Isogeometric Level Set-Based Topology Optimization for Geometrically Nonlinear Plane Stress Problems

This paper addresses geometrically nonlinear topology optimization using IsoGeometric Analysis (IGA) and Level Set Method (LSM) under plane stress assumptions. The IGA is employed to solve governing equations and accurately describe geometric modeling. The pointwise gradient-based sensitivity analys...

Full description

Saved in:
Bibliographic Details
Published inComputer aided design Vol. 151; p. 103358
Main Authors Jahangiry, Hassan A., Gholhaki, Majid, Naderpour, H., Tavakkoli, S. Mehdi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2022
Subjects
Online AccessGet full text
ISSN0010-4485
1879-2685
DOI10.1016/j.cad.2022.103358

Cover

Abstract This paper addresses geometrically nonlinear topology optimization using IsoGeometric Analysis (IGA) and Level Set Method (LSM) under plane stress assumptions. The IGA is employed to solve governing equations and accurately describe geometric modeling. The pointwise gradient-based sensitivity analysis is applied to derive the normal velocity of the Reaction–Diffusion Equation (RDE) to update the control net of the Level Set Function (LSF). The Generalized Displacement Control Method (GDCM) is used to obtain the equilibrium path based on the Total Lagrange (TL) formulation. A pointwise energy interpolation strategy is employed to avoid low-density instabilities. The exact Heaviside function is also applied to obtain a 0/1 manufacturable design. The objective is to maximize the total strain energy of structure, which is defined as the total external work within a specified displacement, while a certain volume of the design domain is considered. To demonstrate the ability and efficiency of the proposed method, several numerical examples are presented. By making comparisons, the results of both optimization algorithm and nonlinear analysis are shown to be in good agreement with the literature. Also, it is shown that obtained layouts are different from those in the linear behavior modeling due to considering buckling effects. In addition, linear and nonlinear final layouts are analyzed under large deformation assumption and the load–displacement curves are compared to illustrate the improvement of the objective function and final load. •Optimized topologies are parameterized using NURBS.•A pointwise energy interpolation strategy is employed to avoid low-density instabilities.•The control net of the design domain is updated by the reaction–diffusion equation.•Pointwise sensitivity analysis of the optimization problem is analytically derived.•0/1 manufacturable design was performed using an exact (binary) Heaviside step function.
AbstractList This paper addresses geometrically nonlinear topology optimization using IsoGeometric Analysis (IGA) and Level Set Method (LSM) under plane stress assumptions. The IGA is employed to solve governing equations and accurately describe geometric modeling. The pointwise gradient-based sensitivity analysis is applied to derive the normal velocity of the Reaction–Diffusion Equation (RDE) to update the control net of the Level Set Function (LSF). The Generalized Displacement Control Method (GDCM) is used to obtain the equilibrium path based on the Total Lagrange (TL) formulation. A pointwise energy interpolation strategy is employed to avoid low-density instabilities. The exact Heaviside function is also applied to obtain a 0/1 manufacturable design. The objective is to maximize the total strain energy of structure, which is defined as the total external work within a specified displacement, while a certain volume of the design domain is considered. To demonstrate the ability and efficiency of the proposed method, several numerical examples are presented. By making comparisons, the results of both optimization algorithm and nonlinear analysis are shown to be in good agreement with the literature. Also, it is shown that obtained layouts are different from those in the linear behavior modeling due to considering buckling effects. In addition, linear and nonlinear final layouts are analyzed under large deformation assumption and the load–displacement curves are compared to illustrate the improvement of the objective function and final load. •Optimized topologies are parameterized using NURBS.•A pointwise energy interpolation strategy is employed to avoid low-density instabilities.•The control net of the design domain is updated by the reaction–diffusion equation.•Pointwise sensitivity analysis of the optimization problem is analytically derived.•0/1 manufacturable design was performed using an exact (binary) Heaviside step function.
ArticleNumber 103358
Author Gholhaki, Majid
Naderpour, H.
Jahangiry, Hassan A.
Tavakkoli, S. Mehdi
Author_xml – sequence: 1
  givenname: Hassan A.
  surname: Jahangiry
  fullname: Jahangiry, Hassan A.
  organization: Faculty of Civil Engineering, Semnan University, Semnan, Iran
– sequence: 2
  givenname: Majid
  surname: Gholhaki
  fullname: Gholhaki, Majid
  email: mgholhaki@semnan.ac.ir
  organization: Faculty of Civil Engineering, Semnan University, Semnan, Iran
– sequence: 3
  givenname: H.
  surname: Naderpour
  fullname: Naderpour, H.
  organization: Faculty of Civil Engineering, Semnan University, Semnan, Iran
– sequence: 4
  givenname: S. Mehdi
  surname: Tavakkoli
  fullname: Tavakkoli, S. Mehdi
  organization: Civil Engineering Department, Shahrood University of Technology, Shahrood, Iran
BookMark eNp90M1OAjEQwPHGYCKoD-CtL7DY6X6wG09KFEmIkIDnptvOkpLulrQNCT69i-jFA6dmDr_J9D8ig851SMgDsDEwKB53YyX1mDPO-zlN8_KKDKGcVAkvynxAhowBS7KszG_IKIQdY4xDWg2Jnge3Rddi9EbRBR7Q0jXG5EUG1HTj9s667ZEu99G05ktG4zraOE9nf0Zae6QfrrOmQ-npysoO6Tp6DIGuvKsttuGOXDfSBrz_fW_J59vrZvqeLJaz-fR5kSjOJzEpU2hkBoh5yosKKpkWUOdQoCo4qjqrK4kaVJaBVlDrRtVNXgHwosgVy5hOb8nkvFd5F4LHRigTf26OXhorgIlTLLETfSxxiiXOsXoJ_-Tem1b640XzdDbYf-lg0IugDHYKtfGootDOXNDfAJCFpQ
CitedBy_id crossref_primary_10_1016_j_cma_2025_117789
crossref_primary_10_1007_s00158_024_03892_x
crossref_primary_10_3390_aerospace10121025
crossref_primary_10_32604_cmes_2023_044446
crossref_primary_10_1016_j_advengsoft_2024_103805
crossref_primary_10_1016_j_compstruc_2023_107120
crossref_primary_10_1016_j_tws_2025_112907
crossref_primary_10_1016_j_cma_2023_115963
crossref_primary_10_1007_s10999_024_09719_3
Cites_doi 10.1007/s00158-008-0236-5
10.1016/j.jcp.2003.09.032
10.1016/S0045-7949(01)00117-1
10.1142/S0219876218500974
10.1115/1.4006992
10.1016/j.cma.2016.09.029
10.1016/j.ijsolstr.2004.09.005
10.1006/jcph.1998.6090
10.1016/j.jcp.2017.09.040
10.1007/s00158-005-0534-0
10.2514/3.10529
10.1002/nme.783
10.1016/j.cma.2014.12.023
10.1016/j.cma.2017.11.004
10.1007/s00466-014-1011-7
10.1016/j.cma.2004.10.008
10.1007/s10999-021-09562-w
10.2140/jomms.2011.6.605
10.1016/j.cad.2016.08.004
10.1016/j.cma.2014.03.021
10.1016/j.cma.2010.05.013
10.1002/nme.4686
10.1016/S0045-7825(02)00559-5
10.1007/s11831-012-9075-z
10.1007/s00158-020-02605-4
10.1007/s001580050089
10.1007/s00158-014-1145-4
10.1016/j.cja.2019.01.024
10.1007/s00158-015-1325-x
10.1016/j.applthermaleng.2019.114134
10.1002/nme.2352
10.1007/s00158-011-0680-5
10.1016/S0045-7825(00)00278-4
10.1016/j.cma.2017.12.005
10.1016/j.cma.2017.02.005
10.1016/j.mechrescom.2013.12.009
10.1080/0305215X.2017.1418864
10.1016/j.cma.2019.112735
10.1007/s00466-013-0843-x
10.1007/s11465-016-0403-0
10.1007/s00158-012-0819-z
10.1007/s00466-015-1219-1
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cad.2022.103358
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2685
ExternalDocumentID 10_1016_j_cad_2022_103358
S0010448522001105
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACAZW
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TAE
TN5
TWZ
VOH
WUQ
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c227t-831fa41ee5326919a361b516ec62ecb4b9aed1c441dc1bdfcbf59112665c040d3
IEDL.DBID AIKHN
ISSN 0010-4485
IngestDate Thu Apr 24 22:59:18 EDT 2025
Tue Jul 01 03:34:36 EDT 2025
Fri Feb 23 02:40:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Isogeometric analysis
Geometrically nonlinear
Topology optimization
Level set method
Reaction–Diffusion equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c227t-831fa41ee5326919a361b516ec62ecb4b9aed1c441dc1bdfcbf59112665c040d3
ParticipantIDs crossref_citationtrail_10_1016_j_cad_2022_103358
crossref_primary_10_1016_j_cad_2022_103358
elsevier_sciencedirect_doi_10_1016_j_cad_2022_103358
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Computer aided design
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Lazarov, Sigmund, Jensen (b16) 2014; 276
Tavakkoli, Hassani (b29) 2014; 4
Jahangiry, Jahangiri (b35) 2019; 161
Yoon, Kim (b6) 2005; 42
Kawamoto (b13) 2009; 37
Wang, Benson (b31) 2016; 11
Luo, Wang, Kang (b11) 2015; 286
Ghasemi, Park, Alajlan, Rabczuk (b37) 2020; 17
Bruns, Tortorelli (b2) 2001; 190
Chung, Amir, Kim (b25) 2020; 361
Abdi, Ashcroft, Wildman (b12) 2018; 50
Ghasemi, Park, Rabczuk (b34) 2017; 313
Reddy (b42) 2014
Buhl, Pedersen, Sigmund (b1) 2000; 19
Gea, Luo (b4) 2001; 79
van Dijk, Langelaar, Keulen (b15) 2014; 50
Yoon, Noh, Kim (b7) 2011; 6
Klarbring, Strömberg (b8) 2013; 47
Chen, Wang, Wang, Zhang (b24) 2017; 351
Ghasemi, Park, Rabczuk (b36) 2018; 332
Hassani, Khanzadi, Tavakkoli (b28) 2012; 45
Wallin, Ivarsson, Tortorelli (b18) 2018; 330
Jie, Xiaojun, Jihong, Jie, Zhang (b19) 2020; 33
Allaire, Jouve, Toader (b22) 2004; 194
Leon, Lages, De Araújo, Paulino (b45) 2014; 56
Jahangiry, Gholhaki, Naderpour, Tavakkoli (b38) 2021; 17
Kemmler, Lipka, Ramm (b5) 2005; 30
Luo, Tong (b23) 2008; 76
Dedè, Borden, Hughes (b27) 2012; 19
Luo, Tong (b17) 2016; 53
Leon, Paulino, Pereira, Menezes, Lages (b43) 2011; 64
He, Kang, Wang (b10) 2014; 54
Dunning (b20) 2020; 62
Wang, Benson (b30) 2016; 57
Lee, Yoon, Cho (b32) 2017; 82
Jahangiry, Tavakkoli (b33) 2017; 319
Gomes, Senne (b9) 2014; 99
Wang, Wang, Guo (b21) 2003; 192
Bathe KJ. Finite element procedures. 2nd ed.. Watertown MA, USA; 2014.
Yang, Kuo (b40) 1994
Bruns, Tortorelli (b3) 2003; 57
Hughes, Cottrell, Bazilevs (b26) 2005; 194
Lahuerta, Simões, Campello, Pimenta, Silva (b14) 2013; 52
Yamada, Izui, Nishiwaki, Takezawa (b47) 2010; 199
Liu, Paulino (b44) 2017; 473
Yang, Shieh (b39) 1990; 28
Adalsteinsson, Sethian (b46) 1999; 148
Allaire (10.1016/j.cad.2022.103358_b22) 2004; 194
Leon (10.1016/j.cad.2022.103358_b45) 2014; 56
Chung (10.1016/j.cad.2022.103358_b25) 2020; 361
Hassani (10.1016/j.cad.2022.103358_b28) 2012; 45
Wang (10.1016/j.cad.2022.103358_b21) 2003; 192
Wang (10.1016/j.cad.2022.103358_b30) 2016; 57
Yoon (10.1016/j.cad.2022.103358_b6) 2005; 42
Wang (10.1016/j.cad.2022.103358_b31) 2016; 11
Buhl (10.1016/j.cad.2022.103358_b1) 2000; 19
He (10.1016/j.cad.2022.103358_b10) 2014; 54
Bruns (10.1016/j.cad.2022.103358_b3) 2003; 57
Kawamoto (10.1016/j.cad.2022.103358_b13) 2009; 37
Hughes (10.1016/j.cad.2022.103358_b26) 2005; 194
Lahuerta (10.1016/j.cad.2022.103358_b14) 2013; 52
Abdi (10.1016/j.cad.2022.103358_b12) 2018; 50
Kemmler (10.1016/j.cad.2022.103358_b5) 2005; 30
Wang (10.1016/j.cad.2022.103358_b16) 2014; 276
Jahangiry (10.1016/j.cad.2022.103358_b38) 2021; 17
Bruns (10.1016/j.cad.2022.103358_b2) 2001; 190
Jie (10.1016/j.cad.2022.103358_b19) 2020; 33
Yoon (10.1016/j.cad.2022.103358_b7) 2011; 6
Klarbring (10.1016/j.cad.2022.103358_b8) 2013; 47
Tavakkoli (10.1016/j.cad.2022.103358_b29) 2014; 4
10.1016/j.cad.2022.103358_b41
Gea (10.1016/j.cad.2022.103358_b4) 2001; 79
Jahangiry (10.1016/j.cad.2022.103358_b33) 2017; 319
Ghasemi (10.1016/j.cad.2022.103358_b37) 2020; 17
Wallin (10.1016/j.cad.2022.103358_b18) 2018; 330
Yang (10.1016/j.cad.2022.103358_b39) 1990; 28
Chen (10.1016/j.cad.2022.103358_b24) 2017; 351
Jahangiry (10.1016/j.cad.2022.103358_b35) 2019; 161
Leon (10.1016/j.cad.2022.103358_b43) 2011; 64
Dunning (10.1016/j.cad.2022.103358_b20) 2020; 62
Yang (10.1016/j.cad.2022.103358_b40) 1994
Yamada (10.1016/j.cad.2022.103358_b47) 2010; 199
van Dijk (10.1016/j.cad.2022.103358_b15) 2014; 50
Luo (10.1016/j.cad.2022.103358_b17) 2016; 53
Ghasemi (10.1016/j.cad.2022.103358_b34) 2017; 313
Gomes (10.1016/j.cad.2022.103358_b9) 2014; 99
Luo (10.1016/j.cad.2022.103358_b11) 2015; 286
Lee (10.1016/j.cad.2022.103358_b32) 2017; 82
Ghasemi (10.1016/j.cad.2022.103358_b36) 2018; 332
Reddy (10.1016/j.cad.2022.103358_b42) 2014
Adalsteinsson (10.1016/j.cad.2022.103358_b46) 1999; 148
Luo (10.1016/j.cad.2022.103358_b23) 2008; 76
Liu (10.1016/j.cad.2022.103358_b44) 2017; 473
Dedè (10.1016/j.cad.2022.103358_b27) 2012; 19
References_xml – volume: 99
  start-page: 391
  year: 2014
  end-page: 409
  ident: b9
  article-title: An algorithm for the topology optimization of geometrically nonlinear structures
  publication-title: Internat J Numer Methods Engrg
– volume: 17
  year: 2020
  ident: b37
  article-title: A computational framework for design and optimization of flexoelectric materials
  publication-title: Int J Comput Methods
– volume: 52
  start-page: 779
  year: 2013
  end-page: 797
  ident: b14
  article-title: Towards the stabilization of the low density elements in topology optimization with large deformation
  publication-title: Comput Mech
– volume: 76
  start-page: 862
  year: 2008
  end-page: 892
  ident: b23
  article-title: A level set method for shape and topology optimization of large-displacement compliant mechanisms
  publication-title: Internat J Numer Methods Engrg
– volume: 161
  year: 2019
  ident: b35
  article-title: Combination of isogeometric analysis and level-set method in topology optimization of heat-conduction systems
  publication-title: Appl Therm Eng
– volume: 28
  start-page: 2110
  year: 1990
  end-page: 2116
  ident: b39
  article-title: Solution method for nonlinear problems with multiple critical points
  publication-title: AIAA J
– volume: 19
  start-page: 93
  year: 2000
  end-page: 104
  ident: b1
  article-title: Stiffness design of geometrically nonlinear structures using topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 50
  start-page: 537
  year: 2014
  end-page: 560
  ident: b15
  article-title: Element deformation scaling for robust geometrically nonlinear analyses in topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 79
  start-page: 1977
  year: 2001
  end-page: 1985
  ident: b4
  article-title: Topology optimization of structures with geometrical nonlinearities
  publication-title: Comput Struct
– reference: Bathe KJ. Finite element procedures. 2nd ed.. Watertown MA, USA; 2014.
– volume: 47
  start-page: 37
  year: 2013
  end-page: 48
  ident: b8
  article-title: Topology optimization of hyperelastic bodies including non-zero prescribed displacements
  publication-title: Struct Multidiscip Optim
– volume: 332
  start-page: 47
  year: 2018
  end-page: 62
  ident: b36
  article-title: A multi-material level set-based topology optimization of flexoelectric composites
  publication-title: Comput Methods Appl Mech Engrg
– volume: 148
  start-page: 2
  year: 1999
  end-page: 22
  ident: b46
  article-title: The fast construction of extension velocities in level set methods
  publication-title: J Comput Phys
– volume: 30
  start-page: 459
  year: 2005
  end-page: 476
  ident: b5
  article-title: Large deformations and stability in topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 194
  start-page: 363
  year: 2004
  end-page: 393
  ident: b22
  article-title: Structural optimization using sensitivity analysis and a level-set method
  publication-title: J Comput Phys
– year: 1994
  ident: b40
  article-title: Theory and analysis of nonlinear framed structures
– volume: 42
  start-page: 1983
  year: 2005
  end-page: 2009
  ident: b6
  article-title: Element connectivity parameterization for topology optimization of geometrically nonlinear structures
  publication-title: Int J Solids Struct
– volume: 45
  start-page: 223
  year: 2012
  end-page: 233
  ident: b28
  article-title: An isogeometrical approach to structural topology optimization by optimality criteria
  publication-title: Struct Multidiscip Optim
– volume: 190
  start-page: 3443
  year: 2001
  end-page: 3459
  ident: b2
  article-title: Topology optimization of non-linear elastic structures and compliant mechanisms
  publication-title: Comput Methods Appl Mech Engrg
– year: 2014
  ident: b42
  article-title: An introduction to nonlinear finite element analysis second edition: with applications to heat transfer, fluid mechanics, and solid mechanics
– volume: 473
  year: 2017
  ident: b44
  article-title: Nonlinear mechanics of non-rigid origami: an efficient computational approach
  publication-title: Proc R Soc Lond Ser A Math Phys Eng Sci
– volume: 11
  start-page: 328
  year: 2016
  end-page: 343
  ident: b31
  article-title: Geometrically constrained isogeometric parameterized level-set based topology optimization via trimmed elements
  publication-title: Front Mech Eng
– volume: 192
  start-page: 227
  year: 2003
  end-page: 246
  ident: b21
  article-title: A level set method for structural topology optimization
  publication-title: Comput Methods Appl Mech Engrg
– volume: 57
  start-page: 19
  year: 2016
  end-page: 35
  ident: b30
  article-title: Isogeometric analysis for parameterized LSM-based structural topology optimization
  publication-title: Comput Mech
– volume: 194
  start-page: 4135
  year: 2005
  end-page: 4195
  ident: b26
  article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
  publication-title: Comput Methods Appl Mech Engrg
– volume: 17
  start-page: 947
  year: 2021
  end-page: 967
  ident: b38
  article-title: Isogeometric level set topology optimization for elastoplastic plane stress problems
  publication-title: Int J Mech Mater Des
– volume: 56
  start-page: 123
  year: 2014
  end-page: 129
  ident: b45
  article-title: On the effect of constraint parameters on the generalized displacement control method
  publication-title: Mech Res Commun
– volume: 276
  start-page: 453
  year: 2014
  end-page: 472
  ident: b16
  article-title: Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems
  publication-title: Comput Methods Appl Mech Engrg
– volume: 53
  start-page: 695
  year: 2016
  end-page: 714
  ident: b17
  article-title: An algorithm for eradicating the effects of void elements on structural topology optimization for nonlinear compliance
  publication-title: Struct Multidiscip Optim
– volume: 33
  start-page: 372
  year: 2020
  end-page: 382
  ident: b19
  article-title: Topology optimization of joint load control with geometrical nonlinearity
  publication-title: Chin J Aeronaut
– volume: 6
  start-page: 605
  year: 2011
  end-page: 625
  ident: b7
  article-title: Topology optimization of geometrically nonlinear structures tracing given load–displacement curves
  publication-title: J Mech Mater Struct
– volume: 82
  start-page: 88
  year: 2017
  end-page: 99
  ident: b32
  article-title: Isogeometric topological shape optimization using dual evolution with boundary integral equation and level sets
  publication-title: Comput Aided Des
– volume: 199
  start-page: 2876
  year: 2010
  end-page: 2891
  ident: b47
  article-title: A topology optimization method based on the level set method incorporating a fictitious interface energy
  publication-title: Comput Methods Appl Mech Engrg
– volume: 37
  start-page: 429
  year: 2009
  end-page: 433
  ident: b13
  article-title: Stabilization of geometrically nonlinear topology optimization by the levenberg–marquardt method
  publication-title: Struct Multidiscip Optim
– volume: 286
  start-page: 422
  year: 2015
  end-page: 441
  ident: b11
  article-title: Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique
  publication-title: Comput Methods Appl Mech Engrg
– volume: 19
  start-page: 427
  year: 2012
  end-page: 465
  ident: b27
  article-title: Isogeometric analysis for topology optimization with a phase field model
  publication-title: Arch Comput Methods Eng
– volume: 361
  year: 2020
  ident: b25
  article-title: Level-set topology optimization considering nonlinear thermoelasticity
  publication-title: Comput Methods Appl Mech Engrg
– volume: 319
  start-page: 240
  year: 2017
  end-page: 257
  ident: b33
  article-title: An isogeometrical approach to structural level set topology optimization
  publication-title: Comput Methods Appl Mech Engrg
– volume: 64
  year: 2011
  ident: b43
  article-title: A unified library of nonlinear solution schemes
  publication-title: Appl Mech Rev
– volume: 54
  start-page: 629
  year: 2014
  end-page: 644
  ident: b10
  article-title: A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation
  publication-title: Comput Mech
– volume: 330
  start-page: 292
  year: 2018
  end-page: 307
  ident: b18
  article-title: Stiffness optimization of non-linear elastic structures
  publication-title: Comput Methods Appl Mech Engrg
– volume: 57
  start-page: 1413
  year: 2003
  end-page: 1430
  ident: b3
  article-title: An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms
  publication-title: Internat J Numer Methods Engrg
– volume: 4
  start-page: 151
  year: 2014
  end-page: 163
  ident: b29
  article-title: Isogeometric topology optimization by using optimality criteria and implicit function
  publication-title: Iran Univ Sci Technol
– volume: 50
  start-page: 1850
  year: 2018
  end-page: 1870
  ident: b12
  article-title: Topology optimization of geometrically nonlinear structures using an evolutionary optimization method
  publication-title: Eng Optim
– volume: 313
  start-page: 239
  year: 2017
  end-page: 258
  ident: b34
  article-title: A level-set based IGA formulation for topology optimization of flexoelectric materials
  publication-title: Comput Methods Appl Mech Engrg
– volume: 62
  start-page: 2357
  year: 2020
  end-page: 2374
  ident: b20
  article-title: On the co-rotational method for geometrically nonlinear topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 351
  start-page: 437
  year: 2017
  end-page: 454
  ident: b24
  article-title: Topology optimization of hyperelastic structures using a level set method
  publication-title: J Comput Phys
– volume: 37
  start-page: 429
  issue: 4
  year: 2009
  ident: 10.1016/j.cad.2022.103358_b13
  article-title: Stabilization of geometrically nonlinear topology optimization by the levenberg–marquardt method
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-008-0236-5
– volume: 194
  start-page: 363
  issue: 1
  year: 2004
  ident: 10.1016/j.cad.2022.103358_b22
  article-title: Structural optimization using sensitivity analysis and a level-set method
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2003.09.032
– volume: 79
  start-page: 1977
  issue: 20–21
  year: 2001
  ident: 10.1016/j.cad.2022.103358_b4
  article-title: Topology optimization of structures with geometrical nonlinearities
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(01)00117-1
– volume: 17
  issue: 01
  year: 2020
  ident: 10.1016/j.cad.2022.103358_b37
  article-title: A computational framework for design and optimization of flexoelectric materials
  publication-title: Int J Comput Methods
  doi: 10.1142/S0219876218500974
– volume: 64
  issue: 4
  year: 2011
  ident: 10.1016/j.cad.2022.103358_b43
  article-title: A unified library of nonlinear solution schemes
  publication-title: Appl Mech Rev
  doi: 10.1115/1.4006992
– volume: 313
  start-page: 239
  year: 2017
  ident: 10.1016/j.cad.2022.103358_b34
  article-title: A level-set based IGA formulation for topology optimization of flexoelectric materials
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2016.09.029
– volume: 42
  start-page: 1983
  issue: 7
  year: 2005
  ident: 10.1016/j.cad.2022.103358_b6
  article-title: Element connectivity parameterization for topology optimization of geometrically nonlinear structures
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2004.09.005
– volume: 148
  start-page: 2
  issue: 1
  year: 1999
  ident: 10.1016/j.cad.2022.103358_b46
  article-title: The fast construction of extension velocities in level set methods
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1998.6090
– volume: 351
  start-page: 437
  year: 2017
  ident: 10.1016/j.cad.2022.103358_b24
  article-title: Topology optimization of hyperelastic structures using a level set method
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2017.09.040
– volume: 30
  start-page: 459
  issue: 6
  year: 2005
  ident: 10.1016/j.cad.2022.103358_b5
  article-title: Large deformations and stability in topology optimization
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-005-0534-0
– volume: 28
  start-page: 2110
  issue: 12
  year: 1990
  ident: 10.1016/j.cad.2022.103358_b39
  article-title: Solution method for nonlinear problems with multiple critical points
  publication-title: AIAA J
  doi: 10.2514/3.10529
– volume: 57
  start-page: 1413
  issue: 10
  year: 2003
  ident: 10.1016/j.cad.2022.103358_b3
  article-title: An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms
  publication-title: Internat J Numer Methods Engrg
  doi: 10.1002/nme.783
– volume: 286
  start-page: 422
  year: 2015
  ident: 10.1016/j.cad.2022.103358_b11
  article-title: Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2014.12.023
– volume: 4
  start-page: 151
  issue: 2
  year: 2014
  ident: 10.1016/j.cad.2022.103358_b29
  article-title: Isogeometric topology optimization by using optimality criteria and implicit function
  publication-title: Iran Univ Sci Technol
– volume: 330
  start-page: 292
  year: 2018
  ident: 10.1016/j.cad.2022.103358_b18
  article-title: Stiffness optimization of non-linear elastic structures
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2017.11.004
– volume: 54
  start-page: 629
  issue: 3
  year: 2014
  ident: 10.1016/j.cad.2022.103358_b10
  article-title: A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation
  publication-title: Comput Mech
  doi: 10.1007/s00466-014-1011-7
– volume: 194
  start-page: 4135
  issue: 39–41
  year: 2005
  ident: 10.1016/j.cad.2022.103358_b26
  article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2004.10.008
– volume: 17
  start-page: 947
  issue: 4
  year: 2021
  ident: 10.1016/j.cad.2022.103358_b38
  article-title: Isogeometric level set topology optimization for elastoplastic plane stress problems
  publication-title: Int J Mech Mater Des
  doi: 10.1007/s10999-021-09562-w
– volume: 6
  start-page: 605
  issue: 1
  year: 2011
  ident: 10.1016/j.cad.2022.103358_b7
  article-title: Topology optimization of geometrically nonlinear structures tracing given load–displacement curves
  publication-title: J Mech Mater Struct
  doi: 10.2140/jomms.2011.6.605
– volume: 82
  start-page: 88
  year: 2017
  ident: 10.1016/j.cad.2022.103358_b32
  article-title: Isogeometric topological shape optimization using dual evolution with boundary integral equation and level sets
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2016.08.004
– volume: 276
  start-page: 453
  year: 2014
  ident: 10.1016/j.cad.2022.103358_b16
  article-title: Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2014.03.021
– volume: 199
  start-page: 2876
  issue: 45–48
  year: 2010
  ident: 10.1016/j.cad.2022.103358_b47
  article-title: A topology optimization method based on the level set method incorporating a fictitious interface energy
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2010.05.013
– volume: 473
  issue: 2206
  year: 2017
  ident: 10.1016/j.cad.2022.103358_b44
  article-title: Nonlinear mechanics of non-rigid origami: an efficient computational approach
  publication-title: Proc R Soc Lond Ser A Math Phys Eng Sci
– volume: 99
  start-page: 391
  issue: 6
  year: 2014
  ident: 10.1016/j.cad.2022.103358_b9
  article-title: An algorithm for the topology optimization of geometrically nonlinear structures
  publication-title: Internat J Numer Methods Engrg
  doi: 10.1002/nme.4686
– volume: 192
  start-page: 227
  issue: 1–2
  year: 2003
  ident: 10.1016/j.cad.2022.103358_b21
  article-title: A level set method for structural topology optimization
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/S0045-7825(02)00559-5
– volume: 19
  start-page: 427
  issue: 3
  year: 2012
  ident: 10.1016/j.cad.2022.103358_b27
  article-title: Isogeometric analysis for topology optimization with a phase field model
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-012-9075-z
– volume: 62
  start-page: 2357
  issue: 5
  year: 2020
  ident: 10.1016/j.cad.2022.103358_b20
  article-title: On the co-rotational method for geometrically nonlinear topology optimization
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-020-02605-4
– volume: 19
  start-page: 93
  issue: 2
  year: 2000
  ident: 10.1016/j.cad.2022.103358_b1
  article-title: Stiffness design of geometrically nonlinear structures using topology optimization
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s001580050089
– volume: 50
  start-page: 537
  issue: 4
  year: 2014
  ident: 10.1016/j.cad.2022.103358_b15
  article-title: Element deformation scaling for robust geometrically nonlinear analyses in topology optimization
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-014-1145-4
– volume: 33
  start-page: 372
  issue: 1
  year: 2020
  ident: 10.1016/j.cad.2022.103358_b19
  article-title: Topology optimization of joint load control with geometrical nonlinearity
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2019.01.024
– volume: 53
  start-page: 695
  issue: 4
  year: 2016
  ident: 10.1016/j.cad.2022.103358_b17
  article-title: An algorithm for eradicating the effects of void elements on structural topology optimization for nonlinear compliance
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-015-1325-x
– volume: 161
  year: 2019
  ident: 10.1016/j.cad.2022.103358_b35
  article-title: Combination of isogeometric analysis and level-set method in topology optimization of heat-conduction systems
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.114134
– volume: 76
  start-page: 862
  issue: 6
  year: 2008
  ident: 10.1016/j.cad.2022.103358_b23
  article-title: A level set method for shape and topology optimization of large-displacement compliant mechanisms
  publication-title: Internat J Numer Methods Engrg
  doi: 10.1002/nme.2352
– volume: 45
  start-page: 223
  issue: 2
  year: 2012
  ident: 10.1016/j.cad.2022.103358_b28
  article-title: An isogeometrical approach to structural topology optimization by optimality criteria
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-011-0680-5
– volume: 190
  start-page: 3443
  issue: 26–27
  year: 2001
  ident: 10.1016/j.cad.2022.103358_b2
  article-title: Topology optimization of non-linear elastic structures and compliant mechanisms
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/S0045-7825(00)00278-4
– volume: 332
  start-page: 47
  year: 2018
  ident: 10.1016/j.cad.2022.103358_b36
  article-title: A multi-material level set-based topology optimization of flexoelectric composites
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2017.12.005
– volume: 319
  start-page: 240
  year: 2017
  ident: 10.1016/j.cad.2022.103358_b33
  article-title: An isogeometrical approach to structural level set topology optimization
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2017.02.005
– volume: 56
  start-page: 123
  year: 2014
  ident: 10.1016/j.cad.2022.103358_b45
  article-title: On the effect of constraint parameters on the generalized displacement control method
  publication-title: Mech Res Commun
  doi: 10.1016/j.mechrescom.2013.12.009
– volume: 50
  start-page: 1850
  issue: 11
  year: 2018
  ident: 10.1016/j.cad.2022.103358_b12
  article-title: Topology optimization of geometrically nonlinear structures using an evolutionary optimization method
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2017.1418864
– volume: 361
  year: 2020
  ident: 10.1016/j.cad.2022.103358_b25
  article-title: Level-set topology optimization considering nonlinear thermoelasticity
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2019.112735
– volume: 52
  start-page: 779
  issue: 4
  year: 2013
  ident: 10.1016/j.cad.2022.103358_b14
  article-title: Towards the stabilization of the low density elements in topology optimization with large deformation
  publication-title: Comput Mech
  doi: 10.1007/s00466-013-0843-x
– volume: 11
  start-page: 328
  issue: 4
  year: 2016
  ident: 10.1016/j.cad.2022.103358_b31
  article-title: Geometrically constrained isogeometric parameterized level-set based topology optimization via trimmed elements
  publication-title: Front Mech Eng
  doi: 10.1007/s11465-016-0403-0
– year: 2014
  ident: 10.1016/j.cad.2022.103358_b42
– volume: 47
  start-page: 37
  issue: 1
  year: 2013
  ident: 10.1016/j.cad.2022.103358_b8
  article-title: Topology optimization of hyperelastic bodies including non-zero prescribed displacements
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-012-0819-z
– ident: 10.1016/j.cad.2022.103358_b41
– volume: 57
  start-page: 19
  issue: 1
  year: 2016
  ident: 10.1016/j.cad.2022.103358_b30
  article-title: Isogeometric analysis for parameterized LSM-based structural topology optimization
  publication-title: Comput Mech
  doi: 10.1007/s00466-015-1219-1
– year: 1994
  ident: 10.1016/j.cad.2022.103358_b40
SSID ssj0002139
Score 2.4240427
Snippet This paper addresses geometrically nonlinear topology optimization using IsoGeometric Analysis (IGA) and Level Set Method (LSM) under plane stress assumptions....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103358
SubjectTerms Geometrically nonlinear
Isogeometric analysis
Level set method
Reaction–Diffusion equation
Topology optimization
Title Isogeometric Level Set-Based Topology Optimization for Geometrically Nonlinear Plane Stress Problems
URI https://dx.doi.org/10.1016/j.cad.2022.103358
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ70cdGD8Rnro9mDJxMsC-zCHmtjbX1Uk7ZJbwR2F1PTV1o89OJvd5eFpibqwSOEScgA33wT5psP4ApTvXWK-5bEiWpQWOJZzGbSIkIwH8eqzXW13vm5RztD72FERiVoFVoYPVaZY7_B9Ayt8zONPJuNxXisNb6qlfACRSCyxWekDFXHZZRUoNrsPnZ6G0B2sGtYsIIcHVD83MzGvHik94U6jlafu9r4_afytFVy2vuwl3NF1DS3cwAlOTuE3a0Ngkcguqv5m5xPtS8WR096Agj1ZWrdquIk0MA4IKzRiwKGaa64RIqmovsiJppM1qhn9mVES6Q9jCTqZwIS9GrMZlbHMGzfDVodKzdOsLjj-KkVuDiJPCwlUeSMYRa5FMcEU8mpI3nsxSySAnPFhATHsUh4nBCmtUSUcPVRC_cEKrP5TJ4CCgj1MRY04Imu_TKStuv4kWoUg5hJbtfALvIV8nyruDa3mITF-Nh7qFIc6hSHJsU1uN6ELMxKjb8u9oqHEH57L0IF-b-Hnf0v7Bx29JEZ1ruASrr8kJeKdKRxHco3n7iev1pfExvU4w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGYAB8SnKpwcmpNA4jpN4hIrSQluQ2krdosR2UFG_1IahC78dX5xAkYCBNfFJ0cW5e1buvYfQJfFAdUr4liKJPqDwxLW4zZXFpOQ-ifUxlwLfud3xGn33YcAGJVQruDAwVpnXflPTs2qdX6nm2azOhkPg-OqjhBtoAJEJn7E1tO4y6sNc3_X715yHQ6jBwLrgwPLi12Y25CUiUAt1HOCeU7B9_6k5rTSc-g7azpEivjEPs4tKarKHtlb0A_eRbC6mL2o6BlcsgVsw_4O7KrVudWuSuGf8D5b4SZeFcc63xBqk4vsiJhqNlrhj1DKiOQYHI4W7GX0EPxurmcUB6tfverWGldsmWMJx_NQKKEkilyjFNDTjhEfUIzEjnhKeo0TsxjxSkgiNg6QgsUxEnDAOTCKPCf1JS3qIypPpRB0hHDDPJ0R6gUig86tI2dTxI31MDGKuhF1BdpGvUOSa4mBtMQqL4bHXUKc4hBSHJsUVdPUZMjOCGn8tdouXEH7bFaEu-L-HHf8v7AJtNHrtVthqdh5P0CbcMWN7p6iczt_UmYYfaXyeba8P2srVrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isogeometric+Level+Set-Based+Topology+Optimization+for+Geometrically+Nonlinear+Plane+Stress+Problems&rft.jtitle=Computer+aided+design&rft.au=Jahangiry%2C+Hassan+A.&rft.au=Gholhaki%2C+Majid&rft.au=Naderpour%2C+H.&rft.au=Tavakkoli%2C+S.+Mehdi&rft.date=2022-10-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4485&rft.eissn=1879-2685&rft.volume=151&rft_id=info:doi/10.1016%2Fj.cad.2022.103358&rft.externalDocID=S0010448522001105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon