RBM-GP with novel kernels coupled deep learning model for autism screening

Autism Spectrum Disorder (ASD) assumes greater significance because of its worldwide prevalence and the need to detect it in its preliminary stage is imperative. No standard medical test exists universally to screen autism. Each and every aspect of our life proves that nature holds the reign. This c...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 114; p. 105034
Main Authors M., Kaviya Elakkiya, Dejey
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2022
Subjects
Online AccessGet full text
ISSN0952-1976
DOI10.1016/j.engappai.2022.105034

Cover

Loading…
Abstract Autism Spectrum Disorder (ASD) assumes greater significance because of its worldwide prevalence and the need to detect it in its preliminary stage is imperative. No standard medical test exists universally to screen autism. Each and every aspect of our life proves that nature holds the reign. This could be well demonstrated through many prevailing research works which still fails to classify ASD individuals accurately. In the proposed work, a unique framework, RBM-GP (Restricted Boltzmann Machine-Gaussian Process) along with two novel kernels namely RPR and RQ-P are proposed to address the need for automatic classification of ASD individuals and Typical Controls (TC) thereupon with minimum error. Slice Time Correction and Head Motion Correction are carried out as a preparatory step to take care of noisy fMRI (functional Magnetic Resonance Imaging) data. To make the best use of high dimensional fMRI data, the pre-processed fMRI data is normalized for further processing. In the proposed system, deep learning model is executed to extract non-handcrafted features from the pre-processed fMRI data with the notion of attaining less error during classification process. As a result, Bernoulli RBM acts as a feature extractor to derive highly discriminative fMRI features. In order to develop an effective computerized system for the classification of autistic subjects, GP regression, a machine learning classifier is employed in the proposed system to learn deep fMRI features. Kernel plays a vital role in the GP regression. So, RPR and RQ-P kernels are developed and integrated with GP in the proposed work for the accurate classification of autistic subjects. All datasets from the ABIDE I database are utilized for conducting the experiments. The proposed system achieves the minimum Mean Squared Error (MSE) of 20% for USM dataset with RPR kernel and CMU_b dataset with RQ-P kernel. The experimental results and comprehensive result analysis proclaim the superiority of the proposed system than the existing state-of-the-art approaches.
AbstractList Autism Spectrum Disorder (ASD) assumes greater significance because of its worldwide prevalence and the need to detect it in its preliminary stage is imperative. No standard medical test exists universally to screen autism. Each and every aspect of our life proves that nature holds the reign. This could be well demonstrated through many prevailing research works which still fails to classify ASD individuals accurately. In the proposed work, a unique framework, RBM-GP (Restricted Boltzmann Machine-Gaussian Process) along with two novel kernels namely RPR and RQ-P are proposed to address the need for automatic classification of ASD individuals and Typical Controls (TC) thereupon with minimum error. Slice Time Correction and Head Motion Correction are carried out as a preparatory step to take care of noisy fMRI (functional Magnetic Resonance Imaging) data. To make the best use of high dimensional fMRI data, the pre-processed fMRI data is normalized for further processing. In the proposed system, deep learning model is executed to extract non-handcrafted features from the pre-processed fMRI data with the notion of attaining less error during classification process. As a result, Bernoulli RBM acts as a feature extractor to derive highly discriminative fMRI features. In order to develop an effective computerized system for the classification of autistic subjects, GP regression, a machine learning classifier is employed in the proposed system to learn deep fMRI features. Kernel plays a vital role in the GP regression. So, RPR and RQ-P kernels are developed and integrated with GP in the proposed work for the accurate classification of autistic subjects. All datasets from the ABIDE I database are utilized for conducting the experiments. The proposed system achieves the minimum Mean Squared Error (MSE) of 20% for USM dataset with RPR kernel and CMU_b dataset with RQ-P kernel. The experimental results and comprehensive result analysis proclaim the superiority of the proposed system than the existing state-of-the-art approaches.
ArticleNumber 105034
Author Dejey
M., Kaviya Elakkiya
Author_xml – sequence: 1
  givenname: Kaviya Elakkiya
  orcidid: 0000-0003-0607-3422
  surname: M.
  fullname: M., Kaviya Elakkiya
  email: kaviya.m@auttvl.ac.in
– sequence: 2
  orcidid: 0000-0002-5173-4878
  surname: Dejey
  fullname: Dejey
  email: dejey.d@auttvl.ac.in
BookMark eNqFkEFOwzAQRb0oEm3hCsgXSHHcJHYkFkAFBQQCIVhbU3tcXFI7stMibk-qwoZNV1-aP-8v3ogMfPBIyFnOJjnLq_PVBP0S2hbchDPO-2PJpsWADFld8iyvRXVMRimtGGNTWVRD8vB6_ZTNX-iX6z6oD1ts6CdGj02iOmzaBg01iC1tEKJ3fknXwfQ_NkQKm86lNU06Iu6qE3JkoUl4-ptj8n578za7yx6f5_ezq8dMcy66rJbcFkYsTF0KKY0UU2ASF3nJClEYKKUFKI2QoC3TzNZMchCiKmRVyxJsPR2Tar-rY0gpolVtdGuI3ypnamdBrdSfBbWzoPYWevDiH6hdB50LvovgmsP45R7v5eDWYVRJO_QajYuoO2WCOzTxA1EIgTg
CitedBy_id crossref_primary_10_1007_s00521_023_08565_2
Cites_doi 10.1016/j.patcog.2021.107978
10.1007/s10916-015-0311-6
10.1007/s11042-021-10707-4
10.1007/s11042-018-5625-1
10.1214/009053607000000677
10.5607/en.2016.25.1.1
10.1007/s42979-021-00776-5
10.1016/j.nicl.2017.08.017
10.1007/978-3-540-28650-9_4
10.1007/s13735-021-00218-1
10.1007/s40747-017-0054-8
10.1038/s41598-022-09821-6
10.1016/j.patcog.2017.05.025
10.1142/S0129065704001899
10.1016/S0933-3657(02)00072-6
10.1117/1.JMI.8.1.010901
10.1016/j.engappai.2020.103686
10.1016/j.arth.2018.02.067
10.1186/s40537-021-00444-8
10.1109/ACCESS.2017.2788044
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2022.105034
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2022_105034
S0952197622002068
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c227t-982f4d7bd95788d873a08eb150474da58faa5d78acf0c0f9082a776486985af93
IEDL.DBID .~1
ISSN 0952-1976
IngestDate Tue Jul 01 01:04:04 EDT 2025
Thu Apr 24 23:03:54 EDT 2025
Sun Apr 06 06:54:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Restricted Boltzmann Machine
Autism
Kernel function
Functional MRI
Gaussian process
Non-handcrafted feature extraction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c227t-982f4d7bd95788d873a08eb150474da58faa5d78acf0c0f9082a776486985af93
ORCID 0000-0002-5173-4878
0000-0003-0607-3422
ParticipantIDs crossref_primary_10_1016_j_engappai_2022_105034
crossref_citationtrail_10_1016_j_engappai_2022_105034
elsevier_sciencedirect_doi_10_1016_j_engappai_2022_105034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Schneider (b38) 2019
Lazar (b21) 2008
Shan, Jia, Yan, Li, Paganetti, Wang (b43) 2021; 1
Windischberger, Barth, Lamm, Schroeder, Bauer, Gur, Moser (b52) 2003; 29
Versaci, Calcagno, Morabito (b50) 2015
Ahammed, Niu, Ahmed, Dong, Gao, Chen (b2) 2021; 15
Oscar (b27) 2019
Lenartowioz, Poldrack (b22) 2010
Masoudi, Harmon, Mehralivand, Walker, Raviprakash, Bagci, Choyke, Turkbey (b25) 2021; 8
Santana, de Carvalho, Rodrigues, Bastos, de Souza, de Brito (b37) 2022; 12
Pedrycz, Chen (b29) 2020
Poldrack, Mumford, Nichols (b30) 2011
Hofmann, Scholkopf, Smola (b16) 2008; 36
Rasmussen, Williams (b34) 2005
Nanni, Ghidoni, Brahnam (b26) 2017; 71
Zhao, Ahmed, Thesen, Blackmon, Dy, Brodley, Kuzniekcy, Devinsky (b58) 2016
Great Learning Team (b13) 2020
Aditya (b1) 2018
Xiao, Wang, Jia, Wu (b54) 2018; 77
Chopra, Yadav (b7) 2018; 4
Wang, Wang, Chen, Sun, Cheng, Zhu (b51) 2019
Scikit-learn (b39) 2021
Vakadkar, Purkayastha, Krishnan (b49) 2021; 2
Ahmed, Ahammed, Niu, Zhang (b3) 2020
Ehtemami, Scott, Bernadin (b10) 2018
Zarinbal, Fazel Zarandi, Turksen, Izadi (b56) 2015; 39
Raghav (b32) 2021
Shi, Katuwal, Suganthan, Tanveer (b45) 2021; 117
Yamashita, Tanaka, Yoshida, Yamauchi, Fujiyoshi (b55) 2014
Suganyadevi, Seethalakshmi, Balasamy (b46) 2022; 11
Sagar (b35) 2017
Suphachan, Suksawang, Mekparyup (b47) 2017; 7
Jocha, Rebecca, Oliver (b18) 2019
Rasmussen (b33) 2004
Li, Sheng, Du, Wang, Ran (b23) 2020; 93
Zhang (b57) 2015; 4
Codecademy (b8) 2022
Heinsfeld, Franco, Craddock, Buchweitz, Menequzzi (b15) 2018; 17
Ulmer, Jansen (b48) 2013
Wu, Tang, Wu (b53) 2012
Duvenaud (b9) 2022
Scikit-learn (b40) 2022
Alzubaidi, Zhang, Humaidi (b4) 2021
Sammut, Webb (b36) 2011
Mahmoud, Alrowais, Karamti (b24) 2020
Serafeim (b42) 2020
Guo, Huang, Zhang (b14) 2014
Ker, Wang, Rao, Lim (b19) 2018; 6
Park, Lee, Moon, Lee, Kim, Kim, Kim, Paek (b28) 2016; 25
Seeger (b41) 2004; 14
Shawe-Taylor, Cristianini (b44) 2004
Bini (b6) 2018; 33
Jason (b17) 2019
Kleinbaum, Klein (b20) 2010
Ashwin (b5) 2020
Fischer, Igel (b11) 2012
Ganaie, Hu, Tanveer, Suganthan (b12) 2021
Puttagunta, Ravi (b31) 2021; 80
Zarinbal (10.1016/j.engappai.2022.105034_b56) 2015; 39
Codecademy (10.1016/j.engappai.2022.105034_b8) 2022
Ehtemami (10.1016/j.engappai.2022.105034_b10) 2018
Wang (10.1016/j.engappai.2022.105034_b51) 2019
Ahmed (10.1016/j.engappai.2022.105034_b3) 2020
Aditya (10.1016/j.engappai.2022.105034_b1) 2018
Rasmussen (10.1016/j.engappai.2022.105034_b34) 2005
Vakadkar (10.1016/j.engappai.2022.105034_b49) 2021; 2
Ahammed (10.1016/j.engappai.2022.105034_b2) 2021; 15
Alzubaidi (10.1016/j.engappai.2022.105034_b4) 2021
Schneider (10.1016/j.engappai.2022.105034_b38) 2019
Suganyadevi (10.1016/j.engappai.2022.105034_b46) 2022; 11
Ker (10.1016/j.engappai.2022.105034_b19) 2018; 6
Raghav (10.1016/j.engappai.2022.105034_b32) 2021
Yamashita (10.1016/j.engappai.2022.105034_b55) 2014
Scikit-learn (10.1016/j.engappai.2022.105034_b40) 2022
Hofmann (10.1016/j.engappai.2022.105034_b16) 2008; 36
Sagar (10.1016/j.engappai.2022.105034_b35) 2017
Ganaie (10.1016/j.engappai.2022.105034_b12) 2021
Heinsfeld (10.1016/j.engappai.2022.105034_b15) 2018; 17
Mahmoud (10.1016/j.engappai.2022.105034_b24) 2020
Serafeim (10.1016/j.engappai.2022.105034_b42) 2020
Zhang (10.1016/j.engappai.2022.105034_b57) 2015; 4
Jason (10.1016/j.engappai.2022.105034_b17) 2019
Jocha (10.1016/j.engappai.2022.105034_b18) 2019
Park (10.1016/j.engappai.2022.105034_b28) 2016; 25
Lazar (10.1016/j.engappai.2022.105034_b21) 2008
Puttagunta (10.1016/j.engappai.2022.105034_b31) 2021; 80
Chopra (10.1016/j.engappai.2022.105034_b7) 2018; 4
Shawe-Taylor (10.1016/j.engappai.2022.105034_b44) 2004
Wu (10.1016/j.engappai.2022.105034_b53) 2012
Pedrycz (10.1016/j.engappai.2022.105034_b29) 2020
Ulmer (10.1016/j.engappai.2022.105034_b48) 2013
Versaci (10.1016/j.engappai.2022.105034_b50) 2015
Nanni (10.1016/j.engappai.2022.105034_b26) 2017; 71
Masoudi (10.1016/j.engappai.2022.105034_b25) 2021; 8
Zhao (10.1016/j.engappai.2022.105034_b58) 2016
Duvenaud (10.1016/j.engappai.2022.105034_b9) 2022
Bini (10.1016/j.engappai.2022.105034_b6) 2018; 33
Sammut (10.1016/j.engappai.2022.105034_b36) 2011
Windischberger (10.1016/j.engappai.2022.105034_b52) 2003; 29
Xiao (10.1016/j.engappai.2022.105034_b54) 2018; 77
Kleinbaum (10.1016/j.engappai.2022.105034_b20) 2010
Lenartowioz (10.1016/j.engappai.2022.105034_b22) 2010
Suphachan (10.1016/j.engappai.2022.105034_b47) 2017; 7
Seeger (10.1016/j.engappai.2022.105034_b41) 2004; 14
Poldrack (10.1016/j.engappai.2022.105034_b30) 2011
Scikit-learn (10.1016/j.engappai.2022.105034_b39) 2021
Shi (10.1016/j.engappai.2022.105034_b45) 2021; 117
Rasmussen (10.1016/j.engappai.2022.105034_b33) 2004
Shan (10.1016/j.engappai.2022.105034_b43) 2021; 1
Ashwin (10.1016/j.engappai.2022.105034_b5) 2020
Guo (10.1016/j.engappai.2022.105034_b14) 2014
Fischer (10.1016/j.engappai.2022.105034_b11) 2012
Li (10.1016/j.engappai.2022.105034_b23) 2020; 93
Great Learning Team (10.1016/j.engappai.2022.105034_b13) 2020
Santana (10.1016/j.engappai.2022.105034_b37) 2022; 12
Oscar (10.1016/j.engappai.2022.105034_b27) 2019
References_xml – year: 2020
  ident: b13
  article-title: Understanding Boltzmann machines applications and Markov chain
  publication-title: Great Learn.
– year: 2021
  ident: b32
  article-title: When to perform a feature scaling?
  publication-title: Atoti
– volume: 1
  year: 2021
  ident: b43
  article-title: Synergizing medical imaging and radiotherapy with deep learning
  publication-title: Mach. Learn.: Sci. Technol.
– year: 2021
  ident: b39
  article-title: Gaussian Processes
– volume: 71
  start-page: 158
  year: 2017
  end-page: 172
  ident: b26
  article-title: Handcrafted vs. Non-handcrafted features for computer vision classification
  publication-title: Pattern Recognit.
– start-page: 63
  year: 2004
  end-page: 71
  ident: b33
  article-title: Gaussian processes in machine learning
  publication-title: Advanced Lectures on Machine Learning. Lecture Notes in Computer Science
– volume: 117
  year: 2021
  ident: b45
  article-title: Random vector functional link neural network based ensemble deep learning
  publication-title: Pattern Recognit.
– volume: 4
  start-page: 1
  year: 2015
  end-page: 2
  ident: b57
  article-title: A complete list of kernels used in support vector machines
  publication-title: Biochem. Pharmacol.
– start-page: 1520
  year: 2014
  end-page: 1525
  ident: b55
  article-title: To be Bernoulli or to be Gaussian, for a restricted Boltzmann machine
  publication-title: 2014 22
– start-page: 239
  year: 2014
  end-page: 242
  ident: b14
  article-title: Comparison of difference variants of restricted Boltzmann machines
  publication-title: Proceeding of the 2
– year: 2020
  ident: b29
  article-title: Deep Learning: Concepts and Architectures
– volume: 36
  start-page: 1171
  year: 2008
  end-page: 1220
  ident: b16
  article-title: Kernel methods in machine learning
  publication-title: Ann. Statist.
– volume: 6
  start-page: 9375
  year: 2018
  end-page: 9389
  ident: b19
  article-title: Deep learning applications in medical image analysis
  publication-title: IEEE Access
– volume: 93
  year: 2020
  ident: b23
  article-title: A deep fusion model based on restricted Boltzmann machines for traffic accident duration prediction
  publication-title: Eng. Appl. Artif. Intell.
– volume: 29
  start-page: 203
  year: 2003
  end-page: 223
  ident: b52
  article-title: Fuzzy cluster analysis of functional MRI data
  publication-title: Artif. Intell. Med.
– volume: 15
  year: 2021
  ident: b2
  article-title: DarkASDNet: Classification of ASD on functional MRI using deep neural network
  publication-title: Neuroinformatics
– volume: 11
  start-page: 19
  year: 2022
  end-page: 38
  ident: b46
  article-title: A review on deep learning in medical image analysis
  publication-title: Int. J. Multimed. Inf. Retr.
– start-page: 494
  year: 2015
  end-page: 505
  ident: b50
  article-title: Image contrast enhancement by distances among points in fuzzy hyper-cubes
  publication-title: Computer Analysis of Images and Patterns. CAIP 2015
– year: 2011
  ident: b30
  article-title: Handbook of Functional MRI Data Analysis
– volume: 4
  start-page: 67
  year: 2018
  end-page: 77
  ident: b7
  article-title: Restricted Boltzmann machine and softmax regression for fault detection and classification
  publication-title: Complex Intell. Syst.
– volume: 12
  start-page: 6030
  year: 2022
  ident: b37
  article-title: rs-fMRI and machine learning for ASD diagnosis: A systematic review and meta-analysis
  publication-title: Sci. Rep.
– volume: 25
  start-page: 1
  year: 2016
  end-page: 13
  ident: b28
  article-title: A short review on the current understanding of autism spectrum disorders
  publication-title: Exp. Neurobiol.
– volume: 77
  start-page: 22809
  year: 2018
  end-page: 22820
  ident: b54
  article-title: SAE-based classification of school-aged children with autism spectrum disorders using functional magnetic resonance imaging
  publication-title: Multimedia Tools Appl.
– year: 2021
  ident: b4
  article-title: Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions
  publication-title: J. Big Data
– volume: 2
  start-page: 386
  year: 2021
  ident: b49
  article-title: Detection of autism spectrum disorder in children using machine learning techniques
  publication-title: SN Comput. Sci.
– volume: 14
  start-page: 69
  year: 2004
  end-page: 106
  ident: b41
  article-title: Gaussian processes for machine learning
  publication-title: Int. J. Neural Syst.
– volume: 8
  year: 2021
  ident: b25
  article-title: Quick guide on radiology image for deep learning applications in prostate cancer research
  publication-title: J. Med. Imaging
– volume: 33
  start-page: 2358
  year: 2018
  end-page: 2361
  ident: b6
  article-title: Artificial intelligence, machine learning, deep learning, and cognitive computing: What do these terms mean and how will they impact health care?
  publication-title: J. Arthroplast.
– year: 2020
  ident: b42
  article-title: Everything you need to know about min–max normalization: A python tutorial
  publication-title: Towards Data Sci.
– year: 2021
  ident: b12
  article-title: Ensemble deep learning: A review
– year: 2020
  ident: b5
  article-title: Unlocking the true power of support vector regression
  publication-title: Towards Data Sci.
– year: 2019
  ident: b38
  article-title: How do I formally proof the product of two kernels is a kernel? If K1 (x, x1) and K2 (x, x2) are both kernel function, then K1 (x, x1) K2 (x, x2) is also a kernel?
  publication-title: Quora
– start-page: 653
  year: 2011
  ident: b36
  article-title: Mean squared error
  publication-title: Encyclopedia of Machine Learning
– year: 2022
  ident: b8
  article-title: Normalization
– year: 2018
  ident: b1
  article-title: Restricted Boltzmann machines – simplified
  publication-title: Towards Data Sci.
– year: 2013
  ident: b48
  article-title: FMRI: Basics and Clinical Applications
– year: 2022
  ident: b40
  article-title: Logistic Regression
– volume: 80
  start-page: 24365
  year: 2021
  end-page: 24398
  ident: b31
  article-title: Medical image analysis based on deep learning approach
  publication-title: Multimed. Toola Appl.
– year: 2019
  ident: b18
  article-title: A visual exploration of Gaussian processes
  publication-title: Distill. Pub.
– year: 2005
  ident: b34
  article-title: Gaussian Processes for Machine Learning
– year: 2019
  ident: b27
  article-title: An intuitive guide to Gaussian processes
  publication-title: Towards Data Sci.
– volume: 39
  start-page: 110
  year: 2015
  ident: b56
  article-title: A type-2 fuzzy image processing expert system for diagnosing brain tumors
  publication-title: J. Med. Syst.
– start-page: 1
  year: 2018
  end-page: 7
  ident: b10
  article-title: A survey of fMRI data analysis methods
  publication-title: IEEE South East Conference
– year: 2017
  ident: b35
  article-title: Epoch vs batch size vs iterations
  publication-title: Towards Data Sci.
– volume: 7
  start-page: 318
  year: 2017
  end-page: 327
  ident: b47
  article-title: New kernel function in Gaussian processes model
  publication-title: Int. J. Sci. Res. Publ.
– start-page: 127
  year: 2012
  end-page: 133
  ident: b53
  article-title: Support vector machine based on hybrid kernel function
  publication-title: Information Engineering and Applications
– year: 2010
  ident: b20
  article-title: Logistic Regression
– start-page: 14
  year: 2012
  end-page: 36
  ident: b11
  article-title: An introduction to restricted Boltzmann machines
  publication-title: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2012
– volume: 17
  start-page: 16
  year: 2018
  end-page: 23
  ident: b15
  article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset
  publication-title: NeuroImage: Clin.
– year: 2022
  ident: b9
  article-title: Advice on Covariance Functions: The Kernel Cookbook
– year: 2019
  ident: b51
  article-title: Convolutional restricted Boltzmann machine based-radiomics for prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer
  publication-title: Image Video Process.
– year: 2019
  ident: b17
  article-title: How to use data scaling improve deep learning model stability and performance
  publication-title: Mach. Learn. Mastery
– start-page: 287
  year: 2020
  end-page: 290
  ident: b3
  article-title: Deep learning approached features for ASD classification using SVM
  publication-title: 2020 IEEE International Conference on Artificial Intelligence and Information Systems
– year: 2004
  ident: b44
  article-title: Kernel Methods for Pattern Analysis
– year: 2008
  ident: b21
  article-title: The Statistical Analysis of Functional MRI Data
– start-page: 373
  year: 2016
  end-page: 382
  ident: b58
  article-title: A non-parametric approach to detect epileptogenic lesions using restricted Boltzmann machines
  publication-title: KDD’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 1033
  year: 2020
  end-page: 1042
  ident: b24
  article-title: A hybrid deep contractive autoencoder and restricted Boltzmann machine approach to differentiate representation of female brain disorder
  publication-title: 24
– year: 2010
  ident: b22
  article-title: Encyclopedia of Behavioral Neuroscience
– start-page: 1520
  year: 2014
  ident: 10.1016/j.engappai.2022.105034_b55
  article-title: To be Bernoulli or to be Gaussian, for a restricted Boltzmann machine
– volume: 4
  start-page: 1
  issue: 5
  year: 2015
  ident: 10.1016/j.engappai.2022.105034_b57
  article-title: A complete list of kernels used in support vector machines
  publication-title: Biochem. Pharmacol.
– year: 2021
  ident: 10.1016/j.engappai.2022.105034_b12
– volume: 117
  year: 2021
  ident: 10.1016/j.engappai.2022.105034_b45
  article-title: Random vector functional link neural network based ensemble deep learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.107978
– year: 2019
  ident: 10.1016/j.engappai.2022.105034_b17
  article-title: How to use data scaling improve deep learning model stability and performance
  publication-title: Mach. Learn. Mastery
– volume: 39
  start-page: 110
  year: 2015
  ident: 10.1016/j.engappai.2022.105034_b56
  article-title: A type-2 fuzzy image processing expert system for diagnosing brain tumors
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-015-0311-6
– start-page: 373
  year: 2016
  ident: 10.1016/j.engappai.2022.105034_b58
  article-title: A non-parametric approach to detect epileptogenic lesions using restricted Boltzmann machines
– year: 2013
  ident: 10.1016/j.engappai.2022.105034_b48
– volume: 80
  start-page: 24365
  year: 2021
  ident: 10.1016/j.engappai.2022.105034_b31
  article-title: Medical image analysis based on deep learning approach
  publication-title: Multimed. Toola Appl.
  doi: 10.1007/s11042-021-10707-4
– volume: 15
  year: 2021
  ident: 10.1016/j.engappai.2022.105034_b2
  article-title: DarkASDNet: Classification of ASD on functional MRI using deep neural network
  publication-title: Neuroinformatics
– year: 2022
  ident: 10.1016/j.engappai.2022.105034_b8
– year: 2021
  ident: 10.1016/j.engappai.2022.105034_b32
  article-title: When to perform a feature scaling?
  publication-title: Atoti
– year: 2011
  ident: 10.1016/j.engappai.2022.105034_b30
– start-page: 494
  year: 2015
  ident: 10.1016/j.engappai.2022.105034_b50
  article-title: Image contrast enhancement by distances among points in fuzzy hyper-cubes
– volume: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.engappai.2022.105034_b43
  article-title: Synergizing medical imaging and radiotherapy with deep learning
  publication-title: Mach. Learn.: Sci. Technol.
– year: 2019
  ident: 10.1016/j.engappai.2022.105034_b38
  article-title: How do I formally proof the product of two kernels is a kernel? If K1 (x, x1) and K2 (x, x2) are both kernel function, then K1 (x, x1) K2 (x, x2) is also a kernel?
  publication-title: Quora
– volume: 77
  start-page: 22809
  year: 2018
  ident: 10.1016/j.engappai.2022.105034_b54
  article-title: SAE-based classification of school-aged children with autism spectrum disorders using functional magnetic resonance imaging
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-018-5625-1
– year: 2010
  ident: 10.1016/j.engappai.2022.105034_b20
– year: 2018
  ident: 10.1016/j.engappai.2022.105034_b1
  article-title: Restricted Boltzmann machines – simplified
  publication-title: Towards Data Sci.
– year: 2017
  ident: 10.1016/j.engappai.2022.105034_b35
  article-title: Epoch vs batch size vs iterations
  publication-title: Towards Data Sci.
– volume: 36
  start-page: 1171
  issue: 3
  year: 2008
  ident: 10.1016/j.engappai.2022.105034_b16
  article-title: Kernel methods in machine learning
  publication-title: Ann. Statist.
  doi: 10.1214/009053607000000677
– volume: 25
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.engappai.2022.105034_b28
  article-title: A short review on the current understanding of autism spectrum disorders
  publication-title: Exp. Neurobiol.
  doi: 10.5607/en.2016.25.1.1
– start-page: 1033
  year: 2020
  ident: 10.1016/j.engappai.2022.105034_b24
  article-title: A hybrid deep contractive autoencoder and restricted Boltzmann machine approach to differentiate representation of female brain disorder
– start-page: 287
  year: 2020
  ident: 10.1016/j.engappai.2022.105034_b3
  article-title: Deep learning approached features for ASD classification using SVM
– volume: 2
  start-page: 386
  year: 2021
  ident: 10.1016/j.engappai.2022.105034_b49
  article-title: Detection of autism spectrum disorder in children using machine learning techniques
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00776-5
– year: 2010
  ident: 10.1016/j.engappai.2022.105034_b22
– year: 2019
  ident: 10.1016/j.engappai.2022.105034_b27
  article-title: An intuitive guide to Gaussian processes
  publication-title: Towards Data Sci.
– year: 2020
  ident: 10.1016/j.engappai.2022.105034_b29
– start-page: 127
  year: 2012
  ident: 10.1016/j.engappai.2022.105034_b53
  article-title: Support vector machine based on hybrid kernel function
– start-page: 1
  year: 2018
  ident: 10.1016/j.engappai.2022.105034_b10
  article-title: A survey of fMRI data analysis methods
– year: 2005
  ident: 10.1016/j.engappai.2022.105034_b34
– year: 2020
  ident: 10.1016/j.engappai.2022.105034_b13
  article-title: Understanding Boltzmann machines applications and Markov chain
  publication-title: Great Learn.
– volume: 17
  start-page: 16
  year: 2018
  ident: 10.1016/j.engappai.2022.105034_b15
  article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2017.08.017
– volume: 7
  start-page: 318
  issue: 7
  year: 2017
  ident: 10.1016/j.engappai.2022.105034_b47
  article-title: New kernel function in Gaussian processes model
  publication-title: Int. J. Sci. Res. Publ.
– start-page: 63
  year: 2004
  ident: 10.1016/j.engappai.2022.105034_b33
  article-title: Gaussian processes in machine learning
  doi: 10.1007/978-3-540-28650-9_4
– volume: 11
  start-page: 19
  year: 2022
  ident: 10.1016/j.engappai.2022.105034_b46
  article-title: A review on deep learning in medical image analysis
  publication-title: Int. J. Multimed. Inf. Retr.
  doi: 10.1007/s13735-021-00218-1
– year: 2019
  ident: 10.1016/j.engappai.2022.105034_b18
  article-title: A visual exploration of Gaussian processes
  publication-title: Distill. Pub.
– volume: 4
  start-page: 67
  year: 2018
  ident: 10.1016/j.engappai.2022.105034_b7
  article-title: Restricted Boltzmann machine and softmax regression for fault detection and classification
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-017-0054-8
– volume: 12
  start-page: 6030
  year: 2022
  ident: 10.1016/j.engappai.2022.105034_b37
  article-title: rs-fMRI and machine learning for ASD diagnosis: A systematic review and meta-analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-09821-6
– year: 2019
  ident: 10.1016/j.engappai.2022.105034_b51
  article-title: Convolutional restricted Boltzmann machine based-radiomics for prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer
  publication-title: Image Video Process.
– start-page: 239
  year: 2014
  ident: 10.1016/j.engappai.2022.105034_b14
  article-title: Comparison of difference variants of restricted Boltzmann machines
– year: 2008
  ident: 10.1016/j.engappai.2022.105034_b21
– year: 2020
  ident: 10.1016/j.engappai.2022.105034_b42
  article-title: Everything you need to know about min–max normalization: A python tutorial
  publication-title: Towards Data Sci.
– start-page: 653
  year: 2011
  ident: 10.1016/j.engappai.2022.105034_b36
  article-title: Mean squared error
– volume: 71
  start-page: 158
  year: 2017
  ident: 10.1016/j.engappai.2022.105034_b26
  article-title: Handcrafted vs. Non-handcrafted features for computer vision classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.05.025
– volume: 14
  start-page: 69
  issue: 2
  year: 2004
  ident: 10.1016/j.engappai.2022.105034_b41
  article-title: Gaussian processes for machine learning
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065704001899
– volume: 29
  start-page: 203
  year: 2003
  ident: 10.1016/j.engappai.2022.105034_b52
  article-title: Fuzzy cluster analysis of functional MRI data
  publication-title: Artif. Intell. Med.
  doi: 10.1016/S0933-3657(02)00072-6
– year: 2022
  ident: 10.1016/j.engappai.2022.105034_b9
– year: 2021
  ident: 10.1016/j.engappai.2022.105034_b39
– volume: 8
  issue: 1
  year: 2021
  ident: 10.1016/j.engappai.2022.105034_b25
  article-title: Quick guide on radiology image for deep learning applications in prostate cancer research
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.8.1.010901
– volume: 93
  year: 2020
  ident: 10.1016/j.engappai.2022.105034_b23
  article-title: A deep fusion model based on restricted Boltzmann machines for traffic accident duration prediction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103686
– year: 2020
  ident: 10.1016/j.engappai.2022.105034_b5
  article-title: Unlocking the true power of support vector regression
  publication-title: Towards Data Sci.
– volume: 33
  start-page: 2358
  issue: 8
  year: 2018
  ident: 10.1016/j.engappai.2022.105034_b6
  article-title: Artificial intelligence, machine learning, deep learning, and cognitive computing: What do these terms mean and how will they impact health care?
  publication-title: J. Arthroplast.
  doi: 10.1016/j.arth.2018.02.067
– year: 2021
  ident: 10.1016/j.engappai.2022.105034_b4
  article-title: Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions
  publication-title: J. Big Data
  doi: 10.1186/s40537-021-00444-8
– year: 2022
  ident: 10.1016/j.engappai.2022.105034_b40
– volume: 6
  start-page: 9375
  year: 2018
  ident: 10.1016/j.engappai.2022.105034_b19
  article-title: Deep learning applications in medical image analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2788044
– start-page: 14
  year: 2012
  ident: 10.1016/j.engappai.2022.105034_b11
  article-title: An introduction to restricted Boltzmann machines
– year: 2004
  ident: 10.1016/j.engappai.2022.105034_b44
SSID ssj0003846
Score 2.338942
Snippet Autism Spectrum Disorder (ASD) assumes greater significance because of its worldwide prevalence and the need to detect it in its preliminary stage is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105034
SubjectTerms Autism
Functional MRI
Gaussian process
Kernel function
Non-handcrafted feature extraction
Restricted Boltzmann Machine
Title RBM-GP with novel kernels coupled deep learning model for autism screening
URI https://dx.doi.org/10.1016/j.engappai.2022.105034
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQWVh4I97ywOrWSp3YGaECSisQAiq6RZfYrlpKGpWWkd_OuXF4SEgdmKI4PiW63OOzdeePkDMDMjI8zhhEIJnIrGWpSg0Dg_mB28hBAFdtcRe1e6LTD_srpFX1wriySh_7y5i-iNZ-pOG12SiGw8YjggN0N3RmV2fAI9fwK4R0Vl7_-C7zaKqyWQcnMzf7R5fwqG7yARQFDHGdGASO8pY3xd8J6kfSudok6x4t0vPyg7bIism3yYZHjtT75RsOVeQM1dgO6Txc3LLre-o2Wmk-eTdj-mKmOb6JZpN5MUZ5bUxBPW3EgC44cShiWApojG-vFAMKLnLx0S7pXV0-tdrMEyewLAjkjMUqsELLVMfoj0or2QSuMCiHXEihIVQWINRSQWZ5xq1jPQcpI6GiWIVg4-YeqeWT3OwTqnSqYoMYUsdacAEKs54wElcpABBYc0DCSltJ5k8Vd-QW46QqHxsllZYTp-Wk1PIBaXzJFeW5Gksl4upnJL8sJMHgv0T28B-yR2TN3ZV1ZcekNpvOzQkCkVl6urC0U7J6ftNt37lr9-G5-wnwUN7w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgHODCG_EmB65hUZc26REQMF4T4iFxq9wmQYPRVWzj9-PQFIGExIFrUquVE3_-Utn5APYtqsSKtOCYoOKycI7nOrccLeUH4RJPAXy1RS_pPsiLx_hxCo6bXhhfVhmwv8b0T7QOI-3gzXbV77fviBxQuFEw-zoDkehpmPG3U8UtmDk8v-z2vgC5o-t-HXqee4NvjcLPB7Z8wqrCPh0Vo8ir3oqO_D1Hfcs7p4swHwgjO6y_aQmmbLkMC4E8shCaIxpq9BmasRW4uD265mc3zP9rZeXw3Q7Yi30r6U2sGE6qAdkbaysWlCOe2KcsDiMay5D24-iVEabQOZemVuHh9OT-uMuDdgIvokiNeaojJ43KTUohqY1WHRSacDkWUkmDsXaIsVEaCycK4bzwOSqVSJ2kOkaXdtagVQ5Luw5Mm1ynlmikSY0UEjUlPmkVHVQQMXJ2A-LGW1kRLhb3-haDrKkge84aL2fey1nt5Q1of9lV9dUaf1qkzWJkPzZJRvj_h-3mP2z3YLZ7f32VXZ33Lrdgzs_UZWbb0Bq_TewO8ZJxvhv23Qehtd_-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RBM-GP+with+novel+kernels+coupled+deep+learning+model+for+autism+screening&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=M.%2C+Kaviya+Elakkiya&rft.au=Dejey&rft.date=2022-09-01&rft.issn=0952-1976&rft.volume=114&rft.spage=105034&rft_id=info:doi/10.1016%2Fj.engappai.2022.105034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2022_105034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon