RBM-GP with novel kernels coupled deep learning model for autism screening
Autism Spectrum Disorder (ASD) assumes greater significance because of its worldwide prevalence and the need to detect it in its preliminary stage is imperative. No standard medical test exists universally to screen autism. Each and every aspect of our life proves that nature holds the reign. This c...
Saved in:
Published in | Engineering applications of artificial intelligence Vol. 114; p. 105034 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0952-1976 |
DOI | 10.1016/j.engappai.2022.105034 |
Cover
Loading…
Abstract | Autism Spectrum Disorder (ASD) assumes greater significance because of its worldwide prevalence and the need to detect it in its preliminary stage is imperative. No standard medical test exists universally to screen autism. Each and every aspect of our life proves that nature holds the reign. This could be well demonstrated through many prevailing research works which still fails to classify ASD individuals accurately. In the proposed work, a unique framework, RBM-GP (Restricted Boltzmann Machine-Gaussian Process) along with two novel kernels namely RPR and RQ-P are proposed to address the need for automatic classification of ASD individuals and Typical Controls (TC) thereupon with minimum error. Slice Time Correction and Head Motion Correction are carried out as a preparatory step to take care of noisy fMRI (functional Magnetic Resonance Imaging) data. To make the best use of high dimensional fMRI data, the pre-processed fMRI data is normalized for further processing. In the proposed system, deep learning model is executed to extract non-handcrafted features from the pre-processed fMRI data with the notion of attaining less error during classification process. As a result, Bernoulli RBM acts as a feature extractor to derive highly discriminative fMRI features. In order to develop an effective computerized system for the classification of autistic subjects, GP regression, a machine learning classifier is employed in the proposed system to learn deep fMRI features. Kernel plays a vital role in the GP regression. So, RPR and RQ-P kernels are developed and integrated with GP in the proposed work for the accurate classification of autistic subjects. All datasets from the ABIDE I database are utilized for conducting the experiments. The proposed system achieves the minimum Mean Squared Error (MSE) of 20% for USM dataset with RPR kernel and CMU_b dataset with RQ-P kernel. The experimental results and comprehensive result analysis proclaim the superiority of the proposed system than the existing state-of-the-art approaches. |
---|---|
AbstractList | Autism Spectrum Disorder (ASD) assumes greater significance because of its worldwide prevalence and the need to detect it in its preliminary stage is imperative. No standard medical test exists universally to screen autism. Each and every aspect of our life proves that nature holds the reign. This could be well demonstrated through many prevailing research works which still fails to classify ASD individuals accurately. In the proposed work, a unique framework, RBM-GP (Restricted Boltzmann Machine-Gaussian Process) along with two novel kernels namely RPR and RQ-P are proposed to address the need for automatic classification of ASD individuals and Typical Controls (TC) thereupon with minimum error. Slice Time Correction and Head Motion Correction are carried out as a preparatory step to take care of noisy fMRI (functional Magnetic Resonance Imaging) data. To make the best use of high dimensional fMRI data, the pre-processed fMRI data is normalized for further processing. In the proposed system, deep learning model is executed to extract non-handcrafted features from the pre-processed fMRI data with the notion of attaining less error during classification process. As a result, Bernoulli RBM acts as a feature extractor to derive highly discriminative fMRI features. In order to develop an effective computerized system for the classification of autistic subjects, GP regression, a machine learning classifier is employed in the proposed system to learn deep fMRI features. Kernel plays a vital role in the GP regression. So, RPR and RQ-P kernels are developed and integrated with GP in the proposed work for the accurate classification of autistic subjects. All datasets from the ABIDE I database are utilized for conducting the experiments. The proposed system achieves the minimum Mean Squared Error (MSE) of 20% for USM dataset with RPR kernel and CMU_b dataset with RQ-P kernel. The experimental results and comprehensive result analysis proclaim the superiority of the proposed system than the existing state-of-the-art approaches. |
ArticleNumber | 105034 |
Author | Dejey M., Kaviya Elakkiya |
Author_xml | – sequence: 1 givenname: Kaviya Elakkiya orcidid: 0000-0003-0607-3422 surname: M. fullname: M., Kaviya Elakkiya email: kaviya.m@auttvl.ac.in – sequence: 2 orcidid: 0000-0002-5173-4878 surname: Dejey fullname: Dejey email: dejey.d@auttvl.ac.in |
BookMark | eNqFkEFOwzAQRb0oEm3hCsgXSHHcJHYkFkAFBQQCIVhbU3tcXFI7stMibk-qwoZNV1-aP-8v3ogMfPBIyFnOJjnLq_PVBP0S2hbchDPO-2PJpsWADFld8iyvRXVMRimtGGNTWVRD8vB6_ZTNX-iX6z6oD1ts6CdGj02iOmzaBg01iC1tEKJ3fknXwfQ_NkQKm86lNU06Iu6qE3JkoUl4-ptj8n578za7yx6f5_ezq8dMcy66rJbcFkYsTF0KKY0UU2ASF3nJClEYKKUFKI2QoC3TzNZMchCiKmRVyxJsPR2Tar-rY0gpolVtdGuI3ypnamdBrdSfBbWzoPYWevDiH6hdB50LvovgmsP45R7v5eDWYVRJO_QajYuoO2WCOzTxA1EIgTg |
CitedBy_id | crossref_primary_10_1007_s00521_023_08565_2 |
Cites_doi | 10.1016/j.patcog.2021.107978 10.1007/s10916-015-0311-6 10.1007/s11042-021-10707-4 10.1007/s11042-018-5625-1 10.1214/009053607000000677 10.5607/en.2016.25.1.1 10.1007/s42979-021-00776-5 10.1016/j.nicl.2017.08.017 10.1007/978-3-540-28650-9_4 10.1007/s13735-021-00218-1 10.1007/s40747-017-0054-8 10.1038/s41598-022-09821-6 10.1016/j.patcog.2017.05.025 10.1142/S0129065704001899 10.1016/S0933-3657(02)00072-6 10.1117/1.JMI.8.1.010901 10.1016/j.engappai.2020.103686 10.1016/j.arth.2018.02.067 10.1186/s40537-021-00444-8 10.1109/ACCESS.2017.2788044 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.engappai.2022.105034 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
ExternalDocumentID | 10_1016_j_engappai_2022_105034 S0952197622002068 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SSH SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c227t-982f4d7bd95788d873a08eb150474da58faa5d78acf0c0f9082a776486985af93 |
IEDL.DBID | .~1 |
ISSN | 0952-1976 |
IngestDate | Tue Jul 01 01:04:04 EDT 2025 Thu Apr 24 23:03:54 EDT 2025 Sun Apr 06 06:54:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Restricted Boltzmann Machine Autism Kernel function Functional MRI Gaussian process Non-handcrafted feature extraction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c227t-982f4d7bd95788d873a08eb150474da58faa5d78acf0c0f9082a776486985af93 |
ORCID | 0000-0002-5173-4878 0000-0003-0607-3422 |
ParticipantIDs | crossref_primary_10_1016_j_engappai_2022_105034 crossref_citationtrail_10_1016_j_engappai_2022_105034 elsevier_sciencedirect_doi_10_1016_j_engappai_2022_105034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 2022-09-00 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationTitle | Engineering applications of artificial intelligence |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Schneider (b38) 2019 Lazar (b21) 2008 Shan, Jia, Yan, Li, Paganetti, Wang (b43) 2021; 1 Windischberger, Barth, Lamm, Schroeder, Bauer, Gur, Moser (b52) 2003; 29 Versaci, Calcagno, Morabito (b50) 2015 Ahammed, Niu, Ahmed, Dong, Gao, Chen (b2) 2021; 15 Oscar (b27) 2019 Lenartowioz, Poldrack (b22) 2010 Masoudi, Harmon, Mehralivand, Walker, Raviprakash, Bagci, Choyke, Turkbey (b25) 2021; 8 Santana, de Carvalho, Rodrigues, Bastos, de Souza, de Brito (b37) 2022; 12 Pedrycz, Chen (b29) 2020 Poldrack, Mumford, Nichols (b30) 2011 Hofmann, Scholkopf, Smola (b16) 2008; 36 Rasmussen, Williams (b34) 2005 Nanni, Ghidoni, Brahnam (b26) 2017; 71 Zhao, Ahmed, Thesen, Blackmon, Dy, Brodley, Kuzniekcy, Devinsky (b58) 2016 Great Learning Team (b13) 2020 Aditya (b1) 2018 Xiao, Wang, Jia, Wu (b54) 2018; 77 Chopra, Yadav (b7) 2018; 4 Wang, Wang, Chen, Sun, Cheng, Zhu (b51) 2019 Scikit-learn (b39) 2021 Vakadkar, Purkayastha, Krishnan (b49) 2021; 2 Ahmed, Ahammed, Niu, Zhang (b3) 2020 Ehtemami, Scott, Bernadin (b10) 2018 Zarinbal, Fazel Zarandi, Turksen, Izadi (b56) 2015; 39 Raghav (b32) 2021 Shi, Katuwal, Suganthan, Tanveer (b45) 2021; 117 Yamashita, Tanaka, Yoshida, Yamauchi, Fujiyoshi (b55) 2014 Suganyadevi, Seethalakshmi, Balasamy (b46) 2022; 11 Sagar (b35) 2017 Suphachan, Suksawang, Mekparyup (b47) 2017; 7 Jocha, Rebecca, Oliver (b18) 2019 Rasmussen (b33) 2004 Li, Sheng, Du, Wang, Ran (b23) 2020; 93 Zhang (b57) 2015; 4 Codecademy (b8) 2022 Heinsfeld, Franco, Craddock, Buchweitz, Menequzzi (b15) 2018; 17 Ulmer, Jansen (b48) 2013 Wu, Tang, Wu (b53) 2012 Duvenaud (b9) 2022 Scikit-learn (b40) 2022 Alzubaidi, Zhang, Humaidi (b4) 2021 Sammut, Webb (b36) 2011 Mahmoud, Alrowais, Karamti (b24) 2020 Serafeim (b42) 2020 Guo, Huang, Zhang (b14) 2014 Ker, Wang, Rao, Lim (b19) 2018; 6 Park, Lee, Moon, Lee, Kim, Kim, Kim, Paek (b28) 2016; 25 Seeger (b41) 2004; 14 Shawe-Taylor, Cristianini (b44) 2004 Bini (b6) 2018; 33 Jason (b17) 2019 Kleinbaum, Klein (b20) 2010 Ashwin (b5) 2020 Fischer, Igel (b11) 2012 Ganaie, Hu, Tanveer, Suganthan (b12) 2021 Puttagunta, Ravi (b31) 2021; 80 Zarinbal (10.1016/j.engappai.2022.105034_b56) 2015; 39 Codecademy (10.1016/j.engappai.2022.105034_b8) 2022 Ehtemami (10.1016/j.engappai.2022.105034_b10) 2018 Wang (10.1016/j.engappai.2022.105034_b51) 2019 Ahmed (10.1016/j.engappai.2022.105034_b3) 2020 Aditya (10.1016/j.engappai.2022.105034_b1) 2018 Rasmussen (10.1016/j.engappai.2022.105034_b34) 2005 Vakadkar (10.1016/j.engappai.2022.105034_b49) 2021; 2 Ahammed (10.1016/j.engappai.2022.105034_b2) 2021; 15 Alzubaidi (10.1016/j.engappai.2022.105034_b4) 2021 Schneider (10.1016/j.engappai.2022.105034_b38) 2019 Suganyadevi (10.1016/j.engappai.2022.105034_b46) 2022; 11 Ker (10.1016/j.engappai.2022.105034_b19) 2018; 6 Raghav (10.1016/j.engappai.2022.105034_b32) 2021 Yamashita (10.1016/j.engappai.2022.105034_b55) 2014 Scikit-learn (10.1016/j.engappai.2022.105034_b40) 2022 Hofmann (10.1016/j.engappai.2022.105034_b16) 2008; 36 Sagar (10.1016/j.engappai.2022.105034_b35) 2017 Ganaie (10.1016/j.engappai.2022.105034_b12) 2021 Heinsfeld (10.1016/j.engappai.2022.105034_b15) 2018; 17 Mahmoud (10.1016/j.engappai.2022.105034_b24) 2020 Serafeim (10.1016/j.engappai.2022.105034_b42) 2020 Zhang (10.1016/j.engappai.2022.105034_b57) 2015; 4 Jason (10.1016/j.engappai.2022.105034_b17) 2019 Jocha (10.1016/j.engappai.2022.105034_b18) 2019 Park (10.1016/j.engappai.2022.105034_b28) 2016; 25 Lazar (10.1016/j.engappai.2022.105034_b21) 2008 Puttagunta (10.1016/j.engappai.2022.105034_b31) 2021; 80 Chopra (10.1016/j.engappai.2022.105034_b7) 2018; 4 Shawe-Taylor (10.1016/j.engappai.2022.105034_b44) 2004 Wu (10.1016/j.engappai.2022.105034_b53) 2012 Pedrycz (10.1016/j.engappai.2022.105034_b29) 2020 Ulmer (10.1016/j.engappai.2022.105034_b48) 2013 Versaci (10.1016/j.engappai.2022.105034_b50) 2015 Nanni (10.1016/j.engappai.2022.105034_b26) 2017; 71 Masoudi (10.1016/j.engappai.2022.105034_b25) 2021; 8 Zhao (10.1016/j.engappai.2022.105034_b58) 2016 Duvenaud (10.1016/j.engappai.2022.105034_b9) 2022 Bini (10.1016/j.engappai.2022.105034_b6) 2018; 33 Sammut (10.1016/j.engappai.2022.105034_b36) 2011 Windischberger (10.1016/j.engappai.2022.105034_b52) 2003; 29 Xiao (10.1016/j.engappai.2022.105034_b54) 2018; 77 Kleinbaum (10.1016/j.engappai.2022.105034_b20) 2010 Lenartowioz (10.1016/j.engappai.2022.105034_b22) 2010 Suphachan (10.1016/j.engappai.2022.105034_b47) 2017; 7 Seeger (10.1016/j.engappai.2022.105034_b41) 2004; 14 Poldrack (10.1016/j.engappai.2022.105034_b30) 2011 Scikit-learn (10.1016/j.engappai.2022.105034_b39) 2021 Shi (10.1016/j.engappai.2022.105034_b45) 2021; 117 Rasmussen (10.1016/j.engappai.2022.105034_b33) 2004 Shan (10.1016/j.engappai.2022.105034_b43) 2021; 1 Ashwin (10.1016/j.engappai.2022.105034_b5) 2020 Guo (10.1016/j.engappai.2022.105034_b14) 2014 Fischer (10.1016/j.engappai.2022.105034_b11) 2012 Li (10.1016/j.engappai.2022.105034_b23) 2020; 93 Great Learning Team (10.1016/j.engappai.2022.105034_b13) 2020 Santana (10.1016/j.engappai.2022.105034_b37) 2022; 12 Oscar (10.1016/j.engappai.2022.105034_b27) 2019 |
References_xml | – year: 2020 ident: b13 article-title: Understanding Boltzmann machines applications and Markov chain publication-title: Great Learn. – year: 2021 ident: b32 article-title: When to perform a feature scaling? publication-title: Atoti – volume: 1 year: 2021 ident: b43 article-title: Synergizing medical imaging and radiotherapy with deep learning publication-title: Mach. Learn.: Sci. Technol. – year: 2021 ident: b39 article-title: Gaussian Processes – volume: 71 start-page: 158 year: 2017 end-page: 172 ident: b26 article-title: Handcrafted vs. Non-handcrafted features for computer vision classification publication-title: Pattern Recognit. – start-page: 63 year: 2004 end-page: 71 ident: b33 article-title: Gaussian processes in machine learning publication-title: Advanced Lectures on Machine Learning. Lecture Notes in Computer Science – volume: 117 year: 2021 ident: b45 article-title: Random vector functional link neural network based ensemble deep learning publication-title: Pattern Recognit. – volume: 4 start-page: 1 year: 2015 end-page: 2 ident: b57 article-title: A complete list of kernels used in support vector machines publication-title: Biochem. Pharmacol. – start-page: 1520 year: 2014 end-page: 1525 ident: b55 article-title: To be Bernoulli or to be Gaussian, for a restricted Boltzmann machine publication-title: 2014 22 – start-page: 239 year: 2014 end-page: 242 ident: b14 article-title: Comparison of difference variants of restricted Boltzmann machines publication-title: Proceeding of the 2 – year: 2020 ident: b29 article-title: Deep Learning: Concepts and Architectures – volume: 36 start-page: 1171 year: 2008 end-page: 1220 ident: b16 article-title: Kernel methods in machine learning publication-title: Ann. Statist. – volume: 6 start-page: 9375 year: 2018 end-page: 9389 ident: b19 article-title: Deep learning applications in medical image analysis publication-title: IEEE Access – volume: 93 year: 2020 ident: b23 article-title: A deep fusion model based on restricted Boltzmann machines for traffic accident duration prediction publication-title: Eng. Appl. Artif. Intell. – volume: 29 start-page: 203 year: 2003 end-page: 223 ident: b52 article-title: Fuzzy cluster analysis of functional MRI data publication-title: Artif. Intell. Med. – volume: 15 year: 2021 ident: b2 article-title: DarkASDNet: Classification of ASD on functional MRI using deep neural network publication-title: Neuroinformatics – volume: 11 start-page: 19 year: 2022 end-page: 38 ident: b46 article-title: A review on deep learning in medical image analysis publication-title: Int. J. Multimed. Inf. Retr. – start-page: 494 year: 2015 end-page: 505 ident: b50 article-title: Image contrast enhancement by distances among points in fuzzy hyper-cubes publication-title: Computer Analysis of Images and Patterns. CAIP 2015 – year: 2011 ident: b30 article-title: Handbook of Functional MRI Data Analysis – volume: 4 start-page: 67 year: 2018 end-page: 77 ident: b7 article-title: Restricted Boltzmann machine and softmax regression for fault detection and classification publication-title: Complex Intell. Syst. – volume: 12 start-page: 6030 year: 2022 ident: b37 article-title: rs-fMRI and machine learning for ASD diagnosis: A systematic review and meta-analysis publication-title: Sci. Rep. – volume: 25 start-page: 1 year: 2016 end-page: 13 ident: b28 article-title: A short review on the current understanding of autism spectrum disorders publication-title: Exp. Neurobiol. – volume: 77 start-page: 22809 year: 2018 end-page: 22820 ident: b54 article-title: SAE-based classification of school-aged children with autism spectrum disorders using functional magnetic resonance imaging publication-title: Multimedia Tools Appl. – year: 2021 ident: b4 article-title: Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions publication-title: J. Big Data – volume: 2 start-page: 386 year: 2021 ident: b49 article-title: Detection of autism spectrum disorder in children using machine learning techniques publication-title: SN Comput. Sci. – volume: 14 start-page: 69 year: 2004 end-page: 106 ident: b41 article-title: Gaussian processes for machine learning publication-title: Int. J. Neural Syst. – volume: 8 year: 2021 ident: b25 article-title: Quick guide on radiology image for deep learning applications in prostate cancer research publication-title: J. Med. Imaging – volume: 33 start-page: 2358 year: 2018 end-page: 2361 ident: b6 article-title: Artificial intelligence, machine learning, deep learning, and cognitive computing: What do these terms mean and how will they impact health care? publication-title: J. Arthroplast. – year: 2020 ident: b42 article-title: Everything you need to know about min–max normalization: A python tutorial publication-title: Towards Data Sci. – year: 2021 ident: b12 article-title: Ensemble deep learning: A review – year: 2020 ident: b5 article-title: Unlocking the true power of support vector regression publication-title: Towards Data Sci. – year: 2019 ident: b38 article-title: How do I formally proof the product of two kernels is a kernel? If K1 (x, x1) and K2 (x, x2) are both kernel function, then K1 (x, x1) K2 (x, x2) is also a kernel? publication-title: Quora – start-page: 653 year: 2011 ident: b36 article-title: Mean squared error publication-title: Encyclopedia of Machine Learning – year: 2022 ident: b8 article-title: Normalization – year: 2018 ident: b1 article-title: Restricted Boltzmann machines – simplified publication-title: Towards Data Sci. – year: 2013 ident: b48 article-title: FMRI: Basics and Clinical Applications – year: 2022 ident: b40 article-title: Logistic Regression – volume: 80 start-page: 24365 year: 2021 end-page: 24398 ident: b31 article-title: Medical image analysis based on deep learning approach publication-title: Multimed. Toola Appl. – year: 2019 ident: b18 article-title: A visual exploration of Gaussian processes publication-title: Distill. Pub. – year: 2005 ident: b34 article-title: Gaussian Processes for Machine Learning – year: 2019 ident: b27 article-title: An intuitive guide to Gaussian processes publication-title: Towards Data Sci. – volume: 39 start-page: 110 year: 2015 ident: b56 article-title: A type-2 fuzzy image processing expert system for diagnosing brain tumors publication-title: J. Med. Syst. – start-page: 1 year: 2018 end-page: 7 ident: b10 article-title: A survey of fMRI data analysis methods publication-title: IEEE South East Conference – year: 2017 ident: b35 article-title: Epoch vs batch size vs iterations publication-title: Towards Data Sci. – volume: 7 start-page: 318 year: 2017 end-page: 327 ident: b47 article-title: New kernel function in Gaussian processes model publication-title: Int. J. Sci. Res. Publ. – start-page: 127 year: 2012 end-page: 133 ident: b53 article-title: Support vector machine based on hybrid kernel function publication-title: Information Engineering and Applications – year: 2010 ident: b20 article-title: Logistic Regression – start-page: 14 year: 2012 end-page: 36 ident: b11 article-title: An introduction to restricted Boltzmann machines publication-title: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2012 – volume: 17 start-page: 16 year: 2018 end-page: 23 ident: b15 article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset publication-title: NeuroImage: Clin. – year: 2022 ident: b9 article-title: Advice on Covariance Functions: The Kernel Cookbook – year: 2019 ident: b51 article-title: Convolutional restricted Boltzmann machine based-radiomics for prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer publication-title: Image Video Process. – year: 2019 ident: b17 article-title: How to use data scaling improve deep learning model stability and performance publication-title: Mach. Learn. Mastery – start-page: 287 year: 2020 end-page: 290 ident: b3 article-title: Deep learning approached features for ASD classification using SVM publication-title: 2020 IEEE International Conference on Artificial Intelligence and Information Systems – year: 2004 ident: b44 article-title: Kernel Methods for Pattern Analysis – year: 2008 ident: b21 article-title: The Statistical Analysis of Functional MRI Data – start-page: 373 year: 2016 end-page: 382 ident: b58 article-title: A non-parametric approach to detect epileptogenic lesions using restricted Boltzmann machines publication-title: KDD’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – start-page: 1033 year: 2020 end-page: 1042 ident: b24 article-title: A hybrid deep contractive autoencoder and restricted Boltzmann machine approach to differentiate representation of female brain disorder publication-title: 24 – year: 2010 ident: b22 article-title: Encyclopedia of Behavioral Neuroscience – start-page: 1520 year: 2014 ident: 10.1016/j.engappai.2022.105034_b55 article-title: To be Bernoulli or to be Gaussian, for a restricted Boltzmann machine – volume: 4 start-page: 1 issue: 5 year: 2015 ident: 10.1016/j.engappai.2022.105034_b57 article-title: A complete list of kernels used in support vector machines publication-title: Biochem. Pharmacol. – year: 2021 ident: 10.1016/j.engappai.2022.105034_b12 – volume: 117 year: 2021 ident: 10.1016/j.engappai.2022.105034_b45 article-title: Random vector functional link neural network based ensemble deep learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.107978 – year: 2019 ident: 10.1016/j.engappai.2022.105034_b17 article-title: How to use data scaling improve deep learning model stability and performance publication-title: Mach. Learn. Mastery – volume: 39 start-page: 110 year: 2015 ident: 10.1016/j.engappai.2022.105034_b56 article-title: A type-2 fuzzy image processing expert system for diagnosing brain tumors publication-title: J. Med. Syst. doi: 10.1007/s10916-015-0311-6 – start-page: 373 year: 2016 ident: 10.1016/j.engappai.2022.105034_b58 article-title: A non-parametric approach to detect epileptogenic lesions using restricted Boltzmann machines – year: 2013 ident: 10.1016/j.engappai.2022.105034_b48 – volume: 80 start-page: 24365 year: 2021 ident: 10.1016/j.engappai.2022.105034_b31 article-title: Medical image analysis based on deep learning approach publication-title: Multimed. Toola Appl. doi: 10.1007/s11042-021-10707-4 – volume: 15 year: 2021 ident: 10.1016/j.engappai.2022.105034_b2 article-title: DarkASDNet: Classification of ASD on functional MRI using deep neural network publication-title: Neuroinformatics – year: 2022 ident: 10.1016/j.engappai.2022.105034_b8 – year: 2021 ident: 10.1016/j.engappai.2022.105034_b32 article-title: When to perform a feature scaling? publication-title: Atoti – year: 2011 ident: 10.1016/j.engappai.2022.105034_b30 – start-page: 494 year: 2015 ident: 10.1016/j.engappai.2022.105034_b50 article-title: Image contrast enhancement by distances among points in fuzzy hyper-cubes – volume: 1 issue: 2 year: 2021 ident: 10.1016/j.engappai.2022.105034_b43 article-title: Synergizing medical imaging and radiotherapy with deep learning publication-title: Mach. Learn.: Sci. Technol. – year: 2019 ident: 10.1016/j.engappai.2022.105034_b38 article-title: How do I formally proof the product of two kernels is a kernel? If K1 (x, x1) and K2 (x, x2) are both kernel function, then K1 (x, x1) K2 (x, x2) is also a kernel? publication-title: Quora – volume: 77 start-page: 22809 year: 2018 ident: 10.1016/j.engappai.2022.105034_b54 article-title: SAE-based classification of school-aged children with autism spectrum disorders using functional magnetic resonance imaging publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-018-5625-1 – year: 2010 ident: 10.1016/j.engappai.2022.105034_b20 – year: 2018 ident: 10.1016/j.engappai.2022.105034_b1 article-title: Restricted Boltzmann machines – simplified publication-title: Towards Data Sci. – year: 2017 ident: 10.1016/j.engappai.2022.105034_b35 article-title: Epoch vs batch size vs iterations publication-title: Towards Data Sci. – volume: 36 start-page: 1171 issue: 3 year: 2008 ident: 10.1016/j.engappai.2022.105034_b16 article-title: Kernel methods in machine learning publication-title: Ann. Statist. doi: 10.1214/009053607000000677 – volume: 25 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.engappai.2022.105034_b28 article-title: A short review on the current understanding of autism spectrum disorders publication-title: Exp. Neurobiol. doi: 10.5607/en.2016.25.1.1 – start-page: 1033 year: 2020 ident: 10.1016/j.engappai.2022.105034_b24 article-title: A hybrid deep contractive autoencoder and restricted Boltzmann machine approach to differentiate representation of female brain disorder – start-page: 287 year: 2020 ident: 10.1016/j.engappai.2022.105034_b3 article-title: Deep learning approached features for ASD classification using SVM – volume: 2 start-page: 386 year: 2021 ident: 10.1016/j.engappai.2022.105034_b49 article-title: Detection of autism spectrum disorder in children using machine learning techniques publication-title: SN Comput. Sci. doi: 10.1007/s42979-021-00776-5 – year: 2010 ident: 10.1016/j.engappai.2022.105034_b22 – year: 2019 ident: 10.1016/j.engappai.2022.105034_b27 article-title: An intuitive guide to Gaussian processes publication-title: Towards Data Sci. – year: 2020 ident: 10.1016/j.engappai.2022.105034_b29 – start-page: 127 year: 2012 ident: 10.1016/j.engappai.2022.105034_b53 article-title: Support vector machine based on hybrid kernel function – start-page: 1 year: 2018 ident: 10.1016/j.engappai.2022.105034_b10 article-title: A survey of fMRI data analysis methods – year: 2005 ident: 10.1016/j.engappai.2022.105034_b34 – year: 2020 ident: 10.1016/j.engappai.2022.105034_b13 article-title: Understanding Boltzmann machines applications and Markov chain publication-title: Great Learn. – volume: 17 start-page: 16 year: 2018 ident: 10.1016/j.engappai.2022.105034_b15 article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2017.08.017 – volume: 7 start-page: 318 issue: 7 year: 2017 ident: 10.1016/j.engappai.2022.105034_b47 article-title: New kernel function in Gaussian processes model publication-title: Int. J. Sci. Res. Publ. – start-page: 63 year: 2004 ident: 10.1016/j.engappai.2022.105034_b33 article-title: Gaussian processes in machine learning doi: 10.1007/978-3-540-28650-9_4 – volume: 11 start-page: 19 year: 2022 ident: 10.1016/j.engappai.2022.105034_b46 article-title: A review on deep learning in medical image analysis publication-title: Int. J. Multimed. Inf. Retr. doi: 10.1007/s13735-021-00218-1 – year: 2019 ident: 10.1016/j.engappai.2022.105034_b18 article-title: A visual exploration of Gaussian processes publication-title: Distill. Pub. – volume: 4 start-page: 67 year: 2018 ident: 10.1016/j.engappai.2022.105034_b7 article-title: Restricted Boltzmann machine and softmax regression for fault detection and classification publication-title: Complex Intell. Syst. doi: 10.1007/s40747-017-0054-8 – volume: 12 start-page: 6030 year: 2022 ident: 10.1016/j.engappai.2022.105034_b37 article-title: rs-fMRI and machine learning for ASD diagnosis: A systematic review and meta-analysis publication-title: Sci. Rep. doi: 10.1038/s41598-022-09821-6 – year: 2019 ident: 10.1016/j.engappai.2022.105034_b51 article-title: Convolutional restricted Boltzmann machine based-radiomics for prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer publication-title: Image Video Process. – start-page: 239 year: 2014 ident: 10.1016/j.engappai.2022.105034_b14 article-title: Comparison of difference variants of restricted Boltzmann machines – year: 2008 ident: 10.1016/j.engappai.2022.105034_b21 – year: 2020 ident: 10.1016/j.engappai.2022.105034_b42 article-title: Everything you need to know about min–max normalization: A python tutorial publication-title: Towards Data Sci. – start-page: 653 year: 2011 ident: 10.1016/j.engappai.2022.105034_b36 article-title: Mean squared error – volume: 71 start-page: 158 year: 2017 ident: 10.1016/j.engappai.2022.105034_b26 article-title: Handcrafted vs. Non-handcrafted features for computer vision classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.05.025 – volume: 14 start-page: 69 issue: 2 year: 2004 ident: 10.1016/j.engappai.2022.105034_b41 article-title: Gaussian processes for machine learning publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065704001899 – volume: 29 start-page: 203 year: 2003 ident: 10.1016/j.engappai.2022.105034_b52 article-title: Fuzzy cluster analysis of functional MRI data publication-title: Artif. Intell. Med. doi: 10.1016/S0933-3657(02)00072-6 – year: 2022 ident: 10.1016/j.engappai.2022.105034_b9 – year: 2021 ident: 10.1016/j.engappai.2022.105034_b39 – volume: 8 issue: 1 year: 2021 ident: 10.1016/j.engappai.2022.105034_b25 article-title: Quick guide on radiology image for deep learning applications in prostate cancer research publication-title: J. Med. Imaging doi: 10.1117/1.JMI.8.1.010901 – volume: 93 year: 2020 ident: 10.1016/j.engappai.2022.105034_b23 article-title: A deep fusion model based on restricted Boltzmann machines for traffic accident duration prediction publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103686 – year: 2020 ident: 10.1016/j.engappai.2022.105034_b5 article-title: Unlocking the true power of support vector regression publication-title: Towards Data Sci. – volume: 33 start-page: 2358 issue: 8 year: 2018 ident: 10.1016/j.engappai.2022.105034_b6 article-title: Artificial intelligence, machine learning, deep learning, and cognitive computing: What do these terms mean and how will they impact health care? publication-title: J. Arthroplast. doi: 10.1016/j.arth.2018.02.067 – year: 2021 ident: 10.1016/j.engappai.2022.105034_b4 article-title: Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions publication-title: J. Big Data doi: 10.1186/s40537-021-00444-8 – year: 2022 ident: 10.1016/j.engappai.2022.105034_b40 – volume: 6 start-page: 9375 year: 2018 ident: 10.1016/j.engappai.2022.105034_b19 article-title: Deep learning applications in medical image analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2788044 – start-page: 14 year: 2012 ident: 10.1016/j.engappai.2022.105034_b11 article-title: An introduction to restricted Boltzmann machines – year: 2004 ident: 10.1016/j.engappai.2022.105034_b44 |
SSID | ssj0003846 |
Score | 2.338942 |
Snippet | Autism Spectrum Disorder (ASD) assumes greater significance because of its worldwide prevalence and the need to detect it in its preliminary stage is... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105034 |
SubjectTerms | Autism Functional MRI Gaussian process Kernel function Non-handcrafted feature extraction Restricted Boltzmann Machine |
Title | RBM-GP with novel kernels coupled deep learning model for autism screening |
URI | https://dx.doi.org/10.1016/j.engappai.2022.105034 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQWVh4I97ywOrWSp3YGaECSisQAiq6RZfYrlpKGpWWkd_OuXF4SEgdmKI4PiW63OOzdeePkDMDMjI8zhhEIJnIrGWpSg0Dg_mB28hBAFdtcRe1e6LTD_srpFX1wriySh_7y5i-iNZ-pOG12SiGw8YjggN0N3RmV2fAI9fwK4R0Vl7_-C7zaKqyWQcnMzf7R5fwqG7yARQFDHGdGASO8pY3xd8J6kfSudok6x4t0vPyg7bIism3yYZHjtT75RsOVeQM1dgO6Txc3LLre-o2Wmk-eTdj-mKmOb6JZpN5MUZ5bUxBPW3EgC44cShiWApojG-vFAMKLnLx0S7pXV0-tdrMEyewLAjkjMUqsELLVMfoj0or2QSuMCiHXEihIVQWINRSQWZ5xq1jPQcpI6GiWIVg4-YeqeWT3OwTqnSqYoMYUsdacAEKs54wElcpABBYc0DCSltJ5k8Vd-QW46QqHxsllZYTp-Wk1PIBaXzJFeW5Gksl4upnJL8sJMHgv0T28B-yR2TN3ZV1ZcekNpvOzQkCkVl6urC0U7J6ftNt37lr9-G5-wnwUN7w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgHODCG_EmB65hUZc26REQMF4T4iFxq9wmQYPRVWzj9-PQFIGExIFrUquVE3_-Utn5APYtqsSKtOCYoOKycI7nOrccLeUH4RJPAXy1RS_pPsiLx_hxCo6bXhhfVhmwv8b0T7QOI-3gzXbV77fviBxQuFEw-zoDkehpmPG3U8UtmDk8v-z2vgC5o-t-HXqee4NvjcLPB7Z8wqrCPh0Vo8ir3oqO_D1Hfcs7p4swHwgjO6y_aQmmbLkMC4E8shCaIxpq9BmasRW4uD265mc3zP9rZeXw3Q7Yi30r6U2sGE6qAdkbaysWlCOe2KcsDiMay5D24-iVEabQOZemVuHh9OT-uMuDdgIvokiNeaojJ43KTUohqY1WHRSacDkWUkmDsXaIsVEaCycK4bzwOSqVSJ2kOkaXdtagVQ5Luw5Mm1ynlmikSY0UEjUlPmkVHVQQMXJ2A-LGW1kRLhb3-haDrKkge84aL2fey1nt5Q1of9lV9dUaf1qkzWJkPzZJRvj_h-3mP2z3YLZ7f32VXZ33Lrdgzs_UZWbb0Bq_TewO8ZJxvhv23Qehtd_- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RBM-GP+with+novel+kernels+coupled+deep+learning+model+for+autism+screening&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=M.%2C+Kaviya+Elakkiya&rft.au=Dejey&rft.date=2022-09-01&rft.issn=0952-1976&rft.volume=114&rft.spage=105034&rft_id=info:doi/10.1016%2Fj.engappai.2022.105034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2022_105034 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |