Secure key distribution based on hybrid chaos synchronization between semiconductor lasers subject to dual injections

We propose and numerically demonstrate a novel secure key distribution (SKD) scheme by using dynamically synchronized semiconductor lasers (SLs) subject to common dual injections from two mutually coupled SLs. The performance of hybrid chaos synchronization, complexity of chaotic signals, chaos-base...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 30; no. 18; p. 32366
Main Authors Liu, Shiqin, Jiang, Ning, Zhang, Yiqun, Wang, Chao, Zhao, Anke, Qiu, Kun, Zhang, Qianwu
Format Journal Article
LanguageEnglish
Published 29.08.2022
Online AccessGet full text

Cover

Loading…
Abstract We propose and numerically demonstrate a novel secure key distribution (SKD) scheme by using dynamically synchronized semiconductor lasers (SLs) subject to common dual injections from two mutually coupled SLs. The performance of hybrid chaos synchronization, complexity of chaotic signals, chaos-based key distribution, and the privacy of SKD scheme are systematically discussed. It is shown that high-quality hybrid chaos synchronization of zero lag and lead lag can be both achieved between two local lasers under different injection delay conditions, whereas low cross correlations are observed among the driving lasers and the local lasers. By randomly perturbing the injection delays with four independent random sequences, the outputs of local SLs can be dynamically synchronized. Extracting the outputs in the synchronization time slots of zero lag and lead lag, synchronous entropy sources are obtained and used to generate keys with high consistency at local ends of Alice and Bob, which are robust to the parameter mismatches of local lasers to some extent. Moreover, large BER is calculated in two types of typical illegal attacks, which demonstrates the security of the proposed scheme. This work proposed a high-level secure key distribution solution to one-time pad communication.
AbstractList We propose and numerically demonstrate a novel secure key distribution (SKD) scheme by using dynamically synchronized semiconductor lasers (SLs) subject to common dual injections from two mutually coupled SLs. The performance of hybrid chaos synchronization, complexity of chaotic signals, chaos-based key distribution, and the privacy of SKD scheme are systematically discussed. It is shown that high-quality hybrid chaos synchronization of zero lag and lead lag can be both achieved between two local lasers under different injection delay conditions, whereas low cross correlations are observed among the driving lasers and the local lasers. By randomly perturbing the injection delays with four independent random sequences, the outputs of local SLs can be dynamically synchronized. Extracting the outputs in the synchronization time slots of zero lag and lead lag, synchronous entropy sources are obtained and used to generate keys with high consistency at local ends of Alice and Bob, which are robust to the parameter mismatches of local lasers to some extent. Moreover, large BER is calculated in two types of typical illegal attacks, which demonstrates the security of the proposed scheme. This work proposed a high-level secure key distribution solution to one-time pad communication.We propose and numerically demonstrate a novel secure key distribution (SKD) scheme by using dynamically synchronized semiconductor lasers (SLs) subject to common dual injections from two mutually coupled SLs. The performance of hybrid chaos synchronization, complexity of chaotic signals, chaos-based key distribution, and the privacy of SKD scheme are systematically discussed. It is shown that high-quality hybrid chaos synchronization of zero lag and lead lag can be both achieved between two local lasers under different injection delay conditions, whereas low cross correlations are observed among the driving lasers and the local lasers. By randomly perturbing the injection delays with four independent random sequences, the outputs of local SLs can be dynamically synchronized. Extracting the outputs in the synchronization time slots of zero lag and lead lag, synchronous entropy sources are obtained and used to generate keys with high consistency at local ends of Alice and Bob, which are robust to the parameter mismatches of local lasers to some extent. Moreover, large BER is calculated in two types of typical illegal attacks, which demonstrates the security of the proposed scheme. This work proposed a high-level secure key distribution solution to one-time pad communication.
We propose and numerically demonstrate a novel secure key distribution (SKD) scheme by using dynamically synchronized semiconductor lasers (SLs) subject to common dual injections from two mutually coupled SLs. The performance of hybrid chaos synchronization, complexity of chaotic signals, chaos-based key distribution, and the privacy of SKD scheme are systematically discussed. It is shown that high-quality hybrid chaos synchronization of zero lag and lead lag can be both achieved between two local lasers under different injection delay conditions, whereas low cross correlations are observed among the driving lasers and the local lasers. By randomly perturbing the injection delays with four independent random sequences, the outputs of local SLs can be dynamically synchronized. Extracting the outputs in the synchronization time slots of zero lag and lead lag, synchronous entropy sources are obtained and used to generate keys with high consistency at local ends of Alice and Bob, which are robust to the parameter mismatches of local lasers to some extent. Moreover, large BER is calculated in two types of typical illegal attacks, which demonstrates the security of the proposed scheme. This work proposed a high-level secure key distribution solution to one-time pad communication.
Author Zhang, Qianwu
Qiu, Kun
Wang, Chao
Jiang, Ning
Zhang, Yiqun
Zhao, Anke
Liu, Shiqin
Author_xml – sequence: 1
  givenname: Shiqin
  surname: Liu
  fullname: Liu, Shiqin
– sequence: 2
  givenname: Ning
  orcidid: 0000-0002-5383-7969
  surname: Jiang
  fullname: Jiang, Ning
– sequence: 3
  givenname: Yiqun
  surname: Zhang
  fullname: Zhang, Yiqun
– sequence: 4
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
– sequence: 5
  givenname: Anke
  orcidid: 0000-0003-4381-2415
  surname: Zhao
  fullname: Zhao, Anke
– sequence: 6
  givenname: Kun
  surname: Qiu
  fullname: Qiu, Kun
– sequence: 7
  givenname: Qianwu
  orcidid: 0000-0001-8614-5267
  surname: Zhang
  fullname: Zhang, Qianwu
BookMark eNptkD1PwzAQhi1UJNrCwD_wCEPa2LHjZERV-ZAqdQDmyLEvqktqF9sRCr-elDAgxHTvSc970j0zNLHOAkLXJF2QLGfL7XrBclJycYamJC1ZwtJCTH7lCzQLYZ-mhIlSTFH3DKrzgN-gx9qE6E3dReMsrmUAjYew62tvNFY76QIOvVU776z5lCMF8QPA4gAHo5zVnYrO43bo-gHu6j2oiKPDupMtNva0DrVwic4b2Qa4-plz9Hq_flk9Jpvtw9PqbpMoSkVMRJ6rXNYFI6BJkxHNQdU5a5jMeCmoajjRBS_y4TemWVaUKcszrkBwWlIus2yObsa7R-_eOwixOpigoG2lBdeFigrKaZpRVg7o7Ygq70Lw0FRHbw7S9xVJq5PaaruuRrUDu_zDKhO_hUQvTftP4ws3337-
CitedBy_id crossref_primary_10_1364_OE_545721
crossref_primary_10_3390_electronics13030525
crossref_primary_10_3390_electronics13010239
crossref_primary_10_1364_PRJ_502992
crossref_primary_10_1088_1674_1056_ada7dd
crossref_primary_10_1515_nanoph_2024_0188
crossref_primary_10_1364_OE_506022
crossref_primary_10_1088_1402_4896_ad16c6
Cites_doi 10.1364/OL.42.002507
10.1364/OL.41.004637
10.1109/LPT.2021.3058118
10.1103/PhysRevApplied.13.064014
10.1364/OE.22.006634
10.1103/PhysRevA.103.053524
10.1109/JSTQE.2021.3091901
10.1016/j.optcom.2018.02.057
10.1364/OE.419654
10.1109/JLT.2021.3051407
10.1109/JLT.2019.2920476
10.1103/PhysRevLett.108.070602
10.1103/PhysRevLett.88.174102
10.1103/PhysRevLett.124.070501
10.1016/j.scib.2018.06.017
10.1109/LPT.2016.2581310
10.1016/j.ijleo.2018.10.164
10.1109/TCOMM.2016.2628060
10.7498/aps.67.20181038
10.1364/OL.44.002446
10.1364/OE.403076
10.1364/OL.42.001055
10.1002/j.1538-7305.1949.tb00928.x
10.1007/s11071-021-06391-6
10.1103/PhysRevA.105.043521
10.1364/OE.412068
10.1038/s41377-021-00610-w
10.1364/OE.21.017869
10.1109/JLT.2016.2615870
10.1109/JQE.2007.911687
10.1038/nphoton.2014.149
10.1063/1.1619215
10.1109/JPHOT.2014.2304555
10.1142/S0218127420500273
10.1364/OL.41.001157
10.1364/PRJ.6.000908
10.1364/OE.23.014510
10.1364/OE.22.001713
ContentType Journal Article
DBID AAYXX
CITATION
7X8
DOI 10.1364/OE.461957
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 10_1364_OE_461957
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
7X8
ID FETCH-LOGICAL-c227t-766c6ab841ed1f31d5ecb64f4a35972cf51d85860944d438904635ce752925a33
ISSN 1094-4087
IngestDate Thu Jul 10 19:29:55 EDT 2025
Thu Apr 24 22:51:13 EDT 2025
Tue Jul 01 01:41:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c227t-766c6ab841ed1f31d5ecb64f4a35972cf51d85860944d438904635ce752925a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4381-2415
0000-0001-8614-5267
0000-0002-5383-7969
OpenAccessLink https://doi.org/10.1364/oe.461957
PQID 2725203249
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2725203249
crossref_primary_10_1364_OE_461957
crossref_citationtrail_10_1364_OE_461957
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-29
20220829
PublicationDateYYYYMMDD 2022-08-29
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-29
  day: 29
PublicationDecade 2020
PublicationTitle Optics express
PublicationYear 2022
References Zhong (oe-30-18-32366-R26) 2020; 28
Xue (oe-30-18-32366-R38) 2015; 23
Bandt (oe-30-18-32366-R28) 2002; 88
Gao (oe-30-18-32366-R14) 2021; 10
Argyris (oe-30-18-32366-R3) 2016; 34
Dong (oe-30-18-32366-R19) 2021; 103
Böhm (oe-30-18-32366-R15) 2020; 13
Koizumi (oe-30-18-32366-R8) 2013; 21
Jiang (oe-30-18-32366-R11) 2017; 42
Zhang (oe-30-18-32366-R24) 2022; 28
Chen (oe-30-18-32366-R7) 2020; 124
Jiang (oe-30-18-32366-R12) 2020; 30
Huang (oe-30-18-32366-R32) 2022; 105
Li (oe-30-18-32366-R36) 2019; 44
Li (oe-30-18-32366-R18) 2018; 6
Wang (oe-30-18-32366-R13) 2020; 28
Uchida (oe-30-18-32366-R1) 2003; 83
Liu (oe-30-18-32366-R16) 2018; 63
Rontani (oe-30-18-32366-R30) 2016; 41
Toomey (oe-30-18-32366-R29) 2014; 22
Gao (oe-30-18-32366-R22) 2021; 29
Lo (oe-30-18-32366-R6) 2014; 8
Mu (oe-30-18-32366-R27) 2019; 179
Zhang (oe-30-18-32366-R39) 2018; 67
Shannon (oe-30-18-32366-R2) 1949; 28
Hong (oe-30-18-32366-R21) 2017; 42
Li (oe-30-18-32366-R20) 2021; 104
Xiang (oe-30-18-32366-R33) 2016; 28
Li (oe-30-18-32366-R35) 2014; 22
Xu (oe-30-18-32366-R5) 2018; 418
Li (oe-30-18-32366-R17) 2014; 6
Zhang (oe-30-18-32366-R4) 2021; 33
Xue (oe-30-18-32366-R9) 2016; 65
Jiang (oe-30-18-32366-R31) 2016; 41
Yoshimura (oe-30-18-32366-R10) 2012; 108
Zhao (oe-30-18-32366-R23) 2021; 39
Xiang (oe-30-18-32366-R25) 2019; 37
Bogris (oe-30-18-32366-R37) 2008; 44
References_xml – volume: 42
  start-page: 2507
  year: 2017
  ident: oe-30-18-32366-R21
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.002507
– volume: 41
  start-page: 4637
  year: 2016
  ident: oe-30-18-32366-R30
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.004637
– volume: 33
  start-page: 289
  year: 2021
  ident: oe-30-18-32366-R4
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2021.3058118
– volume: 13
  start-page: 064014
  year: 2020
  ident: oe-30-18-32366-R15
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.13.064014
– volume: 22
  start-page: 6634
  year: 2014
  ident: oe-30-18-32366-R35
  publication-title: Opt. Express
  doi: 10.1364/OE.22.006634
– volume: 103
  start-page: 053524
  year: 2021
  ident: oe-30-18-32366-R19
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.103.053524
– volume: 28
  start-page: 1
  year: 2022
  ident: oe-30-18-32366-R24
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2021.3091901
– volume: 418
  start-page: 41
  year: 2018
  ident: oe-30-18-32366-R5
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2018.02.057
– volume: 29
  start-page: 7904
  year: 2021
  ident: oe-30-18-32366-R22
  publication-title: Opt. Express
  doi: 10.1364/OE.419654
– volume: 39
  start-page: 2288
  year: 2021
  ident: oe-30-18-32366-R23
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2021.3051407
– volume: 37
  start-page: 3987
  year: 2019
  ident: oe-30-18-32366-R25
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2019.2920476
– volume: 108
  start-page: 070602
  year: 2012
  ident: oe-30-18-32366-R10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.070602
– volume: 88
  start-page: 174102
  year: 2002
  ident: oe-30-18-32366-R28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.174102
– volume: 124
  start-page: 070501
  year: 2020
  ident: oe-30-18-32366-R7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.070501
– volume: 63
  start-page: 1034
  year: 2018
  ident: oe-30-18-32366-R16
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2018.06.017
– volume: 28
  start-page: 1988
  year: 2016
  ident: oe-30-18-32366-R33
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2016.2581310
– volume: 179
  start-page: 71
  year: 2019
  ident: oe-30-18-32366-R27
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.10.164
– volume: 65
  start-page: 1
  year: 2016
  ident: oe-30-18-32366-R9
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2016.2628060
– volume: 67
  start-page: 204202
  year: 2018
  ident: oe-30-18-32366-R39
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.67.20181038
– volume: 44
  start-page: 2446
  year: 2019
  ident: oe-30-18-32366-R36
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.002446
– volume: 28
  start-page: 25778
  year: 2020
  ident: oe-30-18-32366-R26
  publication-title: Opt. Express
  doi: 10.1364/OE.403076
– volume: 42
  start-page: 1055
  year: 2017
  ident: oe-30-18-32366-R11
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.001055
– volume: 28
  start-page: 656
  year: 1949
  ident: oe-30-18-32366-R2
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1949.tb00928.x
– volume: 104
  start-page: 2745
  year: 2021
  ident: oe-30-18-32366-R20
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06391-6
– volume: 105
  start-page: 043521
  year: 2022
  ident: oe-30-18-32366-R32
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.105.043521
– volume: 28
  start-page: 37919
  year: 2020
  ident: oe-30-18-32366-R13
  publication-title: Opt. Express
  doi: 10.1364/OE.412068
– volume: 10
  start-page: 172
  year: 2021
  ident: oe-30-18-32366-R14
  publication-title: Light: Sci. Appl.
  doi: 10.1038/s41377-021-00610-w
– volume: 21
  start-page: 17869
  year: 2013
  ident: oe-30-18-32366-R8
  publication-title: Opt. Express
  doi: 10.1364/OE.21.017869
– volume: 34
  start-page: 5325
  year: 2016
  ident: oe-30-18-32366-R3
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2615870
– volume: 44
  start-page: 119
  year: 2008
  ident: oe-30-18-32366-R37
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.2007.911687
– volume: 8
  start-page: 595
  year: 2014
  ident: oe-30-18-32366-R6
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.149
– volume: 83
  start-page: 3213
  year: 2003
  ident: oe-30-18-32366-R1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1619215
– volume: 6
  start-page: 1
  year: 2014
  ident: oe-30-18-32366-R17
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2014.2304555
– volume: 30
  start-page: 2050027
  year: 2020
  ident: oe-30-18-32366-R12
  publication-title: Int. J. Bifurcation Chaos
  doi: 10.1142/S0218127420500273
– volume: 41
  start-page: 1157
  year: 2016
  ident: oe-30-18-32366-R31
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.001157
– volume: 6
  start-page: 908
  year: 2018
  ident: oe-30-18-32366-R18
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.6.000908
– volume: 23
  start-page: 14510
  year: 2015
  ident: oe-30-18-32366-R38
  publication-title: Opt. Express
  doi: 10.1364/OE.23.014510
– volume: 22
  start-page: 1713
  year: 2014
  ident: oe-30-18-32366-R29
  publication-title: Opt. Express
  doi: 10.1364/OE.22.001713
SSID ssj0014797
Score 2.4641163
Snippet We propose and numerically demonstrate a novel secure key distribution (SKD) scheme by using dynamically synchronized semiconductor lasers (SLs) subject to...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 32366
Title Secure key distribution based on hybrid chaos synchronization between semiconductor lasers subject to dual injections
URI https://www.proquest.com/docview/2725203249
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBdbx2CXsU_WfRRt7DAI7mJZsp3jKCmltMklYdnJyJJFXYadzjZsO-xv33uS7CRbDt0uRgghjN5P7-l9E_IehSDTXAbMTFjAzcQEMtEmyE3Cx1JGOtWYKHw5i8-W_HwlVpsUAptd0ubH6ufevJL_oSrMAV0xS_YfKDtsChMwBvrCFygM31vR2BrLixHcQ3S0DL2rRiiaNLoBrn5gQhZm99YNFidQthSuy7wcQrQajI-vKyz8WqMBE_MvR02Xo4UGn6Y2W6usrm3Qljfu-efsfG2rPBff10MkBwb3lJ01ql6VN-WAvfPSW6ZnvbDcNld_KW-6YelnP3kCv71tlQCFduySOQZGCmoj6KZemBZ75jz39V4Zj7J0i5dGLHINWf7i8lHMgTTz6TEH9U8kG1HWu-9n8-x0eXGRLaarxV1yj4EKgd0tLn9NBw8TT1zjnf6ffNUp2PrjsPHuW2VXVNv3x-IReegVB_rJoeAxuVNUT8h9G8Crmqekc1iggAW6jQVqsUBh4LBALRboH1igHgt0BwvUYYF6LNC2pogFusHCM7I8nS5OzgLfUiNQjCVtkMSximWe8rDQoYlCLQqVx9xwGYFmyZQRoU5FGsOpcM3hHmNBOaGKRLAJEzKKnpODqq6KF4QC45dwrUGdNyHPRZ5GRopQGaYl5zKRh-RDf3iZ8vXmse3J18w6UWOezaeZO-dD8m5YunZFVvYtettTIAMWiH4tWRV112QsYYKNQTOYvLzFmlfkwQawr8lB-60r3sDDss2PrEHmyOLkN_RxgUs
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Secure+key+distribution+based+on+hybrid+chaos+synchronization+between+semiconductor+lasers+subject+to+dual+injections&rft.jtitle=Optics+express&rft.au=Liu%2C+Shiqin&rft.au=Jiang%2C+Ning&rft.au=Zhang%2C+Yiqun&rft.au=Wang%2C+Chao&rft.date=2022-08-29&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=30&rft.issue=18&rft.spage=32366&rft_id=info:doi/10.1364%2FOE.461957&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon