DyS-MPADE: A novel multipopulation adaptive differential evolution methodology based on dynamic subpopulation

Differential evolution (DE) is widely recognized in global optimization. However, it is not immune to the issue of premature convergence. To address this challenge, a dynamic subpopulation-based DE algorithm (i.e., DyS-MPADE) is presented in this paper. In DyS-MPADE, spectral hashing clustering is i...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational design and engineering Vol. 12; no. 3; pp. 204 - 225
Main Authors Huang, Chen, Zhu, Junyi, Xu, Mingyao
Format Journal Article
LanguageEnglish
Published Oxford University Press 19.03.2025
한국CDE학회
Subjects
Online AccessGet full text
ISSN2288-5048
2288-4300
2288-5048
DOI10.1093/jcde/qwaf024

Cover

Abstract Differential evolution (DE) is widely recognized in global optimization. However, it is not immune to the issue of premature convergence. To address this challenge, a dynamic subpopulation-based DE algorithm (i.e., DyS-MPADE) is presented in this paper. In DyS-MPADE, spectral hashing clustering is introduced to adaptively adjust the population structure. The innovative approach enhances SHADE’s capacity by balancing exploration and exploitation, thereby improving its convergence properties. The population of DyS-MPADE is decomposed into subpopulations, facilitating independent evolution and emulating geographical separation. The number of subpopulations is dynamically adjusted by clustering analysis of optimal and pessimal individuals. We conducted a thorough evaluation of DyS-MPADE using the CEC 2017 benchmark functions to assess its performance of different dimensions. Compared to DE, adaptive differential evolution with optional external archive (JADE), success-history based parameter adaptation for differential evolution (SHADE), Bernstein-Levy differential evolution algorithm (BDE), Bezier Search Differential Evolution Algorithm (BeSD), Egret swarm optimization algorithm (ESOA), Artificial rabbits optimization (ARO), Sea-horse optimizer (SHO), GRO, and DO, the average ranks of DyS-MPADE are 1.76 and 1.2 in 50 and 100 dimensions, respectively. The accuracy of DyS-MPADE is superior to SHADE and other state-of-the-art DE variants. Additionally, DyS-MPADE is applied to airport gate allocation problem, where it demonstrated better performance compared to other algorithms, indicating its significance for engineering applications. Graphical Abstract Graphical Abstract
AbstractList Differential evolution (DE) is widely recognized in global optimization. However, it is not immune to the issue of premature convergence. To address this challenge, a dynamic subpopulation-based DE algorithm (i.e., DyS-MPADE) is presented in this paper. In DyS-MPADE, spectral hashing clustering is introduced to adaptively adjust the population structure. The innovative approach enhances SHADE’s capacity by balancing exploration and exploitation, thereby improving its convergence properties. The population of DyS-MPADE is decomposed into subpopulations, facilitating independent evolution and emulating geographical separation. The number of subpopulations is dynamically adjusted by clustering analysis of optimal and pessimal individuals. We conducted a thorough evaluation of DyS-MPADE using the CEC 2017 benchmark functions to assess its performance of different dimensions. Compared to DE, adaptive differential evolution with optional external archive (JADE), success-history based parameter adaptation for differential evolution (SHADE), Bernstein-Levy differential evolution algorithm (BDE), Bezier Search Differential Evolution Algorithm (BeSD), Egret swarm optimization algorithm (ESOA), Artificial rabbits optimization (ARO), Sea-horse optimizer (SHO), GRO, and DO, the average ranks of DyS-MPADE are 1.76 and 1.2 in 50 and 100 dimensions, respectively. The accuracy of DyS-MPADE is superior to SHADE and other state-of-the-art DE variants. Additionally, DyS-MPADE is applied to airport gate allocation problem, where it demonstrated better performance compared to other algorithms, indicating its significance for engineering applications.
Differential evolution (DE) is widely recognized in global optimization. However, it is not immune to the issue of premature convergence. To address this challenge, a dynamic subpopulation-based DE algorithm (i.e., DyS-MPADE) is presented in this paper. In DyS-MPADE, spectral hashing clustering is introduced to adaptively adjust the population structure. The innovative approach enhances SHADE’s capacity by balancing exploration and exploitation, thereby improving its convergence properties. The population of DyS-MPADE is decomposed into subpopulations, facilitating independent evolution and emulating geographical separation. The number of subpopulations is dynamically adjusted by clustering analysis of optimal and pessimal individuals. We conducted a thorough evaluation of DyS-MPADE using the CEC 2017 benchmark functions to assess its performance of different dimensions. Compared to DE, adaptive differential evolution with optional external archive (JADE), success-history based parameter adaptation for differential evolution (SHADE), Bernstein-Levy differential evolution algorithm (BDE), Bezier Search Differential Evolution Algorithm (BeSD), Egret swarm optimization algorithm (ESOA), Artificial rabbits optimization (ARO), Sea-horse optimizer (SHO), GRO, and DO, the average ranks of DyS-MPADE are 1.76 and 1.2 in 50 and 100 dimensions, respectively. The accuracy of DyS-MPADE is superior to SHADE and other state-of-the-art DE variants. Additionally, DyS-MPADE is applied to airport gate allocation problem, where it demonstrated better performance compared to other algorithms, indicating its significance for engineering applications. Graphical Abstract Graphical Abstract
Differential evolution (DE) is widely recognized in global optimization. However, it is not immune to the issue of premature convergence. To address this challenge, a dynamic subpopulation-based DE algorithm (i.e., DyS-MPADE) is presented in this paper. In DyS-MPADE, spectral hashing clustering is introduced to adaptively adjust the population structure. The innovative approach enhances SHADE’s capacity by balancing exploration and exploitation, thereby improving its convergence properties. The population of DyS-MPADE is decomposed into subpopulations, facilitating independent evolution and emulating geographical separation. The number of subpopulations is dynamically adjusted by clustering analysis of optimal and pessimal individuals. We conducted a thorough evaluation of DyS-MPADE using the CEC 2017 benchmark functions to assess its performance of different dimensions. Compared to DE, adaptive differential evolution with optional external archive (JADE), success-history based parameter adaptation for differential evolution (SHADE), Bernstein-Levy differential evolution algorithm (BDE), Bezier Search Differential Evolution Algorithm (BeSD), Egret swarm optimization algorithm (ESOA), Artificial rabbits optimization (ARO), Sea-horse optimizer (SHO), GRO, and DO, the average ranks of DyS-MPADE are 1.76 and 1.2 in 50 and 100 dimensions, respectively. The accuracy of DyS-MPADE is superior to SHADE and other state-of-the-art DE variants. Additionally, DyS-MPADE is applied to airport gate allocation problem, where it demonstrated better performance compared to other algorithms, indicating its significance for engineering applications. KCI Citation Count: 0
Author Huang, Chen
Xu, Mingyao
Zhu, Junyi
Author_xml – sequence: 1
  givenname: Chen
  orcidid: 0000-0003-3412-3677
  surname: Huang
  fullname: Huang, Chen
  email: huangchen054@163.com
– sequence: 2
  givenname: Junyi
  surname: Zhu
  fullname: Zhu, Junyi
– sequence: 3
  givenname: Mingyao
  surname: Xu
  fullname: Xu, Mingyao
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003190666$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kEtPwkAUhScGExHZ-QNmZ2KszExb2rojgEqC0SiuJ_O4gwNtp_aB6b-3gImuXJ2be76cxXeOernLAaFLSm4pSfzRRmkYfX4JQ1hwgvqMxbEXkiDu_bnP0LCqNoQQGjGf0KSPsln75j29TGbzOzzBudtBirMmrW3hiiYVtXU5FloUtd0B1tYYKCGvrUgx7FzaHPoM6g-nXerWLZaiAo27p25zkVmFq0b-Tl2gUyPSCoY_OUDv9_PV9NFbPj8sppOlpxiLai80sYzHNGTSaEaDiAVKyziUKhG-DHyqwB-bIE6UBELDSIUQmEgIqSVQCpHxB-j6uJuXhm-V5U7YQ64d35Z88rpacErGScxo0sE3R1iVrqpKMLwobSbKtkP4Xi3fq-U_ajv86oi7pvif_AYna39f
Cites_doi 10.1109/TEVC.2009.2014613
10.1016/j.engappai.2022.105501
10.1016/j.knosys.2019.105008
10.1016/j.asoc.2023.110750
10.1007/s00500-023-09470-5
10.1016/j.eswa.2020.113875
10.1016/j.ins.2024.121091
10.1016/j.asoc.2023.110573
10.1109/TSMCB.2012.2213808
10.1016/j.engappai.2022.105082
10.1007/s10489-021-02629-3
10.1007/s13369-020-05141-x
10.1016/j.asoc.2024.111846
10.1109/CEC.2013.6557555
10.1109/CEC.2018.8477809
10.1109/JSEN.2024.3516124
10.4304/jmm.9.1.35-42
10.1016/j.asoc.2024.112252
10.1093/jcde/qwae081
10.1109/TWC.2024.3479149
10.1016/j.ins.2018.11.021
10.1016/j.applthermaleng.2022.118687
10.1109/TCYB.2013.2239988
10.3390/biomimetics7040144
10.1007/s00521-022-08013-7
10.1016/j.ins.2024.120787
10.1023/A:1008202821328
10.1016/j.engappai.2023.106121
10.1016/j.engappai.2024.108149
10.1007/s13042-019-01053-x
10.1093/jcde/qwae093
10.1093/jcde/qwae046
10.1016/j.knosys.2019.105169
10.1016/j.engappai.2022.105075
10.1007/s10489-022-03994-3
10.1093/jcde/qwae001
10.3934/mbe.2021099
10.1007/s00500-021-06665-6
10.1016/j.ins.2023.119892
10.1016/j.dsm.2021.12.002
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. 2025
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. 2025
DBID TOX
AAYXX
CITATION
ACYCR
DOI 10.1093/jcde/qwaf024
DatabaseName Oxford Journals Open Access Collection
CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2288-5048
EndPage 225
ExternalDocumentID oai_kci_go_kr_ARTI_10698219
10_1093_jcde_qwaf024
10.1093/jcde/qwaf024
GroupedDBID 0R~
4.4
457
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAPXW
AAVAP
AAXUO
AAYWO
ABEJV
ABGNP
ABJCF
ABMAC
ABPTD
ABXVV
ACGFS
ADBBV
ADEZE
ADMLS
ADVLN
AEXQZ
AFKRA
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AMRAJ
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
DWQXO
EBS
EJD
FDB
FRF
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
IGS
IPNFZ
ITC
JDI
KQ8
KSI
M41
M7S
ML0
M~E
O9-
OK1
PHGZM
PHGZT
PIMPY
PTHSS
RIG
ROL
SSZ
TOX
AAYXX
CITATION
PQGLB
ACVFH
ACYCR
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
ID FETCH-LOGICAL-c227t-5f8b86152bfd214724cdb85bc9a3b431ce36f489cbe0157c5e4f7aabdbe11e7f3
IEDL.DBID TOX
ISSN 2288-5048
2288-4300
IngestDate Sun Jun 15 03:10:19 EDT 2025
Tue Aug 05 12:10:22 EDT 2025
Mon May 19 07:15:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords differential evolution
multipopulation
adaptive parameters
dynamic adjustment
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c227t-5f8b86152bfd214724cdb85bc9a3b431ce36f489cbe0157c5e4f7aabdbe11e7f3
ORCID 0000-0003-3412-3677
OpenAccessLink https://dx.doi.org/10.1093/jcde/qwaf024
PageCount 22
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10698219
crossref_primary_10_1093_jcde_qwaf024
oup_primary_10_1093_jcde_qwaf024
PublicationCentury 2000
PublicationDate 2025-03-19
PublicationDateYYYYMMDD 2025-03-19
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-19
  day: 19
PublicationDecade 2020
PublicationTitle Journal of computational design and engineering
PublicationYear 2025
Publisher Oxford University Press
한국CDE학회
Publisher_xml – name: Oxford University Press
– name: 한국CDE학회
References Hashim (2025031914244622000_bib17) 2023; 11
Li (2025031914244622000_bib26) 2024; 23
Mohamed (2025031914244622000_bib30) 2020; 11
Chen (2025031914244622000_bib8) 2022; 7
Zhao (2025031914244622000_bib52) 2023; 53
Meng (2025031914244622000_bib28) 2023; 146
Alawad (2025031914244622000_bib5) 2024; 28
Gong (2025031914244622000_bib15) 2013; 43
Tian (2025031914244622000_bib40) 2020; 188
Gürgen (2025031914244622000_bib16) 2022; 213
Zhu (2025031914244622000_bib57) 2014; 9
Zhang (2025031914244622000_bib49) 2009; 13
Palakonda (2025031914244622000_bib32) 2018
Zhao (2025031914244622000_bib51) 2022; 114
Kahraman (2025031914244622000_bib22) 2020; 190
Öztürk (2025031914244622000_bib31) 2023; 145
Civicioglu (2025031914244622000_bib1) 2021; 165
Deng (2025031914244622000_bib12) 2024; 676
Duta (2025031914244622000_bib14) 2024; 11
Shen (2025031914244622000_bib35) 2024; 133
Lameesa (2025031914244622000_bib25) 2024; 11
Kahraman (2025031914244622000_bib24) 2023; 122
Wang (2025031914244622000_bib41) 2013; 43
Zhu (2025031914244622000_bib58) 2024; 654
Huang (2025031914244622000_bib20) 2024; 167
Duman (2025031914244622000_bib13) 2023; 117
Storn (2025031914244622000_bib37) 1997; 11
Civicioglu (2025031914244622000_bib9) 2023; 35
Zeng (2025031914244622000_bib47) 2024; 163
Tian (2025031914244622000_bib39) 2019; 478
Huang (2025031914244622000_bib18) 2025; 25
Pugliese (2025031914244622000_bib33) 2021; 4
Kahraman (2025031914244622000_bib23) 2022; 52
Sarjamei (2025031914244622000_bib34) 2021
Meng (2025031914244622000_bib29) 2024; 679
Wang (2025031914244622000_bib42) 2022; 114
Zhang (2025031914244622000_bib50) 2024; 11
Alawad (2025031914244622000_bib4) 2021; 46
Zhang (2025031914244622000_bib48) 2021; 18
Abed-alguni (2025031914244622000_bib3) 2022; 26
Tanabe (2025031914244622000_bib38) 2013
References_xml – volume: 13
  start-page: 945
  year: 2009
  ident: 2025031914244622000_bib49
  article-title: JADE: Adaptive differential evolution with optional external archive
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2009.2014613
– volume: 117
  start-page: 105501
  year: 2023
  ident: 2025031914244622000_bib13
  article-title: Economical operation of modern power grids incorporating uncertainties of renewable energy sources and load demand using the adaptive fitness-distance balance-based stochastic fractal search algorithm
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2022.105501
– volume: 188
  start-page: 105008
  year: 2020
  ident: 2025031914244622000_bib40
  article-title: Performance-driven adaptive differential evolution with neighborhood topology for numerical optimization
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.105008
– volume: 146
  start-page: 110750
  year: 2023
  ident: 2025031914244622000_bib28
  article-title: Differential evolution with exponential crossover can be also competitive on numerical optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2023.110750
– volume: 28
  start-page: 5853
  year: 2024
  ident: 2025031914244622000_bib5
  article-title: Improved arithmetic optimization algorithm for patient admission scheduling problem
  publication-title: Soft Computing
  doi: 10.1007/s00500-023-09470-5
– volume: 165
  start-page: 113875
  year: 2021
  ident: 2025031914244622000_bib1
  article-title: Bezier Search Differential Evolution Algorithm for numerical function optimization: a comparative study with CRMLSP, MVO, WA, SHADE and LSHADE
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113875
– volume: 679
  start-page: 121091
  year: 2024
  ident: 2025031914244622000_bib29
  article-title: ACD-DE: An adaptive cluster division differential evolution for mitigating population diversity deficiency
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2024.121091
– volume: 145
  start-page: 110573
  year: 2023
  ident: 2025031914244622000_bib31
  article-title: Meta-heuristic search algorithms in truss optimization: Research on stability and complexity analyses
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2023.110573
– volume: 43
  start-page: 634
  year: 2013
  ident: 2025031914244622000_bib41
  article-title: Gaussian bare-bones differential evolution
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TSMCB.2012.2213808
– volume: 114
  start-page: 105082
  year: 2022
  ident: 2025031914244622000_bib42
  article-title: Artificial rabbits optimization: A new bioinspired meta-heuristic algorithm for solving engineering optimization problems
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2022.105082
– volume: 52
  start-page: 4873
  year: 2022
  ident: 2025031914244622000_bib23
  article-title: Dynamic FDB selection method and its application: Modeling and optimizing of directional overcurrent relays coordination
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-021-02629-3
– volume: 46
  start-page: 3213
  year: 2021
  ident: 2025031914244622000_bib4
  article-title: Discrete island-based cuckoo search with highly disruptive polynomial mutation and opposition-based learning strategy for scheduling of workflow applications in cloud environments
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-020-05141-x
– volume: 163
  start-page: 111846
  year: 2024
  ident: 2025031914244622000_bib47
  article-title: A discrete moth-flame optimization algorithm for multiple automated guided vehicles scheduling problem in a matrix manufacturing workshop
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2024.111846
– start-page: 71
  year: 2013
  ident: 2025031914244622000_bib38
  article-title: Success-history based parameter adaptation for differential evolution
  publication-title: 2013 IEEE Congress on Evolutionary Computation
  doi: 10.1109/CEC.2013.6557555
– start-page: 1
  volume-title: 2018 IEEE Congress on Evolutionary Computation (CEC)
  year: 2018
  ident: 2025031914244622000_bib32
  article-title: Differential evolution with stochastic selection for uncertain environments: A smart grid application
  doi: 10.1109/CEC.2018.8477809
– volume: 25
  start-page: 8470
  year: 2025
  ident: 2025031914244622000_bib18
  article-title: Cooperative path planning of multiple unmanned aerial vehicles using cylinder vector particle swarm optimization with gene targeting
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2024.3516124
– volume: 9
  start-page: 35
  year: 2014
  ident: 2025031914244622000_bib57
  article-title: Indexing algorithm based on improved sparse local sensitive hashing
  publication-title: Journal of Multimedia
  doi: 10.4304/jmm.9.1.35-42
– volume: 167
  start-page: 112252
  year: 2024
  ident: 2025031914244622000_bib20
  article-title: Competitive swarm optimizer with dynamic multi-competitions and convergence accelerator for large-scale optimization problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2024.112252
– volume: 11
  start-page: 222
  year: 2024
  ident: 2025031914244622000_bib50
  article-title: Density-guided and adaptive update strategy for multi-objective particle swarm optimization
  publication-title: Journal of Computational Design and Engineering
  doi: 10.1093/jcde/qwae081
– volume: 23
  start-page: 19098
  year: 2024
  ident: 2025031914244622000_bib26
  article-title: APDPFL: Anti-poisoning attack decentralized privacy enhanced federated learning scheme for flight operation data sharing
  publication-title: IEEE Transactions on Wireless Communications
  doi: 10.1109/TWC.2024.3479149
– volume: 478
  start-page: 422
  year: 2019
  ident: 2025031914244622000_bib39
  article-title: Differential evolution with neighborhood-based adaptive evolution mechanism for numerical optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.11.021
– volume: 213
  start-page: 118687
  year: 2022
  ident: 2025031914244622000_bib16
  article-title: A comprehensive performance analysis of meta-heuristic optimization techniques for effective organic rankine cycle design
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2022.118687
– volume: 43
  start-page: 2066
  year: 2013
  ident: 2025031914244622000_bib15
  article-title: Differential evolution with ranking-based mutation operators
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2013.2239988
– volume: 7
  start-page: 144
  year: 2022
  ident: 2025031914244622000_bib8
  article-title: Egret swarm optimization algorithm: An evolutionary computation approach for model free optimization
  publication-title: Biomimetics
  doi: 10.3390/biomimetics7040144
– volume: 35
  start-page: 6603
  year: 2023
  ident: 2025031914244622000_bib9
  article-title: Bernstein-Levy differential evolution algorithm for numerical function optimization
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-022-08013-7
– volume: 676
  start-page: 120787
  year: 2024
  ident: 2025031914244622000_bib12
  article-title: Quantum differential evolutionary algorithm with quantum-adaptive mutation strategy and population state evaluation framework for high-dimensional problems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2024.120787
– volume: 11
  start-page: 341
  year: 1997
  ident: 2025031914244622000_bib37
  article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– volume: 122
  start-page: 106121
  year: 2023
  ident: 2025031914244622000_bib24
  article-title: Development of the natural survivor method (NSM) for designing an updating mechanism in metaheuristic search algorithms
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2023.106121
– volume: 133
  start-page: 108149
  year: 2024
  ident: 2025031914244622000_bib35
  article-title: Improved differential evolution algorithm based on cooperative multi-population
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2024.108149
– start-page: 291
  volume-title: Gold rush optimization algorithm
  year: 2021
  ident: 2025031914244622000_bib34
– volume: 11
  start-page: 1501
  year: 2020
  ident: 2025031914244622000_bib30
  article-title: Gaining-sharing knowledge based algorithm for solving optimization problems: A novel nature-inspired algorithm
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-019-01053-x
– volume: 11
  start-page: 112
  year: 2024
  ident: 2025031914244622000_bib14
  article-title: An approach to apply the Jaya optimization algorithm to the nesting of irregular patterns
  publication-title: Journal of Computational Design and Engineering
  doi: 10.1093/jcde/qwae093
– volume: 11
  start-page: 223
  year: 2024
  ident: 2025031914244622000_bib25
  article-title: Role of metaheuristic algorithms in healthcare: A comprehensive investigation across clinical diagnosis, medical imaging, operations management, and public health
  publication-title: Journal of Computational Design and Engineering
  doi: 10.1093/jcde/qwae046
– volume: 190
  start-page: 105169
  year: 2020
  ident: 2025031914244622000_bib22
  article-title: Fitness-distance balance (FDB): A new selection method for meta-heuristic search algorithms
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.105169
– volume: 114
  start-page: 105075
  year: 2022
  ident: 2025031914244622000_bib51
  article-title: Dandelion optimizer: A nature-inspired metaheuristic algorithm for engineering applications
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2022.105075
– volume: 53
  start-page: 11833
  year: 2023
  ident: 2025031914244622000_bib52
  article-title: Sea-horse optimizer: A novel nature-inspired meta-heuristic for global optimization problems
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-022-03994-3
– volume: 11
  start-page: 73
  year: 2023
  ident: 2025031914244622000_bib17
  article-title: A new approach for solving global optimization and engineering problems based on modified sea horse optimizer
  publication-title: Journal of Computational Design and Engineering
  doi: 10.1093/jcde/qwae001
– volume: 18
  start-page: 1898
  year: 2021
  ident: 2025031914244622000_bib48
  article-title: Defect reconstruction from magnetic flux leakage measurements employing modified cuckoo search algorithm
  publication-title: Mathematical Biosciences and Engineering
  doi: 10.3934/mbe.2021099
– volume: 26
  start-page: 3293
  year: 2022
  ident: 2025031914244622000_bib3
  article-title: Island-based cuckoo search with elite opposition-based learning and multiple mutation methods for solving optimization problems
  publication-title: Soft Computing
  doi: 10.1007/s00500-021-06665-6
– volume: 654
  start-page: 119892
  year: 2024
  ident: 2025031914244622000_bib58
  article-title: An effective and robust genetic algorithm with hybrid multi-strategy and mechanism for airport gate allocation
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2023.119892
– volume: 4
  start-page: 19
  year: 2021
  ident: 2025031914244622000_bib33
  article-title: Machine learning-based approach: Global trends, research directions, and regulatory standpoints
  publication-title: Data Science and Management
  doi: 10.1016/j.dsm.2021.12.002
SSID ssj0001723019
ssib053376903
Score 2.2990646
Snippet Differential evolution (DE) is widely recognized in global optimization. However, it is not immune to the issue of premature convergence. To address this...
SourceID nrf
crossref
oup
SourceType Open Website
Index Database
Publisher
StartPage 204
SubjectTerms 기계공학
Title DyS-MPADE: A novel multipopulation adaptive differential evolution methodology based on dynamic subpopulation
URI https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003190666
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Computational Design and Engineering , 2025, 12(3), , pp.204-225
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JTwIxFG4UL17cjbiQJupxArNPvRGRoBE1ARJuky6vRsEB2Yz_3lemiBqjp0kmbQ_fvOWb9vV9hJwhA4EKZ9rR4EcOGkXFEbFmjo_UVEXaD3lkLgo376JGJ7jphl3bJGn8yxE-88vPUkH59Y1rTCcYazH_Gntu33eXeykxEmmX2br2n3O-ZZzVbKTzu2xf0kh9i2xY_ker-QfbJiuQ7ZBNywWp9bTxLnmpvbec5gPidEGrNBvMoE_z4r9PxS3KFR-aaEUXKiforX0KM2tNNFeHnu-bU5OtFMWXKpegp-OpWC61Rzr1q_Zlw7HSCI70vHjihDoRCZIRT2hllIa8QCqRhEIy7gvkBBKR10HCpADM97EMIdAx50IJcF2Itb9PCtkggwNCQTGuAQBdHYJA6cTXLiBrQl4j0Mx0kZwv4EuHeQeMND-59lMDc2phLpJTxDbtyafUtKw2z8dB2hulSMyvcXjEEoyORUIR-z8XOvx_yBFZ94wOr6mrY8ekMBlN4QTJwUSUyFq11rxtleY_16W5nXwAWfi_SA
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DyS-MPADE%3A+A+novel+multipopulation+adaptive+differential+evolution+methodology+based+on+dynamic+subpopulation&rft.jtitle=Journal+of+computational+design+and+engineering&rft.au=Huang%2C+Chen&rft.au=Zhu%2C+Junyi&rft.au=Xu%2C+Mingyao&rft.date=2025-03-19&rft.pub=Oxford+University+Press&rft.eissn=2288-5048&rft.volume=12&rft.issue=3&rft.spage=204&rft.epage=225&rft_id=info:doi/10.1093%2Fjcde%2Fqwaf024&rft.externalDocID=10.1093%2Fjcde%2Fqwaf024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2288-5048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2288-5048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2288-5048&client=summon