Estimating time-varying parameters in uncertain differential equations
•A set of estimates of the time-varying parameters was obtained based on rewritten least squares estimates.•The idea of regression fitting was proposed to obtain time-varying parameter functions by fitting estimates of the time-varying parameters.•An uncertain differential equation model for human b...
Saved in:
Published in | Applied mathematics and computation Vol. 425; p. 127084 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.07.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0096-3003 |
DOI | 10.1016/j.amc.2022.127084 |
Cover
Loading…
Abstract | •A set of estimates of the time-varying parameters was obtained based on rewritten least squares estimates.•The idea of regression fitting was proposed to obtain time-varying parameter functions by fitting estimates of the time-varying parameters.•An uncertain differential equation model for human blood alcohol metabolism was derived, as well as an uncertain differential equation model for the spread of COVID-19.
Research on the estimation of unknown parameters in uncertain differential equations has been a concerned subject for scholars in recent years. For this reason, some scholars have proposed many methods to estimate the unknown parameters. However, these unknown parameters are constants. This paper considers estimation methods for time-varying parameters, the least squares estimation method is rewritten. Firstly, estimates of a set of time-varying parameters are obtained. Secondly, the fit function for this set of estimates, which is obtained by means of a regression fit is considered to be a time-varying parameter. Meanwhile, the criteria is given to determine whether the fit function is reasonable. Finally, two numerical examples of uncertain differential equations are presented to verify the feasibility of the above method. |
---|---|
AbstractList | •A set of estimates of the time-varying parameters was obtained based on rewritten least squares estimates.•The idea of regression fitting was proposed to obtain time-varying parameter functions by fitting estimates of the time-varying parameters.•An uncertain differential equation model for human blood alcohol metabolism was derived, as well as an uncertain differential equation model for the spread of COVID-19.
Research on the estimation of unknown parameters in uncertain differential equations has been a concerned subject for scholars in recent years. For this reason, some scholars have proposed many methods to estimate the unknown parameters. However, these unknown parameters are constants. This paper considers estimation methods for time-varying parameters, the least squares estimation method is rewritten. Firstly, estimates of a set of time-varying parameters are obtained. Secondly, the fit function for this set of estimates, which is obtained by means of a regression fit is considered to be a time-varying parameter. Meanwhile, the criteria is given to determine whether the fit function is reasonable. Finally, two numerical examples of uncertain differential equations are presented to verify the feasibility of the above method. |
ArticleNumber | 127084 |
Author | Sheng, Yuhong Zhang, Guidong |
Author_xml | – sequence: 1 givenname: Guidong orcidid: 0000-0002-0610-4914 surname: Zhang fullname: Zhang, Guidong – sequence: 2 givenname: Yuhong orcidid: 0000-0001-7268-8519 surname: Sheng fullname: Sheng, Yuhong email: shengyuhong1@sina.com |
BookMark | eNp9kD1PwzAQhj0UibbwA9jyBxLOlw8nYkJVC0iVWGC2XPuMHLVJsd1K_fe4lImh0703PKf3uRmbDONAjD1wKDjw5rEv1E4XCIgFRwFtNWFTgK7JS4Dyls1C6AFANLyastUyRLdT0Q1fWQqUH5U_nZe98mpHkXzI3JAdBk0-qpSMs5Y8DdGpbUbfh4SOQ7hjN1ZtA93_zTn7XC0_Fq_5-v3lbfG8zjWiiHlnK7IdKAMoBKCphemUJqw3tkLTbuoWRYnIawFNSVYYrniNpqkNUtsJU84Zv9zVfgzBk5V7n-r7k-Qgz_Kyl0lenuXlRT4x4h-jXfytHb1y26vk04WkpHR05GXQjtIrjPOkozSju0L_AKzWeMs |
CitedBy_id | crossref_primary_10_1007_s12652_024_04828_5 crossref_primary_10_3233_JIFS_230288 crossref_primary_10_1049_gtd2_13097 |
Cites_doi | 10.1109/TFUZZ.2019.2939984 10.1007/s00500-022-06766-w 10.1186/2195-5468-1-1 10.1007/s10700-016-9253-9 10.1007/s10700-019-09310-y 10.1007/s10700-010-9073-2 10.1080/01969722.2010.511552 10.1007/s00500-018-03678-6 10.3233/JIFS-202891 10.3233/IFS-120688 10.1016/j.chaos.2020.110026 10.1007/s10700-020-09337-6 10.1002/mma.7370 10.3233/JIFS-202522 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.amc.2022.127084 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | 10_1016_j_amc_2022_127084 S0096300322001680 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABAOU ABFNM ABFRF ABJNI ABMAC ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI AEBSH AEFWE AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ARUGR AXJTR BKOJK BLXMC BNPGV CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ RXW SBC SDF SDG SES SME SPC SPCBC SSH SSW SSZ T5K TN5 WH7 X6Y XPP ZMT ~02 ~G- 5VS AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HMJ HVGLF HZ~ R2- RIG SEW TAE VH1 VOH WUQ |
ID | FETCH-LOGICAL-c227t-9f4ef90ad027702d57d9ace25bf42d8b5827322157063ef7d1a152d65d2e897d3 |
IEDL.DBID | .~1 |
ISSN | 0096-3003 |
IngestDate | Tue Jul 01 01:36:25 EDT 2025 Thu Apr 24 22:56:00 EDT 2025 Sun Apr 06 06:52:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Regression analysis Time-varying parameters Least squares estimation Uncertainty theory |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c227t-9f4ef90ad027702d57d9ace25bf42d8b5827322157063ef7d1a152d65d2e897d3 |
ORCID | 0000-0001-7268-8519 0000-0002-0610-4914 |
ParticipantIDs | crossref_primary_10_1016_j_amc_2022_127084 crossref_citationtrail_10_1016_j_amc_2022_127084 elsevier_sciencedirect_doi_10_1016_j_amc_2022_127084 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-15 |
PublicationDateYYYYMMDD | 2022-07-15 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Applied mathematics and computation |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Zhang (bib0016) 2021; 41 Liu (bib0003) 2013; 1 Liu (bib0004) 2009; 3 Lio, Liu (bib0012) 2021; 20 Zhang, Yang (bib0007) 2020; 24 Yang, Liu, Park (bib0014) 2020; 139 Yang, Yao (bib0006) 2017; 16 Zhang, Sheng, Wang (bib0017) 2021; 41 Sheng, Yao, Chen (bib0009) 2020; 28 Y. Liu, B. Liu, Estimating Unknown Parameters in Uncertain Differential Equation by Maximum Likelihood Estimation, 2021, Technical Report. Yao, Liu (bib0010) 2020; 19 Liu (bib0011) 2021; 392 Liu (bib0002) 2008; 2 Yao (bib0008) 2016 Zhu (bib0005) 2010; 41 Sheng, Zhang (bib0015) 2021; 44 Yao, Chen (bib0021) 2013; 25 Liu (bib0001) 2007 Chen, Liu (bib0024) 2010; 9 Liu (10.1016/j.amc.2022.127084_sbref0003) 2013; 1 Yao (10.1016/j.amc.2022.127084_bib0010) 2020; 19 Yao (10.1016/j.amc.2022.127084_bib0008) 2016 Liu (10.1016/j.amc.2022.127084_bib0004) 2009; 3 Zhu (10.1016/j.amc.2022.127084_bib0005) 2010; 41 Liu (10.1016/j.amc.2022.127084_bib0001) 2007 Yao (10.1016/j.amc.2022.127084_bib0021) 2013; 25 Zhang (10.1016/j.amc.2022.127084_bib0016) 2021; 41 Sheng (10.1016/j.amc.2022.127084_bib0015) 2021; 44 Liu (10.1016/j.amc.2022.127084_bib0002) 2008; 2 Zhang (10.1016/j.amc.2022.127084_bib0017) 2021; 41 Yang (10.1016/j.amc.2022.127084_bib0006) 2017; 16 Sheng (10.1016/j.amc.2022.127084_bib0009) 2020; 28 Lio (10.1016/j.amc.2022.127084_bib0012) 2021; 20 Chen (10.1016/j.amc.2022.127084_bib0024) 2010; 9 10.1016/j.amc.2022.127084_bib0013 Yang (10.1016/j.amc.2022.127084_bib0014) 2020; 139 Liu (10.1016/j.amc.2022.127084_bib0011) 2021; 392 Zhang (10.1016/j.amc.2022.127084_bib0007) 2020; 24 |
References_xml | – year: 2016 ident: bib0008 article-title: Uncertain differential equations – volume: 28 start-page: 2651 year: 2020 end-page: 2655 ident: bib0009 article-title: Least squares estimation in uncertain differential equations publication-title: IEEE Trans Fuzzy Syst. – volume: 392 start-page: 125724 year: 2021 ident: bib0011 article-title: Generalized moment estimation for uncertain differential equations publication-title: Appl Math Comput. – volume: 139 start-page: 110026 year: 2020 ident: bib0014 article-title: Parameter estimation of uncertain differential equation with application to financial market publication-title: Chaos Soliton Fract. – volume: 24 start-page: 2417 year: 2020 end-page: 2423 ident: bib0007 article-title: Uncertain population model publication-title: Soft Comput. – volume: 19 start-page: 1 year: 2020 end-page: 12 ident: bib0010 article-title: Parameter estimation in uncertain differential equations publication-title: Fuzzy Optim Decis Making. – volume: 25 start-page: 825 year: 2013 end-page: 832 ident: bib0021 article-title: A numerical method for solving uncertain differential equations publication-title: J Intell Fuzzy Syst. – year: 2007 ident: bib0001 article-title: Uncertainty Theory – volume: 16 start-page: 379 year: 2017 end-page: 403 ident: bib0006 article-title: Uncertain partial differential equation with application to heat conduction publication-title: Fuzzy Optim Decis Making. – volume: 41 start-page: 535 year: 2010 end-page: 547 ident: bib0005 article-title: Uncertain optimal control with application to a portfolio selection model publication-title: Cybern Syst. – volume: 41 start-page: 2865 year: 2021 end-page: 2878 ident: bib0016 article-title: Parameter estimation in multifactor uncertain differential equation publication-title: J Intell Fuzzy Syst. – reference: Y. Liu, B. Liu, Estimating Unknown Parameters in Uncertain Differential Equation by Maximum Likelihood Estimation, 2021, Technical Report. – volume: 2 start-page: 3 year: 2008 end-page: 16 ident: bib0002 article-title: Fuzzy process, hybrid process and uncertain process publication-title: Uncertain Syst. – volume: 3 start-page: 3 year: 2009 end-page: 10 ident: bib0004 article-title: Some research problems in uncertainty theory publication-title: J. Uncertain Syst. – volume: 1 year: 2013 ident: bib0003 article-title: Toward uncertain finance theory publication-title: J. Uncertain. Anal. Appl. – volume: 44 start-page: 9441 year: 2021 end-page: 9452 ident: bib0015 article-title: Parameter estimation in uncertain differential equations based on the solution publication-title: Math Meth Appl Sci. – volume: 20 start-page: 177 year: 2021 end-page: 188 ident: bib0012 article-title: Initial value estimation of uncertain differential equations and zero-day of COVID-19 spread in china publication-title: Fuzzy Optim Decis Making. – volume: 9 start-page: 69 year: 2010 end-page: 81 ident: bib0024 article-title: Existence and uniqueness theorem for uncertain differential equations publication-title: Fuzzy Optim Decis Making. – volume: 41 start-page: 2755 year: 2021 end-page: 2764 ident: bib0017 article-title: Least squares estimation of high-order uncertain differential equations publication-title: J Intell Fuzzy Syst. – volume: 28 start-page: 2651 issue: 10 year: 2020 ident: 10.1016/j.amc.2022.127084_bib0009 article-title: Least squares estimation in uncertain differential equations publication-title: IEEE Trans Fuzzy Syst. doi: 10.1109/TFUZZ.2019.2939984 – ident: 10.1016/j.amc.2022.127084_bib0013 doi: 10.1007/s00500-022-06766-w – volume: 1 year: 2013 ident: 10.1016/j.amc.2022.127084_sbref0003 article-title: Toward uncertain finance theory publication-title: J. Uncertain. Anal. Appl. doi: 10.1186/2195-5468-1-1 – volume: 16 start-page: 379 issue: 3 year: 2017 ident: 10.1016/j.amc.2022.127084_bib0006 article-title: Uncertain partial differential equation with application to heat conduction publication-title: Fuzzy Optim Decis Making. doi: 10.1007/s10700-016-9253-9 – volume: 19 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.amc.2022.127084_bib0010 article-title: Parameter estimation in uncertain differential equations publication-title: Fuzzy Optim Decis Making. doi: 10.1007/s10700-019-09310-y – volume: 9 start-page: 69 issue: 1 year: 2010 ident: 10.1016/j.amc.2022.127084_bib0024 article-title: Existence and uniqueness theorem for uncertain differential equations publication-title: Fuzzy Optim Decis Making. doi: 10.1007/s10700-010-9073-2 – volume: 41 start-page: 535 issue: 7 year: 2010 ident: 10.1016/j.amc.2022.127084_bib0005 article-title: Uncertain optimal control with application to a portfolio selection model publication-title: Cybern Syst. doi: 10.1080/01969722.2010.511552 – volume: 24 start-page: 2417 issue: 4 year: 2020 ident: 10.1016/j.amc.2022.127084_bib0007 article-title: Uncertain population model publication-title: Soft Comput. doi: 10.1007/s00500-018-03678-6 – volume: 392 start-page: 125724 year: 2021 ident: 10.1016/j.amc.2022.127084_bib0011 article-title: Generalized moment estimation for uncertain differential equations publication-title: Appl Math Comput. – volume: 41 start-page: 2865 year: 2021 ident: 10.1016/j.amc.2022.127084_bib0016 article-title: Parameter estimation in multifactor uncertain differential equation publication-title: J Intell Fuzzy Syst. doi: 10.3233/JIFS-202891 – volume: 25 start-page: 825 issue: 3 year: 2013 ident: 10.1016/j.amc.2022.127084_bib0021 article-title: A numerical method for solving uncertain differential equations publication-title: J Intell Fuzzy Syst. doi: 10.3233/IFS-120688 – volume: 139 start-page: 110026 year: 2020 ident: 10.1016/j.amc.2022.127084_bib0014 article-title: Parameter estimation of uncertain differential equation with application to financial market publication-title: Chaos Soliton Fract. doi: 10.1016/j.chaos.2020.110026 – year: 2007 ident: 10.1016/j.amc.2022.127084_bib0001 – volume: 2 start-page: 3 issue: 1 year: 2008 ident: 10.1016/j.amc.2022.127084_bib0002 article-title: Fuzzy process, hybrid process and uncertain process publication-title: Uncertain Syst. – volume: 20 start-page: 177 year: 2021 ident: 10.1016/j.amc.2022.127084_bib0012 article-title: Initial value estimation of uncertain differential equations and zero-day of COVID-19 spread in china publication-title: Fuzzy Optim Decis Making. doi: 10.1007/s10700-020-09337-6 – volume: 3 start-page: 3 issue: 1 year: 2009 ident: 10.1016/j.amc.2022.127084_bib0004 article-title: Some research problems in uncertainty theory publication-title: J. Uncertain Syst. – volume: 44 start-page: 9441 year: 2021 ident: 10.1016/j.amc.2022.127084_bib0015 article-title: Parameter estimation in uncertain differential equations based on the solution publication-title: Math Meth Appl Sci. doi: 10.1002/mma.7370 – year: 2016 ident: 10.1016/j.amc.2022.127084_bib0008 – volume: 41 start-page: 2755 issue: 2 year: 2021 ident: 10.1016/j.amc.2022.127084_bib0017 article-title: Least squares estimation of high-order uncertain differential equations publication-title: J Intell Fuzzy Syst. doi: 10.3233/JIFS-202522 |
SSID | ssj0007614 |
Score | 2.4019723 |
Snippet | •A set of estimates of the time-varying parameters was obtained based on rewritten least squares estimates.•The idea of regression fitting was proposed to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 127084 |
SubjectTerms | Least squares estimation Regression analysis Time-varying parameters Uncertainty theory |
Title | Estimating time-varying parameters in uncertain differential equations |
URI | https://dx.doi.org/10.1016/j.amc.2022.127084 |
Volume | 425 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IXvRgfEZ8ZQ-eTBaWbkvbIyEQ1MhJEm6bbh8GAysCevS3O7MP1EQ9eOymTTaz05mvO1-_IeRKydgYZjQ2NBEhZHwVKs5tKE3Ht1NuRaRztsWoMxyz2wmf1EivuguDtMoy9hcxPY_W5ZNWac3WYjrFO74K9aLAIxG3SDy3MybQy5vvnzQPOKYXSswKOV5RXFU2c46XnqOKIaVNrL9K9nNu-pJvBntktwSKQbd4l31Sc9kB2bnfqKyuDsmgD_sTB9ljgD3iwze9xFtLAep5z5HnsgqmWQCZq6j7B1U3FNjVs8C9FCrfqyMyHvQfesOw7IsQGkrFOlSeOa8ibbH-GlHLhVXaOMpTz6iVKZeASSjkcgH4w3lh2xqytO1wS51UwsbHpJ49Z-6EBHFbm9irFICDZ8xFWjnpYKpWzAtACg0SVRZJTCkajr0rZknFDntKwIgJGjEpjNgg15sli0Ix46_JrDJz8u2zJxDRf192-r9lZ2QbR_hrts3PSX29fHUXgCnW6WXuNJdkq3tzNxx9AGEAydw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QOKgH4zPiswdPJpV2u0u7R0IgRR4nSLg1230YDFQE9Pc7Q1uiiXrw2HYnaaa7M992vv2GkHsRBUoxJbGhSehCxheu4Fy7kWpaP-U69OSWbTFqxhP2NOXTCmmXZ2GQVlnE_jymb6N1cadReLOxnM3wjK9AvSiYkYhbIti311CdildJrdXrx6NdQIadei7GLJDm5QVlcXNL85ILFDKk9BFLsBH7OT19STndI3JYYEWnlb_OMamY7IQcDHdCq-tT0u3AEsWL7NnBNvHuh1zhwSUHJb0XSHVZO7PMgeSVl_6dsiEKLOy5Y95yoe_1GZl0O-N27BatEVxFabhxhWXGCk9qLMF6VPNQC6kM5allVEcpjwCWUEjnIUAQY0PtS0jUusk1NZEIdXBOqtlrZi6IE_hSBVakgB0sY8aTwkQGhkrBbAhgoU680iOJKnTDsX3FPCkJYi8JODFBJya5E-vkYWeyzEUz_hrMSjcn3758AkH9d7PL_5ndkb14PBwkg96of0X28Qn-qfX5NaluVu_mBiDGJr0tptAnYgjMjQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+time-varying+parameters+in+uncertain+differential+equations&rft.jtitle=Applied+mathematics+and+computation&rft.au=Zhang%2C+Guidong&rft.au=Sheng%2C+Yuhong&rft.date=2022-07-15&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.volume=425&rft_id=info:doi/10.1016%2Fj.amc.2022.127084&rft.externalDocID=S0096300322001680 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |