0096300322001680
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon