DyS-MPADE: A novel multipopulation adaptive differential evolution methodology based on dynamic subpopulation
Differential evolution (DE) is widely recognized in global optimization. However, it is not immune to the issue of premature convergence. To address this challenge, a dynamic subpopulation-based DE algorithm (i.e., DyS-MPADE) is presented in this paper. In DyS-MPADE, spectral hashing clustering is i...
Saved in:
Published in | Journal of computational design and engineering Vol. 12; no. 3; pp. 204 - 225 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
19.03.2025
한국CDE학회 |
Subjects | |
Online Access | Get full text |
ISSN | 2288-5048 2288-4300 2288-5048 |
DOI | 10.1093/jcde/qwaf024 |
Cover
Abstract | Differential evolution (DE) is widely recognized in global optimization. However, it is not immune to the issue of premature convergence. To address this challenge, a dynamic subpopulation-based DE algorithm (i.e., DyS-MPADE) is presented in this paper. In DyS-MPADE, spectral hashing clustering is introduced to adaptively adjust the population structure. The innovative approach enhances SHADE’s capacity by balancing exploration and exploitation, thereby improving its convergence properties. The population of DyS-MPADE is decomposed into subpopulations, facilitating independent evolution and emulating geographical separation. The number of subpopulations is dynamically adjusted by clustering analysis of optimal and pessimal individuals. We conducted a thorough evaluation of DyS-MPADE using the CEC 2017 benchmark functions to assess its performance of different dimensions. Compared to DE, adaptive differential evolution with optional external archive (JADE), success-history based parameter adaptation for differential evolution (SHADE), Bernstein-Levy differential evolution algorithm (BDE), Bezier Search Differential Evolution Algorithm (BeSD), Egret swarm optimization algorithm (ESOA), Artificial rabbits optimization (ARO), Sea-horse optimizer (SHO), GRO, and DO, the average ranks of DyS-MPADE are 1.76 and 1.2 in 50 and 100 dimensions, respectively. The accuracy of DyS-MPADE is superior to SHADE and other state-of-the-art DE variants. Additionally, DyS-MPADE is applied to airport gate allocation problem, where it demonstrated better performance compared to other algorithms, indicating its significance for engineering applications.
Graphical Abstract
Graphical Abstract |
---|---|
AbstractList | Differential evolution (DE) is widely recognized in global optimization. However, it is not immune to the issue of premature convergence. To address this challenge, a dynamic subpopulation-based DE algorithm (i.e., DyS-MPADE) is presented in this paper. In DyS-MPADE, spectral hashing clustering is introduced to adaptively adjust the population structure. The innovative approach enhances SHADE’s capacity by balancing exploration and exploitation, thereby improving its convergence properties. The population of DyS-MPADE is decomposed into subpopulations, facilitating independent evolution and emulating geographical separation. The number of subpopulations is dynamically adjusted by clustering analysis of optimal and pessimal individuals. We conducted a thorough evaluation of DyS-MPADE using the CEC 2017 benchmark functions to assess its performance of different dimensions. Compared to DE, adaptive differential evolution with optional external archive (JADE), success-history based parameter adaptation for differential evolution (SHADE), Bernstein-Levy differential evolution algorithm (BDE), Bezier Search Differential Evolution Algorithm (BeSD), Egret swarm optimization algorithm (ESOA), Artificial rabbits optimization (ARO), Sea-horse optimizer (SHO), GRO, and DO, the average ranks of DyS-MPADE are 1.76 and 1.2 in 50 and 100 dimensions, respectively. The accuracy of DyS-MPADE is superior to SHADE and other state-of-the-art DE variants. Additionally, DyS-MPADE is applied to airport gate allocation problem, where it demonstrated better performance compared to other algorithms, indicating its significance for engineering applications. Differential evolution (DE) is widely recognized in global optimization. However, it is not immune to the issue of premature convergence. To address this challenge, a dynamic subpopulation-based DE algorithm (i.e., DyS-MPADE) is presented in this paper. In DyS-MPADE, spectral hashing clustering is introduced to adaptively adjust the population structure. The innovative approach enhances SHADE’s capacity by balancing exploration and exploitation, thereby improving its convergence properties. The population of DyS-MPADE is decomposed into subpopulations, facilitating independent evolution and emulating geographical separation. The number of subpopulations is dynamically adjusted by clustering analysis of optimal and pessimal individuals. We conducted a thorough evaluation of DyS-MPADE using the CEC 2017 benchmark functions to assess its performance of different dimensions. Compared to DE, adaptive differential evolution with optional external archive (JADE), success-history based parameter adaptation for differential evolution (SHADE), Bernstein-Levy differential evolution algorithm (BDE), Bezier Search Differential Evolution Algorithm (BeSD), Egret swarm optimization algorithm (ESOA), Artificial rabbits optimization (ARO), Sea-horse optimizer (SHO), GRO, and DO, the average ranks of DyS-MPADE are 1.76 and 1.2 in 50 and 100 dimensions, respectively. The accuracy of DyS-MPADE is superior to SHADE and other state-of-the-art DE variants. Additionally, DyS-MPADE is applied to airport gate allocation problem, where it demonstrated better performance compared to other algorithms, indicating its significance for engineering applications. Graphical Abstract Graphical Abstract Differential evolution (DE) is widely recognized in global optimization. However, it is not immune to the issue of premature convergence. To address this challenge, a dynamic subpopulation-based DE algorithm (i.e., DyS-MPADE) is presented in this paper. In DyS-MPADE, spectral hashing clustering is introduced to adaptively adjust the population structure. The innovative approach enhances SHADE’s capacity by balancing exploration and exploitation, thereby improving its convergence properties. The population of DyS-MPADE is decomposed into subpopulations, facilitating independent evolution and emulating geographical separation. The number of subpopulations is dynamically adjusted by clustering analysis of optimal and pessimal individuals. We conducted a thorough evaluation of DyS-MPADE using the CEC 2017 benchmark functions to assess its performance of different dimensions. Compared to DE, adaptive differential evolution with optional external archive (JADE), success-history based parameter adaptation for differential evolution (SHADE), Bernstein-Levy differential evolution algorithm (BDE), Bezier Search Differential Evolution Algorithm (BeSD), Egret swarm optimization algorithm (ESOA), Artificial rabbits optimization (ARO), Sea-horse optimizer (SHO), GRO, and DO, the average ranks of DyS-MPADE are 1.76 and 1.2 in 50 and 100 dimensions, respectively. The accuracy of DyS-MPADE is superior to SHADE and other state-of-the-art DE variants. Additionally, DyS-MPADE is applied to airport gate allocation problem, where it demonstrated better performance compared to other algorithms, indicating its significance for engineering applications. KCI Citation Count: 0 |
Author | Huang, Chen Xu, Mingyao Zhu, Junyi |
Author_xml | – sequence: 1 givenname: Chen orcidid: 0000-0003-3412-3677 surname: Huang fullname: Huang, Chen email: huangchen054@163.com – sequence: 2 givenname: Junyi surname: Zhu fullname: Zhu, Junyi – sequence: 3 givenname: Mingyao surname: Xu fullname: Xu, Mingyao |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003190666$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kEtPwkAUhScGExHZ-QNmZ2KszExb2rojgEqC0SiuJ_O4gwNtp_aB6b-3gImuXJ2be76cxXeOernLAaFLSm4pSfzRRmkYfX4JQ1hwgvqMxbEXkiDu_bnP0LCqNoQQGjGf0KSPsln75j29TGbzOzzBudtBirMmrW3hiiYVtXU5FloUtd0B1tYYKCGvrUgx7FzaHPoM6g-nXerWLZaiAo27p25zkVmFq0b-Tl2gUyPSCoY_OUDv9_PV9NFbPj8sppOlpxiLai80sYzHNGTSaEaDiAVKyziUKhG-DHyqwB-bIE6UBELDSIUQmEgIqSVQCpHxB-j6uJuXhm-V5U7YQ64d35Z88rpacErGScxo0sE3R1iVrqpKMLwobSbKtkP4Xi3fq-U_ajv86oi7pvif_AYna39f |
Cites_doi | 10.1109/TEVC.2009.2014613 10.1016/j.engappai.2022.105501 10.1016/j.knosys.2019.105008 10.1016/j.asoc.2023.110750 10.1007/s00500-023-09470-5 10.1016/j.eswa.2020.113875 10.1016/j.ins.2024.121091 10.1016/j.asoc.2023.110573 10.1109/TSMCB.2012.2213808 10.1016/j.engappai.2022.105082 10.1007/s10489-021-02629-3 10.1007/s13369-020-05141-x 10.1016/j.asoc.2024.111846 10.1109/CEC.2013.6557555 10.1109/CEC.2018.8477809 10.1109/JSEN.2024.3516124 10.4304/jmm.9.1.35-42 10.1016/j.asoc.2024.112252 10.1093/jcde/qwae081 10.1109/TWC.2024.3479149 10.1016/j.ins.2018.11.021 10.1016/j.applthermaleng.2022.118687 10.1109/TCYB.2013.2239988 10.3390/biomimetics7040144 10.1007/s00521-022-08013-7 10.1016/j.ins.2024.120787 10.1023/A:1008202821328 10.1016/j.engappai.2023.106121 10.1016/j.engappai.2024.108149 10.1007/s13042-019-01053-x 10.1093/jcde/qwae093 10.1093/jcde/qwae046 10.1016/j.knosys.2019.105169 10.1016/j.engappai.2022.105075 10.1007/s10489-022-03994-3 10.1093/jcde/qwae001 10.3934/mbe.2021099 10.1007/s00500-021-06665-6 10.1016/j.ins.2023.119892 10.1016/j.dsm.2021.12.002 |
ContentType | Journal Article |
Copyright | The Author(s) 2025. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. 2025 |
Copyright_xml | – notice: The Author(s) 2025. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. 2025 |
DBID | TOX AAYXX CITATION ACYCR |
DOI | 10.1093/jcde/qwaf024 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2288-5048 |
EndPage | 225 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10698219 10_1093_jcde_qwaf024 10.1093/jcde/qwaf024 |
GroupedDBID | 0R~ 4.4 457 5VS AAEDT AAEDW AAIKJ AALRI AAPXW AAVAP AAXUO AAYWO ABEJV ABGNP ABJCF ABMAC ABPTD ABXVV ACGFS ADBBV ADEZE ADMLS ADVLN AEXQZ AFKRA AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMNDL AMRAJ AZQEC BCNDV BENPR BGLVJ CCPQU DWQXO EBS EJD FDB FRF GNUQQ GROUPED_DOAJ H13 HCIFZ IAO IGS IPNFZ ITC JDI KQ8 KSI M41 M7S ML0 M~E O9- OK1 PHGZM PHGZT PIMPY PTHSS RIG ROL SSZ TOX AAYXX CITATION PQGLB ACVFH ACYCR ADCNI AEUPX AFPUW AIGII AKBMS AKYEP |
ID | FETCH-LOGICAL-c227t-5f8b86152bfd214724cdb85bc9a3b431ce36f489cbe0157c5e4f7aabdbe11e7f3 |
IEDL.DBID | TOX |
ISSN | 2288-5048 2288-4300 |
IngestDate | Sun Jun 15 03:10:19 EDT 2025 Tue Aug 05 12:10:22 EDT 2025 Mon May 19 07:15:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | differential evolution multipopulation adaptive parameters dynamic adjustment |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c227t-5f8b86152bfd214724cdb85bc9a3b431ce36f489cbe0157c5e4f7aabdbe11e7f3 |
ORCID | 0000-0003-3412-3677 |
OpenAccessLink | https://dx.doi.org/10.1093/jcde/qwaf024 |
PageCount | 22 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10698219 crossref_primary_10_1093_jcde_qwaf024 oup_primary_10_1093_jcde_qwaf024 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-19 |
PublicationDateYYYYMMDD | 2025-03-19 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-19 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | Journal of computational design and engineering |
PublicationYear | 2025 |
Publisher | Oxford University Press 한국CDE학회 |
Publisher_xml | – name: Oxford University Press – name: 한국CDE학회 |
References | Hashim (2025031914244622000_bib17) 2023; 11 Li (2025031914244622000_bib26) 2024; 23 Mohamed (2025031914244622000_bib30) 2020; 11 Chen (2025031914244622000_bib8) 2022; 7 Zhao (2025031914244622000_bib52) 2023; 53 Meng (2025031914244622000_bib28) 2023; 146 Alawad (2025031914244622000_bib5) 2024; 28 Gong (2025031914244622000_bib15) 2013; 43 Tian (2025031914244622000_bib40) 2020; 188 Gürgen (2025031914244622000_bib16) 2022; 213 Zhu (2025031914244622000_bib57) 2014; 9 Zhang (2025031914244622000_bib49) 2009; 13 Palakonda (2025031914244622000_bib32) 2018 Zhao (2025031914244622000_bib51) 2022; 114 Kahraman (2025031914244622000_bib22) 2020; 190 Öztürk (2025031914244622000_bib31) 2023; 145 Civicioglu (2025031914244622000_bib1) 2021; 165 Deng (2025031914244622000_bib12) 2024; 676 Duta (2025031914244622000_bib14) 2024; 11 Shen (2025031914244622000_bib35) 2024; 133 Lameesa (2025031914244622000_bib25) 2024; 11 Kahraman (2025031914244622000_bib24) 2023; 122 Wang (2025031914244622000_bib41) 2013; 43 Zhu (2025031914244622000_bib58) 2024; 654 Huang (2025031914244622000_bib20) 2024; 167 Duman (2025031914244622000_bib13) 2023; 117 Storn (2025031914244622000_bib37) 1997; 11 Civicioglu (2025031914244622000_bib9) 2023; 35 Zeng (2025031914244622000_bib47) 2024; 163 Tian (2025031914244622000_bib39) 2019; 478 Huang (2025031914244622000_bib18) 2025; 25 Pugliese (2025031914244622000_bib33) 2021; 4 Kahraman (2025031914244622000_bib23) 2022; 52 Sarjamei (2025031914244622000_bib34) 2021 Meng (2025031914244622000_bib29) 2024; 679 Wang (2025031914244622000_bib42) 2022; 114 Zhang (2025031914244622000_bib50) 2024; 11 Alawad (2025031914244622000_bib4) 2021; 46 Zhang (2025031914244622000_bib48) 2021; 18 Abed-alguni (2025031914244622000_bib3) 2022; 26 Tanabe (2025031914244622000_bib38) 2013 |
References_xml | – volume: 13 start-page: 945 year: 2009 ident: 2025031914244622000_bib49 article-title: JADE: Adaptive differential evolution with optional external archive publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2009.2014613 – volume: 117 start-page: 105501 year: 2023 ident: 2025031914244622000_bib13 article-title: Economical operation of modern power grids incorporating uncertainties of renewable energy sources and load demand using the adaptive fitness-distance balance-based stochastic fractal search algorithm publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2022.105501 – volume: 188 start-page: 105008 year: 2020 ident: 2025031914244622000_bib40 article-title: Performance-driven adaptive differential evolution with neighborhood topology for numerical optimization publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.105008 – volume: 146 start-page: 110750 year: 2023 ident: 2025031914244622000_bib28 article-title: Differential evolution with exponential crossover can be also competitive on numerical optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2023.110750 – volume: 28 start-page: 5853 year: 2024 ident: 2025031914244622000_bib5 article-title: Improved arithmetic optimization algorithm for patient admission scheduling problem publication-title: Soft Computing doi: 10.1007/s00500-023-09470-5 – volume: 165 start-page: 113875 year: 2021 ident: 2025031914244622000_bib1 article-title: Bezier Search Differential Evolution Algorithm for numerical function optimization: a comparative study with CRMLSP, MVO, WA, SHADE and LSHADE publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113875 – volume: 679 start-page: 121091 year: 2024 ident: 2025031914244622000_bib29 article-title: ACD-DE: An adaptive cluster division differential evolution for mitigating population diversity deficiency publication-title: Information Sciences doi: 10.1016/j.ins.2024.121091 – volume: 145 start-page: 110573 year: 2023 ident: 2025031914244622000_bib31 article-title: Meta-heuristic search algorithms in truss optimization: Research on stability and complexity analyses publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2023.110573 – volume: 43 start-page: 634 year: 2013 ident: 2025031914244622000_bib41 article-title: Gaussian bare-bones differential evolution publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TSMCB.2012.2213808 – volume: 114 start-page: 105082 year: 2022 ident: 2025031914244622000_bib42 article-title: Artificial rabbits optimization: A new bioinspired meta-heuristic algorithm for solving engineering optimization problems publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2022.105082 – volume: 52 start-page: 4873 year: 2022 ident: 2025031914244622000_bib23 article-title: Dynamic FDB selection method and its application: Modeling and optimizing of directional overcurrent relays coordination publication-title: Applied Intelligence doi: 10.1007/s10489-021-02629-3 – volume: 46 start-page: 3213 year: 2021 ident: 2025031914244622000_bib4 article-title: Discrete island-based cuckoo search with highly disruptive polynomial mutation and opposition-based learning strategy for scheduling of workflow applications in cloud environments publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-020-05141-x – volume: 163 start-page: 111846 year: 2024 ident: 2025031914244622000_bib47 article-title: A discrete moth-flame optimization algorithm for multiple automated guided vehicles scheduling problem in a matrix manufacturing workshop publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2024.111846 – start-page: 71 year: 2013 ident: 2025031914244622000_bib38 article-title: Success-history based parameter adaptation for differential evolution publication-title: 2013 IEEE Congress on Evolutionary Computation doi: 10.1109/CEC.2013.6557555 – start-page: 1 volume-title: 2018 IEEE Congress on Evolutionary Computation (CEC) year: 2018 ident: 2025031914244622000_bib32 article-title: Differential evolution with stochastic selection for uncertain environments: A smart grid application doi: 10.1109/CEC.2018.8477809 – volume: 25 start-page: 8470 year: 2025 ident: 2025031914244622000_bib18 article-title: Cooperative path planning of multiple unmanned aerial vehicles using cylinder vector particle swarm optimization with gene targeting publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2024.3516124 – volume: 9 start-page: 35 year: 2014 ident: 2025031914244622000_bib57 article-title: Indexing algorithm based on improved sparse local sensitive hashing publication-title: Journal of Multimedia doi: 10.4304/jmm.9.1.35-42 – volume: 167 start-page: 112252 year: 2024 ident: 2025031914244622000_bib20 article-title: Competitive swarm optimizer with dynamic multi-competitions and convergence accelerator for large-scale optimization problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2024.112252 – volume: 11 start-page: 222 year: 2024 ident: 2025031914244622000_bib50 article-title: Density-guided and adaptive update strategy for multi-objective particle swarm optimization publication-title: Journal of Computational Design and Engineering doi: 10.1093/jcde/qwae081 – volume: 23 start-page: 19098 year: 2024 ident: 2025031914244622000_bib26 article-title: APDPFL: Anti-poisoning attack decentralized privacy enhanced federated learning scheme for flight operation data sharing publication-title: IEEE Transactions on Wireless Communications doi: 10.1109/TWC.2024.3479149 – volume: 478 start-page: 422 year: 2019 ident: 2025031914244622000_bib39 article-title: Differential evolution with neighborhood-based adaptive evolution mechanism for numerical optimization publication-title: Information Sciences doi: 10.1016/j.ins.2018.11.021 – volume: 213 start-page: 118687 year: 2022 ident: 2025031914244622000_bib16 article-title: A comprehensive performance analysis of meta-heuristic optimization techniques for effective organic rankine cycle design publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2022.118687 – volume: 43 start-page: 2066 year: 2013 ident: 2025031914244622000_bib15 article-title: Differential evolution with ranking-based mutation operators publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2013.2239988 – volume: 7 start-page: 144 year: 2022 ident: 2025031914244622000_bib8 article-title: Egret swarm optimization algorithm: An evolutionary computation approach for model free optimization publication-title: Biomimetics doi: 10.3390/biomimetics7040144 – volume: 35 start-page: 6603 year: 2023 ident: 2025031914244622000_bib9 article-title: Bernstein-Levy differential evolution algorithm for numerical function optimization publication-title: Neural Computing and Applications doi: 10.1007/s00521-022-08013-7 – volume: 676 start-page: 120787 year: 2024 ident: 2025031914244622000_bib12 article-title: Quantum differential evolutionary algorithm with quantum-adaptive mutation strategy and population state evaluation framework for high-dimensional problems publication-title: Information Sciences doi: 10.1016/j.ins.2024.120787 – volume: 11 start-page: 341 year: 1997 ident: 2025031914244622000_bib37 article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – volume: 122 start-page: 106121 year: 2023 ident: 2025031914244622000_bib24 article-title: Development of the natural survivor method (NSM) for designing an updating mechanism in metaheuristic search algorithms publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2023.106121 – volume: 133 start-page: 108149 year: 2024 ident: 2025031914244622000_bib35 article-title: Improved differential evolution algorithm based on cooperative multi-population publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2024.108149 – start-page: 291 volume-title: Gold rush optimization algorithm year: 2021 ident: 2025031914244622000_bib34 – volume: 11 start-page: 1501 year: 2020 ident: 2025031914244622000_bib30 article-title: Gaining-sharing knowledge based algorithm for solving optimization problems: A novel nature-inspired algorithm publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-019-01053-x – volume: 11 start-page: 112 year: 2024 ident: 2025031914244622000_bib14 article-title: An approach to apply the Jaya optimization algorithm to the nesting of irregular patterns publication-title: Journal of Computational Design and Engineering doi: 10.1093/jcde/qwae093 – volume: 11 start-page: 223 year: 2024 ident: 2025031914244622000_bib25 article-title: Role of metaheuristic algorithms in healthcare: A comprehensive investigation across clinical diagnosis, medical imaging, operations management, and public health publication-title: Journal of Computational Design and Engineering doi: 10.1093/jcde/qwae046 – volume: 190 start-page: 105169 year: 2020 ident: 2025031914244622000_bib22 article-title: Fitness-distance balance (FDB): A new selection method for meta-heuristic search algorithms publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.105169 – volume: 114 start-page: 105075 year: 2022 ident: 2025031914244622000_bib51 article-title: Dandelion optimizer: A nature-inspired metaheuristic algorithm for engineering applications publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2022.105075 – volume: 53 start-page: 11833 year: 2023 ident: 2025031914244622000_bib52 article-title: Sea-horse optimizer: A novel nature-inspired meta-heuristic for global optimization problems publication-title: Applied Intelligence doi: 10.1007/s10489-022-03994-3 – volume: 11 start-page: 73 year: 2023 ident: 2025031914244622000_bib17 article-title: A new approach for solving global optimization and engineering problems based on modified sea horse optimizer publication-title: Journal of Computational Design and Engineering doi: 10.1093/jcde/qwae001 – volume: 18 start-page: 1898 year: 2021 ident: 2025031914244622000_bib48 article-title: Defect reconstruction from magnetic flux leakage measurements employing modified cuckoo search algorithm publication-title: Mathematical Biosciences and Engineering doi: 10.3934/mbe.2021099 – volume: 26 start-page: 3293 year: 2022 ident: 2025031914244622000_bib3 article-title: Island-based cuckoo search with elite opposition-based learning and multiple mutation methods for solving optimization problems publication-title: Soft Computing doi: 10.1007/s00500-021-06665-6 – volume: 654 start-page: 119892 year: 2024 ident: 2025031914244622000_bib58 article-title: An effective and robust genetic algorithm with hybrid multi-strategy and mechanism for airport gate allocation publication-title: Information Sciences doi: 10.1016/j.ins.2023.119892 – volume: 4 start-page: 19 year: 2021 ident: 2025031914244622000_bib33 article-title: Machine learning-based approach: Global trends, research directions, and regulatory standpoints publication-title: Data Science and Management doi: 10.1016/j.dsm.2021.12.002 |
SSID | ssj0001723019 ssib053376903 |
Score | 2.2990646 |
Snippet | Differential evolution (DE) is widely recognized in global optimization. However, it is not immune to the issue of premature convergence. To address this... |
SourceID | nrf crossref oup |
SourceType | Open Website Index Database Publisher |
StartPage | 204 |
SubjectTerms | 기계공학 |
Title | DyS-MPADE: A novel multipopulation adaptive differential evolution methodology based on dynamic subpopulation |
URI | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003190666 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Computational Design and Engineering , 2025, 12(3), , pp.204-225 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JTwIxFG4UL17cjbiQJupxArNPvRGRoBE1ARJuky6vRsEB2Yz_3lemiBqjp0kmbQ_fvOWb9vV9hJwhA4EKZ9rR4EcOGkXFEbFmjo_UVEXaD3lkLgo376JGJ7jphl3bJGn8yxE-88vPUkH59Y1rTCcYazH_Gntu33eXeykxEmmX2br2n3O-ZZzVbKTzu2xf0kh9i2xY_ker-QfbJiuQ7ZBNywWp9bTxLnmpvbec5gPidEGrNBvMoE_z4r9PxS3KFR-aaEUXKiforX0KM2tNNFeHnu-bU5OtFMWXKpegp-OpWC61Rzr1q_Zlw7HSCI70vHjihDoRCZIRT2hllIa8QCqRhEIy7gvkBBKR10HCpADM97EMIdAx50IJcF2Itb9PCtkggwNCQTGuAQBdHYJA6cTXLiBrQl4j0Mx0kZwv4EuHeQeMND-59lMDc2phLpJTxDbtyafUtKw2z8dB2hulSMyvcXjEEoyORUIR-z8XOvx_yBFZ94wOr6mrY8ekMBlN4QTJwUSUyFq11rxtleY_16W5nXwAWfi_SA |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DyS-MPADE%3A+A+novel+multipopulation+adaptive+differential+evolution+methodology+based+on+dynamic+subpopulation&rft.jtitle=Journal+of+computational+design+and+engineering&rft.au=Huang%2C+Chen&rft.au=Zhu%2C+Junyi&rft.au=Xu%2C+Mingyao&rft.date=2025-03-19&rft.pub=Oxford+University+Press&rft.eissn=2288-5048&rft.volume=12&rft.issue=3&rft.spage=204&rft.epage=225&rft_id=info:doi/10.1093%2Fjcde%2Fqwaf024&rft.externalDocID=10.1093%2Fjcde%2Fqwaf024 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2288-5048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2288-5048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2288-5048&client=summon |