Secure key distribution based on hybrid chaos synchronization between semiconductor lasers subject to dual injections
We propose and numerically demonstrate a novel secure key distribution (SKD) scheme by using dynamically synchronized semiconductor lasers (SLs) subject to common dual injections from two mutually coupled SLs. The performance of hybrid chaos synchronization, complexity of chaotic signals, chaos-base...
Saved in:
Published in | Optics express Vol. 30; no. 18; p. 32366 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
29.08.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | We propose and numerically demonstrate a novel secure key distribution (SKD) scheme by using dynamically synchronized semiconductor lasers (SLs) subject to common dual injections from two mutually coupled SLs. The performance of hybrid chaos synchronization, complexity of chaotic signals, chaos-based key distribution, and the privacy of SKD scheme are systematically discussed. It is shown that high-quality hybrid chaos synchronization of zero lag and lead lag can be both achieved between two local lasers under different injection delay conditions, whereas low cross correlations are observed among the driving lasers and the local lasers. By randomly perturbing the injection delays with four independent random sequences, the outputs of local SLs can be dynamically synchronized. Extracting the outputs in the synchronization time slots of zero lag and lead lag, synchronous entropy sources are obtained and used to generate keys with high consistency at local ends of Alice and Bob, which are robust to the parameter mismatches of local lasers to some extent. Moreover, large BER is calculated in two types of typical illegal attacks, which demonstrates the security of the proposed scheme. This work proposed a high-level secure key distribution solution to one-time pad communication. |
---|---|
AbstractList | We propose and numerically demonstrate a novel secure key distribution (SKD) scheme by using dynamically synchronized semiconductor lasers (SLs) subject to common dual injections from two mutually coupled SLs. The performance of hybrid chaos synchronization, complexity of chaotic signals, chaos-based key distribution, and the privacy of SKD scheme are systematically discussed. It is shown that high-quality hybrid chaos synchronization of zero lag and lead lag can be both achieved between two local lasers under different injection delay conditions, whereas low cross correlations are observed among the driving lasers and the local lasers. By randomly perturbing the injection delays with four independent random sequences, the outputs of local SLs can be dynamically synchronized. Extracting the outputs in the synchronization time slots of zero lag and lead lag, synchronous entropy sources are obtained and used to generate keys with high consistency at local ends of Alice and Bob, which are robust to the parameter mismatches of local lasers to some extent. Moreover, large BER is calculated in two types of typical illegal attacks, which demonstrates the security of the proposed scheme. This work proposed a high-level secure key distribution solution to one-time pad communication.We propose and numerically demonstrate a novel secure key distribution (SKD) scheme by using dynamically synchronized semiconductor lasers (SLs) subject to common dual injections from two mutually coupled SLs. The performance of hybrid chaos synchronization, complexity of chaotic signals, chaos-based key distribution, and the privacy of SKD scheme are systematically discussed. It is shown that high-quality hybrid chaos synchronization of zero lag and lead lag can be both achieved between two local lasers under different injection delay conditions, whereas low cross correlations are observed among the driving lasers and the local lasers. By randomly perturbing the injection delays with four independent random sequences, the outputs of local SLs can be dynamically synchronized. Extracting the outputs in the synchronization time slots of zero lag and lead lag, synchronous entropy sources are obtained and used to generate keys with high consistency at local ends of Alice and Bob, which are robust to the parameter mismatches of local lasers to some extent. Moreover, large BER is calculated in two types of typical illegal attacks, which demonstrates the security of the proposed scheme. This work proposed a high-level secure key distribution solution to one-time pad communication. We propose and numerically demonstrate a novel secure key distribution (SKD) scheme by using dynamically synchronized semiconductor lasers (SLs) subject to common dual injections from two mutually coupled SLs. The performance of hybrid chaos synchronization, complexity of chaotic signals, chaos-based key distribution, and the privacy of SKD scheme are systematically discussed. It is shown that high-quality hybrid chaos synchronization of zero lag and lead lag can be both achieved between two local lasers under different injection delay conditions, whereas low cross correlations are observed among the driving lasers and the local lasers. By randomly perturbing the injection delays with four independent random sequences, the outputs of local SLs can be dynamically synchronized. Extracting the outputs in the synchronization time slots of zero lag and lead lag, synchronous entropy sources are obtained and used to generate keys with high consistency at local ends of Alice and Bob, which are robust to the parameter mismatches of local lasers to some extent. Moreover, large BER is calculated in two types of typical illegal attacks, which demonstrates the security of the proposed scheme. This work proposed a high-level secure key distribution solution to one-time pad communication. |
Author | Zhang, Qianwu Qiu, Kun Wang, Chao Jiang, Ning Zhang, Yiqun Zhao, Anke Liu, Shiqin |
Author_xml | – sequence: 1 givenname: Shiqin surname: Liu fullname: Liu, Shiqin – sequence: 2 givenname: Ning orcidid: 0000-0002-5383-7969 surname: Jiang fullname: Jiang, Ning – sequence: 3 givenname: Yiqun surname: Zhang fullname: Zhang, Yiqun – sequence: 4 givenname: Chao surname: Wang fullname: Wang, Chao – sequence: 5 givenname: Anke orcidid: 0000-0003-4381-2415 surname: Zhao fullname: Zhao, Anke – sequence: 6 givenname: Kun surname: Qiu fullname: Qiu, Kun – sequence: 7 givenname: Qianwu orcidid: 0000-0001-8614-5267 surname: Zhang fullname: Zhang, Qianwu |
BookMark | eNptkD1PwzAQhi1UJNrCwD_wCEPa2LHjZERV-ZAqdQDmyLEvqktqF9sRCr-elDAgxHTvSc970j0zNLHOAkLXJF2QLGfL7XrBclJycYamJC1ZwtJCTH7lCzQLYZ-mhIlSTFH3DKrzgN-gx9qE6E3dReMsrmUAjYew62tvNFY76QIOvVU776z5lCMF8QPA4gAHo5zVnYrO43bo-gHu6j2oiKPDupMtNva0DrVwic4b2Qa4-plz9Hq_flk9Jpvtw9PqbpMoSkVMRJ6rXNYFI6BJkxHNQdU5a5jMeCmoajjRBS_y4TemWVaUKcszrkBwWlIus2yObsa7R-_eOwixOpigoG2lBdeFigrKaZpRVg7o7Ygq70Lw0FRHbw7S9xVJq5PaaruuRrUDu_zDKhO_hUQvTftP4ws3337- |
CitedBy_id | crossref_primary_10_1364_OE_545721 crossref_primary_10_3390_electronics13030525 crossref_primary_10_3390_electronics13010239 crossref_primary_10_1364_PRJ_502992 crossref_primary_10_1088_1674_1056_ada7dd crossref_primary_10_1515_nanoph_2024_0188 crossref_primary_10_1364_OE_506022 crossref_primary_10_1088_1402_4896_ad16c6 |
Cites_doi | 10.1364/OL.42.002507 10.1364/OL.41.004637 10.1109/LPT.2021.3058118 10.1103/PhysRevApplied.13.064014 10.1364/OE.22.006634 10.1103/PhysRevA.103.053524 10.1109/JSTQE.2021.3091901 10.1016/j.optcom.2018.02.057 10.1364/OE.419654 10.1109/JLT.2021.3051407 10.1109/JLT.2019.2920476 10.1103/PhysRevLett.108.070602 10.1103/PhysRevLett.88.174102 10.1103/PhysRevLett.124.070501 10.1016/j.scib.2018.06.017 10.1109/LPT.2016.2581310 10.1016/j.ijleo.2018.10.164 10.1109/TCOMM.2016.2628060 10.7498/aps.67.20181038 10.1364/OL.44.002446 10.1364/OE.403076 10.1364/OL.42.001055 10.1002/j.1538-7305.1949.tb00928.x 10.1007/s11071-021-06391-6 10.1103/PhysRevA.105.043521 10.1364/OE.412068 10.1038/s41377-021-00610-w 10.1364/OE.21.017869 10.1109/JLT.2016.2615870 10.1109/JQE.2007.911687 10.1038/nphoton.2014.149 10.1063/1.1619215 10.1109/JPHOT.2014.2304555 10.1142/S0218127420500273 10.1364/OL.41.001157 10.1364/PRJ.6.000908 10.1364/OE.23.014510 10.1364/OE.22.001713 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1364/OE.461957 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1094-4087 |
ExternalDocumentID | 10_1364_OE_461957 |
GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB 7X8 |
ID | FETCH-LOGICAL-c227t-766c6ab841ed1f31d5ecb64f4a35972cf51d85860944d438904635ce752925a33 |
ISSN | 1094-4087 |
IngestDate | Thu Jul 10 19:29:55 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 Tue Jul 01 01:41:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c227t-766c6ab841ed1f31d5ecb64f4a35972cf51d85860944d438904635ce752925a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4381-2415 0000-0001-8614-5267 0000-0002-5383-7969 |
OpenAccessLink | https://doi.org/10.1364/oe.461957 |
PQID | 2725203249 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2725203249 crossref_primary_10_1364_OE_461957 crossref_citationtrail_10_1364_OE_461957 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-29 20220829 |
PublicationDateYYYYMMDD | 2022-08-29 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-29 day: 29 |
PublicationDecade | 2020 |
PublicationTitle | Optics express |
PublicationYear | 2022 |
References | Zhong (oe-30-18-32366-R26) 2020; 28 Xue (oe-30-18-32366-R38) 2015; 23 Bandt (oe-30-18-32366-R28) 2002; 88 Gao (oe-30-18-32366-R14) 2021; 10 Argyris (oe-30-18-32366-R3) 2016; 34 Dong (oe-30-18-32366-R19) 2021; 103 Böhm (oe-30-18-32366-R15) 2020; 13 Koizumi (oe-30-18-32366-R8) 2013; 21 Jiang (oe-30-18-32366-R11) 2017; 42 Zhang (oe-30-18-32366-R24) 2022; 28 Chen (oe-30-18-32366-R7) 2020; 124 Jiang (oe-30-18-32366-R12) 2020; 30 Huang (oe-30-18-32366-R32) 2022; 105 Li (oe-30-18-32366-R36) 2019; 44 Li (oe-30-18-32366-R18) 2018; 6 Wang (oe-30-18-32366-R13) 2020; 28 Uchida (oe-30-18-32366-R1) 2003; 83 Liu (oe-30-18-32366-R16) 2018; 63 Rontani (oe-30-18-32366-R30) 2016; 41 Toomey (oe-30-18-32366-R29) 2014; 22 Gao (oe-30-18-32366-R22) 2021; 29 Lo (oe-30-18-32366-R6) 2014; 8 Mu (oe-30-18-32366-R27) 2019; 179 Zhang (oe-30-18-32366-R39) 2018; 67 Shannon (oe-30-18-32366-R2) 1949; 28 Hong (oe-30-18-32366-R21) 2017; 42 Li (oe-30-18-32366-R20) 2021; 104 Xiang (oe-30-18-32366-R33) 2016; 28 Li (oe-30-18-32366-R35) 2014; 22 Xu (oe-30-18-32366-R5) 2018; 418 Li (oe-30-18-32366-R17) 2014; 6 Zhang (oe-30-18-32366-R4) 2021; 33 Xue (oe-30-18-32366-R9) 2016; 65 Jiang (oe-30-18-32366-R31) 2016; 41 Yoshimura (oe-30-18-32366-R10) 2012; 108 Zhao (oe-30-18-32366-R23) 2021; 39 Xiang (oe-30-18-32366-R25) 2019; 37 Bogris (oe-30-18-32366-R37) 2008; 44 |
References_xml | – volume: 42 start-page: 2507 year: 2017 ident: oe-30-18-32366-R21 publication-title: Opt. Lett. doi: 10.1364/OL.42.002507 – volume: 41 start-page: 4637 year: 2016 ident: oe-30-18-32366-R30 publication-title: Opt. Lett. doi: 10.1364/OL.41.004637 – volume: 33 start-page: 289 year: 2021 ident: oe-30-18-32366-R4 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2021.3058118 – volume: 13 start-page: 064014 year: 2020 ident: oe-30-18-32366-R15 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.13.064014 – volume: 22 start-page: 6634 year: 2014 ident: oe-30-18-32366-R35 publication-title: Opt. Express doi: 10.1364/OE.22.006634 – volume: 103 start-page: 053524 year: 2021 ident: oe-30-18-32366-R19 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.103.053524 – volume: 28 start-page: 1 year: 2022 ident: oe-30-18-32366-R24 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2021.3091901 – volume: 418 start-page: 41 year: 2018 ident: oe-30-18-32366-R5 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2018.02.057 – volume: 29 start-page: 7904 year: 2021 ident: oe-30-18-32366-R22 publication-title: Opt. Express doi: 10.1364/OE.419654 – volume: 39 start-page: 2288 year: 2021 ident: oe-30-18-32366-R23 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2021.3051407 – volume: 37 start-page: 3987 year: 2019 ident: oe-30-18-32366-R25 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2019.2920476 – volume: 108 start-page: 070602 year: 2012 ident: oe-30-18-32366-R10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.070602 – volume: 88 start-page: 174102 year: 2002 ident: oe-30-18-32366-R28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.174102 – volume: 124 start-page: 070501 year: 2020 ident: oe-30-18-32366-R7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.070501 – volume: 63 start-page: 1034 year: 2018 ident: oe-30-18-32366-R16 publication-title: Sci. Bull. doi: 10.1016/j.scib.2018.06.017 – volume: 28 start-page: 1988 year: 2016 ident: oe-30-18-32366-R33 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2016.2581310 – volume: 179 start-page: 71 year: 2019 ident: oe-30-18-32366-R27 publication-title: Optik doi: 10.1016/j.ijleo.2018.10.164 – volume: 65 start-page: 1 year: 2016 ident: oe-30-18-32366-R9 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2016.2628060 – volume: 67 start-page: 204202 year: 2018 ident: oe-30-18-32366-R39 publication-title: Acta Phys. Sin. doi: 10.7498/aps.67.20181038 – volume: 44 start-page: 2446 year: 2019 ident: oe-30-18-32366-R36 publication-title: Opt. Lett. doi: 10.1364/OL.44.002446 – volume: 28 start-page: 25778 year: 2020 ident: oe-30-18-32366-R26 publication-title: Opt. Express doi: 10.1364/OE.403076 – volume: 42 start-page: 1055 year: 2017 ident: oe-30-18-32366-R11 publication-title: Opt. Lett. doi: 10.1364/OL.42.001055 – volume: 28 start-page: 656 year: 1949 ident: oe-30-18-32366-R2 publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1949.tb00928.x – volume: 104 start-page: 2745 year: 2021 ident: oe-30-18-32366-R20 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06391-6 – volume: 105 start-page: 043521 year: 2022 ident: oe-30-18-32366-R32 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.105.043521 – volume: 28 start-page: 37919 year: 2020 ident: oe-30-18-32366-R13 publication-title: Opt. Express doi: 10.1364/OE.412068 – volume: 10 start-page: 172 year: 2021 ident: oe-30-18-32366-R14 publication-title: Light: Sci. Appl. doi: 10.1038/s41377-021-00610-w – volume: 21 start-page: 17869 year: 2013 ident: oe-30-18-32366-R8 publication-title: Opt. Express doi: 10.1364/OE.21.017869 – volume: 34 start-page: 5325 year: 2016 ident: oe-30-18-32366-R3 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2615870 – volume: 44 start-page: 119 year: 2008 ident: oe-30-18-32366-R37 publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.2007.911687 – volume: 8 start-page: 595 year: 2014 ident: oe-30-18-32366-R6 publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.149 – volume: 83 start-page: 3213 year: 2003 ident: oe-30-18-32366-R1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1619215 – volume: 6 start-page: 1 year: 2014 ident: oe-30-18-32366-R17 publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2014.2304555 – volume: 30 start-page: 2050027 year: 2020 ident: oe-30-18-32366-R12 publication-title: Int. J. Bifurcation Chaos doi: 10.1142/S0218127420500273 – volume: 41 start-page: 1157 year: 2016 ident: oe-30-18-32366-R31 publication-title: Opt. Lett. doi: 10.1364/OL.41.001157 – volume: 6 start-page: 908 year: 2018 ident: oe-30-18-32366-R18 publication-title: Photonics Res. doi: 10.1364/PRJ.6.000908 – volume: 23 start-page: 14510 year: 2015 ident: oe-30-18-32366-R38 publication-title: Opt. Express doi: 10.1364/OE.23.014510 – volume: 22 start-page: 1713 year: 2014 ident: oe-30-18-32366-R29 publication-title: Opt. Express doi: 10.1364/OE.22.001713 |
SSID | ssj0014797 |
Score | 2.4641163 |
Snippet | We propose and numerically demonstrate a novel secure key distribution (SKD) scheme by using dynamically synchronized semiconductor lasers (SLs) subject to... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 32366 |
Title | Secure key distribution based on hybrid chaos synchronization between semiconductor lasers subject to dual injections |
URI | https://www.proquest.com/docview/2725203249 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBdbx2CXsU_WfRRt7DAI7mJZsp3jKCmltMklYdnJyJJFXYadzjZsO-xv33uS7CRbDt0uRgghjN5P7-l9E_IehSDTXAbMTFjAzcQEMtEmyE3Cx1JGOtWYKHw5i8-W_HwlVpsUAptd0ubH6ufevJL_oSrMAV0xS_YfKDtsChMwBvrCFygM31vR2BrLixHcQ3S0DL2rRiiaNLoBrn5gQhZm99YNFidQthSuy7wcQrQajI-vKyz8WqMBE_MvR02Xo4UGn6Y2W6usrm3Qljfu-efsfG2rPBff10MkBwb3lJ01ql6VN-WAvfPSW6ZnvbDcNld_KW-6YelnP3kCv71tlQCFduySOQZGCmoj6KZemBZ75jz39V4Zj7J0i5dGLHINWf7i8lHMgTTz6TEH9U8kG1HWu-9n8-x0eXGRLaarxV1yj4EKgd0tLn9NBw8TT1zjnf6ffNUp2PrjsPHuW2VXVNv3x-IReegVB_rJoeAxuVNUT8h9G8Crmqekc1iggAW6jQVqsUBh4LBALRboH1igHgt0BwvUYYF6LNC2pogFusHCM7I8nS5OzgLfUiNQjCVtkMSximWe8rDQoYlCLQqVx9xwGYFmyZQRoU5FGsOpcM3hHmNBOaGKRLAJEzKKnpODqq6KF4QC45dwrUGdNyHPRZ5GRopQGaYl5zKRh-RDf3iZ8vXmse3J18w6UWOezaeZO-dD8m5YunZFVvYtettTIAMWiH4tWRV112QsYYKNQTOYvLzFmlfkwQawr8lB-60r3sDDss2PrEHmyOLkN_RxgUs |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Secure+key+distribution+based+on+hybrid+chaos+synchronization+between+semiconductor+lasers+subject+to+dual+injections&rft.jtitle=Optics+express&rft.au=Liu%2C+Shiqin&rft.au=Jiang%2C+Ning&rft.au=Zhang%2C+Yiqun&rft.au=Wang%2C+Chao&rft.date=2022-08-29&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=30&rft.issue=18&rft.spage=32366&rft_id=info:doi/10.1364%2FOE.461957&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |