Isogeometric Level Set-Based Topology Optimization for Geometrically Nonlinear Plane Stress Problems
This paper addresses geometrically nonlinear topology optimization using IsoGeometric Analysis (IGA) and Level Set Method (LSM) under plane stress assumptions. The IGA is employed to solve governing equations and accurately describe geometric modeling. The pointwise gradient-based sensitivity analys...
Saved in:
Published in | Computer aided design Vol. 151; p. 103358 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0010-4485 1879-2685 |
DOI | 10.1016/j.cad.2022.103358 |
Cover
Abstract | This paper addresses geometrically nonlinear topology optimization using IsoGeometric Analysis (IGA) and Level Set Method (LSM) under plane stress assumptions. The IGA is employed to solve governing equations and accurately describe geometric modeling. The pointwise gradient-based sensitivity analysis is applied to derive the normal velocity of the Reaction–Diffusion Equation (RDE) to update the control net of the Level Set Function (LSF). The Generalized Displacement Control Method (GDCM) is used to obtain the equilibrium path based on the Total Lagrange (TL) formulation. A pointwise energy interpolation strategy is employed to avoid low-density instabilities. The exact Heaviside function is also applied to obtain a 0/1 manufacturable design. The objective is to maximize the total strain energy of structure, which is defined as the total external work within a specified displacement, while a certain volume of the design domain is considered. To demonstrate the ability and efficiency of the proposed method, several numerical examples are presented. By making comparisons, the results of both optimization algorithm and nonlinear analysis are shown to be in good agreement with the literature. Also, it is shown that obtained layouts are different from those in the linear behavior modeling due to considering buckling effects. In addition, linear and nonlinear final layouts are analyzed under large deformation assumption and the load–displacement curves are compared to illustrate the improvement of the objective function and final load.
•Optimized topologies are parameterized using NURBS.•A pointwise energy interpolation strategy is employed to avoid low-density instabilities.•The control net of the design domain is updated by the reaction–diffusion equation.•Pointwise sensitivity analysis of the optimization problem is analytically derived.•0/1 manufacturable design was performed using an exact (binary) Heaviside step function. |
---|---|
AbstractList | This paper addresses geometrically nonlinear topology optimization using IsoGeometric Analysis (IGA) and Level Set Method (LSM) under plane stress assumptions. The IGA is employed to solve governing equations and accurately describe geometric modeling. The pointwise gradient-based sensitivity analysis is applied to derive the normal velocity of the Reaction–Diffusion Equation (RDE) to update the control net of the Level Set Function (LSF). The Generalized Displacement Control Method (GDCM) is used to obtain the equilibrium path based on the Total Lagrange (TL) formulation. A pointwise energy interpolation strategy is employed to avoid low-density instabilities. The exact Heaviside function is also applied to obtain a 0/1 manufacturable design. The objective is to maximize the total strain energy of structure, which is defined as the total external work within a specified displacement, while a certain volume of the design domain is considered. To demonstrate the ability and efficiency of the proposed method, several numerical examples are presented. By making comparisons, the results of both optimization algorithm and nonlinear analysis are shown to be in good agreement with the literature. Also, it is shown that obtained layouts are different from those in the linear behavior modeling due to considering buckling effects. In addition, linear and nonlinear final layouts are analyzed under large deformation assumption and the load–displacement curves are compared to illustrate the improvement of the objective function and final load.
•Optimized topologies are parameterized using NURBS.•A pointwise energy interpolation strategy is employed to avoid low-density instabilities.•The control net of the design domain is updated by the reaction–diffusion equation.•Pointwise sensitivity analysis of the optimization problem is analytically derived.•0/1 manufacturable design was performed using an exact (binary) Heaviside step function. |
ArticleNumber | 103358 |
Author | Gholhaki, Majid Naderpour, H. Jahangiry, Hassan A. Tavakkoli, S. Mehdi |
Author_xml | – sequence: 1 givenname: Hassan A. surname: Jahangiry fullname: Jahangiry, Hassan A. organization: Faculty of Civil Engineering, Semnan University, Semnan, Iran – sequence: 2 givenname: Majid surname: Gholhaki fullname: Gholhaki, Majid email: mgholhaki@semnan.ac.ir organization: Faculty of Civil Engineering, Semnan University, Semnan, Iran – sequence: 3 givenname: H. surname: Naderpour fullname: Naderpour, H. organization: Faculty of Civil Engineering, Semnan University, Semnan, Iran – sequence: 4 givenname: S. Mehdi surname: Tavakkoli fullname: Tavakkoli, S. Mehdi organization: Civil Engineering Department, Shahrood University of Technology, Shahrood, Iran |
BookMark | eNp90M1OAjEQwPHGYCKoD-CtL7DY6X6wG09KFEmIkIDnptvOkpLulrQNCT69i-jFA6dmDr_J9D8ig851SMgDsDEwKB53YyX1mDPO-zlN8_KKDKGcVAkvynxAhowBS7KszG_IKIQdY4xDWg2Jnge3Rddi9EbRBR7Q0jXG5EUG1HTj9s667ZEu99G05ktG4zraOE9nf0Zae6QfrrOmQ-npysoO6Tp6DIGuvKsttuGOXDfSBrz_fW_J59vrZvqeLJaz-fR5kSjOJzEpU2hkBoh5yosKKpkWUOdQoCo4qjqrK4kaVJaBVlDrRtVNXgHwosgVy5hOb8nkvFd5F4LHRigTf26OXhorgIlTLLETfSxxiiXOsXoJ_-Tem1b640XzdDbYf-lg0IugDHYKtfGootDOXNDfAJCFpQ |
CitedBy_id | crossref_primary_10_1016_j_cma_2025_117789 crossref_primary_10_1007_s00158_024_03892_x crossref_primary_10_3390_aerospace10121025 crossref_primary_10_32604_cmes_2023_044446 crossref_primary_10_1016_j_advengsoft_2024_103805 crossref_primary_10_1016_j_compstruc_2023_107120 crossref_primary_10_1016_j_tws_2025_112907 crossref_primary_10_1016_j_cma_2023_115963 crossref_primary_10_1007_s10999_024_09719_3 |
Cites_doi | 10.1007/s00158-008-0236-5 10.1016/j.jcp.2003.09.032 10.1016/S0045-7949(01)00117-1 10.1142/S0219876218500974 10.1115/1.4006992 10.1016/j.cma.2016.09.029 10.1016/j.ijsolstr.2004.09.005 10.1006/jcph.1998.6090 10.1016/j.jcp.2017.09.040 10.1007/s00158-005-0534-0 10.2514/3.10529 10.1002/nme.783 10.1016/j.cma.2014.12.023 10.1016/j.cma.2017.11.004 10.1007/s00466-014-1011-7 10.1016/j.cma.2004.10.008 10.1007/s10999-021-09562-w 10.2140/jomms.2011.6.605 10.1016/j.cad.2016.08.004 10.1016/j.cma.2014.03.021 10.1016/j.cma.2010.05.013 10.1002/nme.4686 10.1016/S0045-7825(02)00559-5 10.1007/s11831-012-9075-z 10.1007/s00158-020-02605-4 10.1007/s001580050089 10.1007/s00158-014-1145-4 10.1016/j.cja.2019.01.024 10.1007/s00158-015-1325-x 10.1016/j.applthermaleng.2019.114134 10.1002/nme.2352 10.1007/s00158-011-0680-5 10.1016/S0045-7825(00)00278-4 10.1016/j.cma.2017.12.005 10.1016/j.cma.2017.02.005 10.1016/j.mechrescom.2013.12.009 10.1080/0305215X.2017.1418864 10.1016/j.cma.2019.112735 10.1007/s00466-013-0843-x 10.1007/s11465-016-0403-0 10.1007/s00158-012-0819-z 10.1007/s00466-015-1219-1 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cad.2022.103358 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2685 |
ExternalDocumentID | 10_1016_j_cad_2022_103358 S0010448522001105 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABFRF ABMAC ABXDB ABYKQ ACAZW ACBEA ACDAQ ACGFO ACGFS ACIWK ACKIV ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA K-O KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TAE TN5 TWZ VOH WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c227t-831fa41ee5326919a361b516ec62ecb4b9aed1c441dc1bdfcbf59112665c040d3 |
IEDL.DBID | AIKHN |
ISSN | 0010-4485 |
IngestDate | Thu Apr 24 22:59:18 EDT 2025 Tue Jul 01 03:34:36 EDT 2025 Fri Feb 23 02:40:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Isogeometric analysis Geometrically nonlinear Topology optimization Level set method Reaction–Diffusion equation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c227t-831fa41ee5326919a361b516ec62ecb4b9aed1c441dc1bdfcbf59112665c040d3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cad_2022_103358 crossref_primary_10_1016_j_cad_2022_103358 elsevier_sciencedirect_doi_10_1016_j_cad_2022_103358 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationTitle | Computer aided design |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Lazarov, Sigmund, Jensen (b16) 2014; 276 Tavakkoli, Hassani (b29) 2014; 4 Jahangiry, Jahangiri (b35) 2019; 161 Yoon, Kim (b6) 2005; 42 Kawamoto (b13) 2009; 37 Wang, Benson (b31) 2016; 11 Luo, Wang, Kang (b11) 2015; 286 Ghasemi, Park, Alajlan, Rabczuk (b37) 2020; 17 Bruns, Tortorelli (b2) 2001; 190 Chung, Amir, Kim (b25) 2020; 361 Abdi, Ashcroft, Wildman (b12) 2018; 50 Ghasemi, Park, Rabczuk (b34) 2017; 313 Reddy (b42) 2014 Buhl, Pedersen, Sigmund (b1) 2000; 19 Gea, Luo (b4) 2001; 79 van Dijk, Langelaar, Keulen (b15) 2014; 50 Yoon, Noh, Kim (b7) 2011; 6 Klarbring, Strömberg (b8) 2013; 47 Chen, Wang, Wang, Zhang (b24) 2017; 351 Ghasemi, Park, Rabczuk (b36) 2018; 332 Hassani, Khanzadi, Tavakkoli (b28) 2012; 45 Wallin, Ivarsson, Tortorelli (b18) 2018; 330 Jie, Xiaojun, Jihong, Jie, Zhang (b19) 2020; 33 Allaire, Jouve, Toader (b22) 2004; 194 Leon, Lages, De Araújo, Paulino (b45) 2014; 56 Jahangiry, Gholhaki, Naderpour, Tavakkoli (b38) 2021; 17 Kemmler, Lipka, Ramm (b5) 2005; 30 Luo, Tong (b23) 2008; 76 Dedè, Borden, Hughes (b27) 2012; 19 Luo, Tong (b17) 2016; 53 Leon, Paulino, Pereira, Menezes, Lages (b43) 2011; 64 He, Kang, Wang (b10) 2014; 54 Dunning (b20) 2020; 62 Wang, Benson (b30) 2016; 57 Lee, Yoon, Cho (b32) 2017; 82 Jahangiry, Tavakkoli (b33) 2017; 319 Gomes, Senne (b9) 2014; 99 Wang, Wang, Guo (b21) 2003; 192 Bathe KJ. Finite element procedures. 2nd ed.. Watertown MA, USA; 2014. Yang, Kuo (b40) 1994 Bruns, Tortorelli (b3) 2003; 57 Hughes, Cottrell, Bazilevs (b26) 2005; 194 Lahuerta, Simões, Campello, Pimenta, Silva (b14) 2013; 52 Yamada, Izui, Nishiwaki, Takezawa (b47) 2010; 199 Liu, Paulino (b44) 2017; 473 Yang, Shieh (b39) 1990; 28 Adalsteinsson, Sethian (b46) 1999; 148 Allaire (10.1016/j.cad.2022.103358_b22) 2004; 194 Leon (10.1016/j.cad.2022.103358_b45) 2014; 56 Chung (10.1016/j.cad.2022.103358_b25) 2020; 361 Hassani (10.1016/j.cad.2022.103358_b28) 2012; 45 Wang (10.1016/j.cad.2022.103358_b21) 2003; 192 Wang (10.1016/j.cad.2022.103358_b30) 2016; 57 Yoon (10.1016/j.cad.2022.103358_b6) 2005; 42 Wang (10.1016/j.cad.2022.103358_b31) 2016; 11 Buhl (10.1016/j.cad.2022.103358_b1) 2000; 19 He (10.1016/j.cad.2022.103358_b10) 2014; 54 Bruns (10.1016/j.cad.2022.103358_b3) 2003; 57 Kawamoto (10.1016/j.cad.2022.103358_b13) 2009; 37 Hughes (10.1016/j.cad.2022.103358_b26) 2005; 194 Lahuerta (10.1016/j.cad.2022.103358_b14) 2013; 52 Abdi (10.1016/j.cad.2022.103358_b12) 2018; 50 Kemmler (10.1016/j.cad.2022.103358_b5) 2005; 30 Wang (10.1016/j.cad.2022.103358_b16) 2014; 276 Jahangiry (10.1016/j.cad.2022.103358_b38) 2021; 17 Bruns (10.1016/j.cad.2022.103358_b2) 2001; 190 Jie (10.1016/j.cad.2022.103358_b19) 2020; 33 Yoon (10.1016/j.cad.2022.103358_b7) 2011; 6 Klarbring (10.1016/j.cad.2022.103358_b8) 2013; 47 Tavakkoli (10.1016/j.cad.2022.103358_b29) 2014; 4 10.1016/j.cad.2022.103358_b41 Gea (10.1016/j.cad.2022.103358_b4) 2001; 79 Jahangiry (10.1016/j.cad.2022.103358_b33) 2017; 319 Ghasemi (10.1016/j.cad.2022.103358_b37) 2020; 17 Wallin (10.1016/j.cad.2022.103358_b18) 2018; 330 Yang (10.1016/j.cad.2022.103358_b39) 1990; 28 Chen (10.1016/j.cad.2022.103358_b24) 2017; 351 Jahangiry (10.1016/j.cad.2022.103358_b35) 2019; 161 Leon (10.1016/j.cad.2022.103358_b43) 2011; 64 Dunning (10.1016/j.cad.2022.103358_b20) 2020; 62 Yang (10.1016/j.cad.2022.103358_b40) 1994 Yamada (10.1016/j.cad.2022.103358_b47) 2010; 199 van Dijk (10.1016/j.cad.2022.103358_b15) 2014; 50 Luo (10.1016/j.cad.2022.103358_b17) 2016; 53 Ghasemi (10.1016/j.cad.2022.103358_b34) 2017; 313 Gomes (10.1016/j.cad.2022.103358_b9) 2014; 99 Luo (10.1016/j.cad.2022.103358_b11) 2015; 286 Lee (10.1016/j.cad.2022.103358_b32) 2017; 82 Ghasemi (10.1016/j.cad.2022.103358_b36) 2018; 332 Reddy (10.1016/j.cad.2022.103358_b42) 2014 Adalsteinsson (10.1016/j.cad.2022.103358_b46) 1999; 148 Luo (10.1016/j.cad.2022.103358_b23) 2008; 76 Liu (10.1016/j.cad.2022.103358_b44) 2017; 473 Dedè (10.1016/j.cad.2022.103358_b27) 2012; 19 |
References_xml | – volume: 99 start-page: 391 year: 2014 end-page: 409 ident: b9 article-title: An algorithm for the topology optimization of geometrically nonlinear structures publication-title: Internat J Numer Methods Engrg – volume: 17 year: 2020 ident: b37 article-title: A computational framework for design and optimization of flexoelectric materials publication-title: Int J Comput Methods – volume: 52 start-page: 779 year: 2013 end-page: 797 ident: b14 article-title: Towards the stabilization of the low density elements in topology optimization with large deformation publication-title: Comput Mech – volume: 76 start-page: 862 year: 2008 end-page: 892 ident: b23 article-title: A level set method for shape and topology optimization of large-displacement compliant mechanisms publication-title: Internat J Numer Methods Engrg – volume: 161 year: 2019 ident: b35 article-title: Combination of isogeometric analysis and level-set method in topology optimization of heat-conduction systems publication-title: Appl Therm Eng – volume: 28 start-page: 2110 year: 1990 end-page: 2116 ident: b39 article-title: Solution method for nonlinear problems with multiple critical points publication-title: AIAA J – volume: 19 start-page: 93 year: 2000 end-page: 104 ident: b1 article-title: Stiffness design of geometrically nonlinear structures using topology optimization publication-title: Struct Multidiscip Optim – volume: 50 start-page: 537 year: 2014 end-page: 560 ident: b15 article-title: Element deformation scaling for robust geometrically nonlinear analyses in topology optimization publication-title: Struct Multidiscip Optim – volume: 79 start-page: 1977 year: 2001 end-page: 1985 ident: b4 article-title: Topology optimization of structures with geometrical nonlinearities publication-title: Comput Struct – reference: Bathe KJ. Finite element procedures. 2nd ed.. Watertown MA, USA; 2014. – volume: 47 start-page: 37 year: 2013 end-page: 48 ident: b8 article-title: Topology optimization of hyperelastic bodies including non-zero prescribed displacements publication-title: Struct Multidiscip Optim – volume: 332 start-page: 47 year: 2018 end-page: 62 ident: b36 article-title: A multi-material level set-based topology optimization of flexoelectric composites publication-title: Comput Methods Appl Mech Engrg – volume: 148 start-page: 2 year: 1999 end-page: 22 ident: b46 article-title: The fast construction of extension velocities in level set methods publication-title: J Comput Phys – volume: 30 start-page: 459 year: 2005 end-page: 476 ident: b5 article-title: Large deformations and stability in topology optimization publication-title: Struct Multidiscip Optim – volume: 194 start-page: 363 year: 2004 end-page: 393 ident: b22 article-title: Structural optimization using sensitivity analysis and a level-set method publication-title: J Comput Phys – year: 1994 ident: b40 article-title: Theory and analysis of nonlinear framed structures – volume: 42 start-page: 1983 year: 2005 end-page: 2009 ident: b6 article-title: Element connectivity parameterization for topology optimization of geometrically nonlinear structures publication-title: Int J Solids Struct – volume: 45 start-page: 223 year: 2012 end-page: 233 ident: b28 article-title: An isogeometrical approach to structural topology optimization by optimality criteria publication-title: Struct Multidiscip Optim – volume: 190 start-page: 3443 year: 2001 end-page: 3459 ident: b2 article-title: Topology optimization of non-linear elastic structures and compliant mechanisms publication-title: Comput Methods Appl Mech Engrg – year: 2014 ident: b42 article-title: An introduction to nonlinear finite element analysis second edition: with applications to heat transfer, fluid mechanics, and solid mechanics – volume: 473 year: 2017 ident: b44 article-title: Nonlinear mechanics of non-rigid origami: an efficient computational approach publication-title: Proc R Soc Lond Ser A Math Phys Eng Sci – volume: 11 start-page: 328 year: 2016 end-page: 343 ident: b31 article-title: Geometrically constrained isogeometric parameterized level-set based topology optimization via trimmed elements publication-title: Front Mech Eng – volume: 192 start-page: 227 year: 2003 end-page: 246 ident: b21 article-title: A level set method for structural topology optimization publication-title: Comput Methods Appl Mech Engrg – volume: 57 start-page: 19 year: 2016 end-page: 35 ident: b30 article-title: Isogeometric analysis for parameterized LSM-based structural topology optimization publication-title: Comput Mech – volume: 194 start-page: 4135 year: 2005 end-page: 4195 ident: b26 article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement publication-title: Comput Methods Appl Mech Engrg – volume: 17 start-page: 947 year: 2021 end-page: 967 ident: b38 article-title: Isogeometric level set topology optimization for elastoplastic plane stress problems publication-title: Int J Mech Mater Des – volume: 56 start-page: 123 year: 2014 end-page: 129 ident: b45 article-title: On the effect of constraint parameters on the generalized displacement control method publication-title: Mech Res Commun – volume: 276 start-page: 453 year: 2014 end-page: 472 ident: b16 article-title: Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems publication-title: Comput Methods Appl Mech Engrg – volume: 53 start-page: 695 year: 2016 end-page: 714 ident: b17 article-title: An algorithm for eradicating the effects of void elements on structural topology optimization for nonlinear compliance publication-title: Struct Multidiscip Optim – volume: 33 start-page: 372 year: 2020 end-page: 382 ident: b19 article-title: Topology optimization of joint load control with geometrical nonlinearity publication-title: Chin J Aeronaut – volume: 6 start-page: 605 year: 2011 end-page: 625 ident: b7 article-title: Topology optimization of geometrically nonlinear structures tracing given load–displacement curves publication-title: J Mech Mater Struct – volume: 82 start-page: 88 year: 2017 end-page: 99 ident: b32 article-title: Isogeometric topological shape optimization using dual evolution with boundary integral equation and level sets publication-title: Comput Aided Des – volume: 199 start-page: 2876 year: 2010 end-page: 2891 ident: b47 article-title: A topology optimization method based on the level set method incorporating a fictitious interface energy publication-title: Comput Methods Appl Mech Engrg – volume: 37 start-page: 429 year: 2009 end-page: 433 ident: b13 article-title: Stabilization of geometrically nonlinear topology optimization by the levenberg–marquardt method publication-title: Struct Multidiscip Optim – volume: 286 start-page: 422 year: 2015 end-page: 441 ident: b11 article-title: Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique publication-title: Comput Methods Appl Mech Engrg – volume: 19 start-page: 427 year: 2012 end-page: 465 ident: b27 article-title: Isogeometric analysis for topology optimization with a phase field model publication-title: Arch Comput Methods Eng – volume: 361 year: 2020 ident: b25 article-title: Level-set topology optimization considering nonlinear thermoelasticity publication-title: Comput Methods Appl Mech Engrg – volume: 319 start-page: 240 year: 2017 end-page: 257 ident: b33 article-title: An isogeometrical approach to structural level set topology optimization publication-title: Comput Methods Appl Mech Engrg – volume: 64 year: 2011 ident: b43 article-title: A unified library of nonlinear solution schemes publication-title: Appl Mech Rev – volume: 54 start-page: 629 year: 2014 end-page: 644 ident: b10 article-title: A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation publication-title: Comput Mech – volume: 330 start-page: 292 year: 2018 end-page: 307 ident: b18 article-title: Stiffness optimization of non-linear elastic structures publication-title: Comput Methods Appl Mech Engrg – volume: 57 start-page: 1413 year: 2003 end-page: 1430 ident: b3 article-title: An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms publication-title: Internat J Numer Methods Engrg – volume: 4 start-page: 151 year: 2014 end-page: 163 ident: b29 article-title: Isogeometric topology optimization by using optimality criteria and implicit function publication-title: Iran Univ Sci Technol – volume: 50 start-page: 1850 year: 2018 end-page: 1870 ident: b12 article-title: Topology optimization of geometrically nonlinear structures using an evolutionary optimization method publication-title: Eng Optim – volume: 313 start-page: 239 year: 2017 end-page: 258 ident: b34 article-title: A level-set based IGA formulation for topology optimization of flexoelectric materials publication-title: Comput Methods Appl Mech Engrg – volume: 62 start-page: 2357 year: 2020 end-page: 2374 ident: b20 article-title: On the co-rotational method for geometrically nonlinear topology optimization publication-title: Struct Multidiscip Optim – volume: 351 start-page: 437 year: 2017 end-page: 454 ident: b24 article-title: Topology optimization of hyperelastic structures using a level set method publication-title: J Comput Phys – volume: 37 start-page: 429 issue: 4 year: 2009 ident: 10.1016/j.cad.2022.103358_b13 article-title: Stabilization of geometrically nonlinear topology optimization by the levenberg–marquardt method publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-008-0236-5 – volume: 194 start-page: 363 issue: 1 year: 2004 ident: 10.1016/j.cad.2022.103358_b22 article-title: Structural optimization using sensitivity analysis and a level-set method publication-title: J Comput Phys doi: 10.1016/j.jcp.2003.09.032 – volume: 79 start-page: 1977 issue: 20–21 year: 2001 ident: 10.1016/j.cad.2022.103358_b4 article-title: Topology optimization of structures with geometrical nonlinearities publication-title: Comput Struct doi: 10.1016/S0045-7949(01)00117-1 – volume: 17 issue: 01 year: 2020 ident: 10.1016/j.cad.2022.103358_b37 article-title: A computational framework for design and optimization of flexoelectric materials publication-title: Int J Comput Methods doi: 10.1142/S0219876218500974 – volume: 64 issue: 4 year: 2011 ident: 10.1016/j.cad.2022.103358_b43 article-title: A unified library of nonlinear solution schemes publication-title: Appl Mech Rev doi: 10.1115/1.4006992 – volume: 313 start-page: 239 year: 2017 ident: 10.1016/j.cad.2022.103358_b34 article-title: A level-set based IGA formulation for topology optimization of flexoelectric materials publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2016.09.029 – volume: 42 start-page: 1983 issue: 7 year: 2005 ident: 10.1016/j.cad.2022.103358_b6 article-title: Element connectivity parameterization for topology optimization of geometrically nonlinear structures publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2004.09.005 – volume: 148 start-page: 2 issue: 1 year: 1999 ident: 10.1016/j.cad.2022.103358_b46 article-title: The fast construction of extension velocities in level set methods publication-title: J Comput Phys doi: 10.1006/jcph.1998.6090 – volume: 351 start-page: 437 year: 2017 ident: 10.1016/j.cad.2022.103358_b24 article-title: Topology optimization of hyperelastic structures using a level set method publication-title: J Comput Phys doi: 10.1016/j.jcp.2017.09.040 – volume: 30 start-page: 459 issue: 6 year: 2005 ident: 10.1016/j.cad.2022.103358_b5 article-title: Large deformations and stability in topology optimization publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-005-0534-0 – volume: 28 start-page: 2110 issue: 12 year: 1990 ident: 10.1016/j.cad.2022.103358_b39 article-title: Solution method for nonlinear problems with multiple critical points publication-title: AIAA J doi: 10.2514/3.10529 – volume: 57 start-page: 1413 issue: 10 year: 2003 ident: 10.1016/j.cad.2022.103358_b3 article-title: An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.783 – volume: 286 start-page: 422 year: 2015 ident: 10.1016/j.cad.2022.103358_b11 article-title: Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2014.12.023 – volume: 4 start-page: 151 issue: 2 year: 2014 ident: 10.1016/j.cad.2022.103358_b29 article-title: Isogeometric topology optimization by using optimality criteria and implicit function publication-title: Iran Univ Sci Technol – volume: 330 start-page: 292 year: 2018 ident: 10.1016/j.cad.2022.103358_b18 article-title: Stiffness optimization of non-linear elastic structures publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2017.11.004 – volume: 54 start-page: 629 issue: 3 year: 2014 ident: 10.1016/j.cad.2022.103358_b10 article-title: A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation publication-title: Comput Mech doi: 10.1007/s00466-014-1011-7 – volume: 194 start-page: 4135 issue: 39–41 year: 2005 ident: 10.1016/j.cad.2022.103358_b26 article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2004.10.008 – volume: 17 start-page: 947 issue: 4 year: 2021 ident: 10.1016/j.cad.2022.103358_b38 article-title: Isogeometric level set topology optimization for elastoplastic plane stress problems publication-title: Int J Mech Mater Des doi: 10.1007/s10999-021-09562-w – volume: 6 start-page: 605 issue: 1 year: 2011 ident: 10.1016/j.cad.2022.103358_b7 article-title: Topology optimization of geometrically nonlinear structures tracing given load–displacement curves publication-title: J Mech Mater Struct doi: 10.2140/jomms.2011.6.605 – volume: 82 start-page: 88 year: 2017 ident: 10.1016/j.cad.2022.103358_b32 article-title: Isogeometric topological shape optimization using dual evolution with boundary integral equation and level sets publication-title: Comput Aided Des doi: 10.1016/j.cad.2016.08.004 – volume: 276 start-page: 453 year: 2014 ident: 10.1016/j.cad.2022.103358_b16 article-title: Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2014.03.021 – volume: 199 start-page: 2876 issue: 45–48 year: 2010 ident: 10.1016/j.cad.2022.103358_b47 article-title: A topology optimization method based on the level set method incorporating a fictitious interface energy publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2010.05.013 – volume: 473 issue: 2206 year: 2017 ident: 10.1016/j.cad.2022.103358_b44 article-title: Nonlinear mechanics of non-rigid origami: an efficient computational approach publication-title: Proc R Soc Lond Ser A Math Phys Eng Sci – volume: 99 start-page: 391 issue: 6 year: 2014 ident: 10.1016/j.cad.2022.103358_b9 article-title: An algorithm for the topology optimization of geometrically nonlinear structures publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.4686 – volume: 192 start-page: 227 issue: 1–2 year: 2003 ident: 10.1016/j.cad.2022.103358_b21 article-title: A level set method for structural topology optimization publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/S0045-7825(02)00559-5 – volume: 19 start-page: 427 issue: 3 year: 2012 ident: 10.1016/j.cad.2022.103358_b27 article-title: Isogeometric analysis for topology optimization with a phase field model publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-012-9075-z – volume: 62 start-page: 2357 issue: 5 year: 2020 ident: 10.1016/j.cad.2022.103358_b20 article-title: On the co-rotational method for geometrically nonlinear topology optimization publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-020-02605-4 – volume: 19 start-page: 93 issue: 2 year: 2000 ident: 10.1016/j.cad.2022.103358_b1 article-title: Stiffness design of geometrically nonlinear structures using topology optimization publication-title: Struct Multidiscip Optim doi: 10.1007/s001580050089 – volume: 50 start-page: 537 issue: 4 year: 2014 ident: 10.1016/j.cad.2022.103358_b15 article-title: Element deformation scaling for robust geometrically nonlinear analyses in topology optimization publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-014-1145-4 – volume: 33 start-page: 372 issue: 1 year: 2020 ident: 10.1016/j.cad.2022.103358_b19 article-title: Topology optimization of joint load control with geometrical nonlinearity publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2019.01.024 – volume: 53 start-page: 695 issue: 4 year: 2016 ident: 10.1016/j.cad.2022.103358_b17 article-title: An algorithm for eradicating the effects of void elements on structural topology optimization for nonlinear compliance publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-015-1325-x – volume: 161 year: 2019 ident: 10.1016/j.cad.2022.103358_b35 article-title: Combination of isogeometric analysis and level-set method in topology optimization of heat-conduction systems publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2019.114134 – volume: 76 start-page: 862 issue: 6 year: 2008 ident: 10.1016/j.cad.2022.103358_b23 article-title: A level set method for shape and topology optimization of large-displacement compliant mechanisms publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.2352 – volume: 45 start-page: 223 issue: 2 year: 2012 ident: 10.1016/j.cad.2022.103358_b28 article-title: An isogeometrical approach to structural topology optimization by optimality criteria publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-011-0680-5 – volume: 190 start-page: 3443 issue: 26–27 year: 2001 ident: 10.1016/j.cad.2022.103358_b2 article-title: Topology optimization of non-linear elastic structures and compliant mechanisms publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/S0045-7825(00)00278-4 – volume: 332 start-page: 47 year: 2018 ident: 10.1016/j.cad.2022.103358_b36 article-title: A multi-material level set-based topology optimization of flexoelectric composites publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2017.12.005 – volume: 319 start-page: 240 year: 2017 ident: 10.1016/j.cad.2022.103358_b33 article-title: An isogeometrical approach to structural level set topology optimization publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2017.02.005 – volume: 56 start-page: 123 year: 2014 ident: 10.1016/j.cad.2022.103358_b45 article-title: On the effect of constraint parameters on the generalized displacement control method publication-title: Mech Res Commun doi: 10.1016/j.mechrescom.2013.12.009 – volume: 50 start-page: 1850 issue: 11 year: 2018 ident: 10.1016/j.cad.2022.103358_b12 article-title: Topology optimization of geometrically nonlinear structures using an evolutionary optimization method publication-title: Eng Optim doi: 10.1080/0305215X.2017.1418864 – volume: 361 year: 2020 ident: 10.1016/j.cad.2022.103358_b25 article-title: Level-set topology optimization considering nonlinear thermoelasticity publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2019.112735 – volume: 52 start-page: 779 issue: 4 year: 2013 ident: 10.1016/j.cad.2022.103358_b14 article-title: Towards the stabilization of the low density elements in topology optimization with large deformation publication-title: Comput Mech doi: 10.1007/s00466-013-0843-x – volume: 11 start-page: 328 issue: 4 year: 2016 ident: 10.1016/j.cad.2022.103358_b31 article-title: Geometrically constrained isogeometric parameterized level-set based topology optimization via trimmed elements publication-title: Front Mech Eng doi: 10.1007/s11465-016-0403-0 – year: 2014 ident: 10.1016/j.cad.2022.103358_b42 – volume: 47 start-page: 37 issue: 1 year: 2013 ident: 10.1016/j.cad.2022.103358_b8 article-title: Topology optimization of hyperelastic bodies including non-zero prescribed displacements publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-012-0819-z – ident: 10.1016/j.cad.2022.103358_b41 – volume: 57 start-page: 19 issue: 1 year: 2016 ident: 10.1016/j.cad.2022.103358_b30 article-title: Isogeometric analysis for parameterized LSM-based structural topology optimization publication-title: Comput Mech doi: 10.1007/s00466-015-1219-1 – year: 1994 ident: 10.1016/j.cad.2022.103358_b40 |
SSID | ssj0002139 |
Score | 2.4240427 |
Snippet | This paper addresses geometrically nonlinear topology optimization using IsoGeometric Analysis (IGA) and Level Set Method (LSM) under plane stress assumptions.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103358 |
SubjectTerms | Geometrically nonlinear Isogeometric analysis Level set method Reaction–Diffusion equation Topology optimization |
Title | Isogeometric Level Set-Based Topology Optimization for Geometrically Nonlinear Plane Stress Problems |
URI | https://dx.doi.org/10.1016/j.cad.2022.103358 |
Volume | 151 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ70cdGD8Rnro9mDJxMsC-zCHmtjbX1Uk7ZJbwR2F1PTV1o89OJvd5eFpibqwSOEScgA33wT5psP4ApTvXWK-5bEiWpQWOJZzGbSIkIwH8eqzXW13vm5RztD72FERiVoFVoYPVaZY7_B9Ayt8zONPJuNxXisNb6qlfACRSCyxWekDFXHZZRUoNrsPnZ6G0B2sGtYsIIcHVD83MzGvHik94U6jlafu9r4_afytFVy2vuwl3NF1DS3cwAlOTuE3a0Ngkcguqv5m5xPtS8WR096Agj1ZWrdquIk0MA4IKzRiwKGaa64RIqmovsiJppM1qhn9mVES6Q9jCTqZwIS9GrMZlbHMGzfDVodKzdOsLjj-KkVuDiJPCwlUeSMYRa5FMcEU8mpI3nsxSySAnPFhATHsUh4nBCmtUSUcPVRC_cEKrP5TJ4CCgj1MRY04Imu_TKStuv4kWoUg5hJbtfALvIV8nyruDa3mITF-Nh7qFIc6hSHJsU1uN6ELMxKjb8u9oqHEH57L0IF-b-Hnf0v7Bx29JEZ1ruASrr8kJeKdKRxHco3n7iev1pfExvU4w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGYAB8SnKpwcmpNA4jpN4hIrSQluQ2krdosR2UFG_1IahC78dX5xAkYCBNfFJ0cW5e1buvYfQJfFAdUr4liKJPqDwxLW4zZXFpOQ-ifUxlwLfud3xGn33YcAGJVQruDAwVpnXflPTs2qdX6nm2azOhkPg-OqjhBtoAJEJn7E1tO4y6sNc3_X715yHQ6jBwLrgwPLi12Y25CUiUAt1HOCeU7B9_6k5rTSc-g7azpEivjEPs4tKarKHtlb0A_eRbC6mL2o6BlcsgVsw_4O7KrVudWuSuGf8D5b4SZeFcc63xBqk4vsiJhqNlrhj1DKiOQYHI4W7GX0EPxurmcUB6tfverWGldsmWMJx_NQKKEkilyjFNDTjhEfUIzEjnhKeo0TsxjxSkgiNg6QgsUxEnDAOTCKPCf1JS3qIypPpRB0hHDDPJ0R6gUig86tI2dTxI31MDGKuhF1BdpGvUOSa4mBtMQqL4bHXUKc4hBSHJsUVdPUZMjOCGn8tdouXEH7bFaEu-L-HHf8v7AJtNHrtVthqdh5P0CbcMWN7p6iczt_UmYYfaXyeba8P2srVrg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isogeometric+Level+Set-Based+Topology+Optimization+for+Geometrically+Nonlinear+Plane+Stress+Problems&rft.jtitle=Computer+aided+design&rft.au=Jahangiry%2C+Hassan+A.&rft.au=Gholhaki%2C+Majid&rft.au=Naderpour%2C+H.&rft.au=Tavakkoli%2C+S.+Mehdi&rft.date=2022-10-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4485&rft.eissn=1879-2685&rft.volume=151&rft_id=info:doi/10.1016%2Fj.cad.2022.103358&rft.externalDocID=S0010448522001105 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon |