A Review on Application of Artificial Intelligence Techniques in Microgrids
A microgrid can be formed by the integration of different components such as loads, renewable/conventional units, and energy storage systems in a local area. Microgrids with the advantages of being flexible, environmentally friendly, and self-sufficient can improve the power system performance metri...
Saved in:
Published in | IEEE journal of emerging and selected topics in industrial electronics (Print) Vol. 3; no. 4; pp. 878 - 890 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A microgrid can be formed by the integration of different components such as loads, renewable/conventional units, and energy storage systems in a local area. Microgrids with the advantages of being flexible, environmentally friendly, and self-sufficient can improve the power system performance metrics such as resiliency and reliability. However, the design and implementation of microgrids are always faced with different challenges considering the uncertainties associated with loads and renewable energy resources, sudden load variations, energy management of several energy resources, etc. Therefore, it is required to employ such rapid and accurate methods, as artificial intelligence (AI) techniques, to address these challenges and improve the MG's efficiency, stability, security, and reliability. Utilization of AI helps to develop systems as intelligent as humans to learn, decide, and solve problems. This article presents a review on different applications of AI-based techniques in microgrids such as energy management, load and generation forecasting, protection, power electronics control, and cyber security. Different AI tasks such as regression and classification in microgrids are discussed using methods including machine learning, artificial neural networks, fuzzy logic, support vector machines, etc. The advantages, limitation, and future trends of AI applications in microgrids are discussed. |
---|---|
AbstractList | A microgrid can be formed by the integration of different components such as loads, renewable/conventional units, and energy storage systems in a local area. Microgrids with the advantages of being flexible, environmentally friendly, and self-sufficient can improve the power system performance metrics such as resiliency and reliability. However, the design and implementation of microgrids are always faced with different challenges considering the uncertainties associated with loads and renewable energy resources, sudden load variations, energy management of several energy resources, etc. Therefore, it is required to employ such rapid and accurate methods, as artificial intelligence (AI) techniques, to address these challenges and improve the MG's efficiency, stability, security, and reliability. Utilization of AI helps to develop systems as intelligent as humans to learn, decide, and solve problems. This article presents a review on different applications of AI-based techniques in microgrids such as energy management, load and generation forecasting, protection, power electronics control, and cyber security. Different AI tasks such as regression and classification in microgrids are discussed using methods including machine learning, artificial neural networks, fuzzy logic, support vector machines, etc. The advantages, limitation, and future trends of AI applications in microgrids are discussed. |
Author | Mohammadi, Ebrahim Alizadeh, Mojtaba Wang, Xiaoyu Asgarimoghaddam, Mohsen Simoes, Marcelo Godoy |
Author_xml | – sequence: 1 givenname: Ebrahim orcidid: 0000-0002-7960-5007 surname: Mohammadi fullname: Mohammadi, Ebrahim email: e.mohamadi66@gmail.com organization: Department of Electronics, Carleton University, Ottawa, ON, Canada – sequence: 2 givenname: Mojtaba surname: Alizadeh fullname: Alizadeh, Mojtaba email: mjt.alizadeh@gmail.com organization: Department of Electronics, Carleton University, Ottawa, ON, Canada – sequence: 3 givenname: Mohsen orcidid: 0000-0002-2005-6242 surname: Asgarimoghaddam fullname: Asgarimoghaddam, Mohsen email: mohsenasgarimoghadd@cmail.carleton.ca organization: Department of Electronics, Carleton University, Ottawa, ON, Canada – sequence: 4 givenname: Xiaoyu surname: Wang fullname: Wang, Xiaoyu email: xiaoyuwang3@cunet.carleton.ca organization: Department of Electronics, Carleton University, Ottawa, ON, Canada – sequence: 5 givenname: Marcelo Godoy orcidid: 0000-0003-4124-061X surname: Simoes fullname: Simoes, Marcelo Godoy email: marcelo.godoy.simoes@uwasa.fi organization: Department of Electrical Engineering, University of Vaasa, Vaasa, Finland |
BookMark | eNqFkM1OwzAQhC1UJErpE_QSiXOKf2P7GFUFCkVIUM6W42yKq5AEJwXx9qQE9cCF0652d3ZG3zkaVXUFCM0InhOC9dXd8nmzWs4ppnTOiFYC8xM0pomSsZacjY49E2do2rY7jDEVhBLMx-g-jZ7gw8NnVFdR2jSld7bzfV8XURo6X3jnbRmtqg7K0m-hchBtwL1W_n0PbeSr6MG7UG-Dz9sLdFrYsoXpb52gl-vlZnEbrx9vVot0HTtKZReLDCR2GYPcKsVyUiQgk34CWKrMSkcynXHKcmCQKMDABdWEZ5ZzpQWRBZugy-FvE-pDis7s6n2oektDJZFEaJ7g_ooNV328tg1QmCb4Nxu-DMHmAM4M4MwBnPkF16v0H5Xz3Q-RLlhf_qOdDVoPAEe3fieUYOwbPl19bg |
CitedBy_id | crossref_primary_10_1016_j_prime_2024_100520 crossref_primary_10_1016_j_rser_2023_114088 crossref_primary_10_1016_j_heliyon_2024_e39131 crossref_primary_10_1049_rpg2_13138 crossref_primary_10_1109_ACCESS_2023_3345795 crossref_primary_10_1109_ACCESS_2024_3440885 crossref_primary_10_1109_TII_2024_3441249 crossref_primary_10_3390_en17091999 crossref_primary_10_3390_su15118952 crossref_primary_10_3390_en17205186 crossref_primary_10_1109_JESTIE_2023_3332573 crossref_primary_10_1109_TIE_2023_3245220 crossref_primary_10_1016_j_procs_2024_05_008 crossref_primary_10_1109_JESTIE_2023_3246932 crossref_primary_10_1049_cmu2_12864 crossref_primary_10_1109_ACCESS_2023_3289887 crossref_primary_10_1109_JAS_2023_123657 crossref_primary_10_1109_JESTIE_2022_3208513 crossref_primary_10_1007_s11517_024_03042_x crossref_primary_10_1016_j_epsr_2022_108997 crossref_primary_10_1109_OJIES_2023_3290169 crossref_primary_10_1007_s40518_024_00233_w crossref_primary_10_1109_JESTIE_2023_3345791 crossref_primary_10_3390_su16124959 crossref_primary_10_1109_TIM_2024_3457964 crossref_primary_10_1109_JESTIE_2024_3425670 crossref_primary_10_1016_j_dajour_2023_100230 crossref_primary_10_1109_ACCESS_2024_3429347 crossref_primary_10_1109_JESTIE_2023_3327052 crossref_primary_10_1016_j_apenergy_2023_120771 crossref_primary_10_1016_j_segan_2024_101304 crossref_primary_10_1038_s41598_024_63775_5 crossref_primary_10_1109_JESTIE_2023_3331230 crossref_primary_10_3390_en17194883 crossref_primary_10_3390_fi15020083 crossref_primary_10_3390_su15010284 crossref_primary_10_1109_TPEL_2025_3526246 crossref_primary_10_1016_j_rineng_2024_103033 crossref_primary_10_1016_j_egyr_2024_11_061 crossref_primary_10_3390_en17071571 crossref_primary_10_1016_j_esr_2024_101446 crossref_primary_10_1109_JESTIE_2023_3258339 crossref_primary_10_1016_j_epsr_2024_111075 crossref_primary_10_1016_j_rineng_2025_104398 crossref_primary_10_1016_j_seta_2024_103749 crossref_primary_10_1038_s41598_024_57610_0 crossref_primary_10_1109_JESTIE_2023_3327049 crossref_primary_10_1080_15567249_2023_2294869 crossref_primary_10_1109_OJIA_2023_3338534 crossref_primary_10_3390_su16104111 crossref_primary_10_3390_en17163947 crossref_primary_10_1016_j_est_2024_111654 crossref_primary_10_1109_TIE_2023_3317835 crossref_primary_10_1109_ACCESS_2024_3358412 crossref_primary_10_3390_inventions8010041 crossref_primary_10_1016_j_ijepes_2023_109730 crossref_primary_10_1016_j_epsr_2023_109792 crossref_primary_10_1109_JESTIE_2023_3324524 crossref_primary_10_1109_JESTIE_2023_3345804 crossref_primary_10_1016_j_ecmx_2024_100820 |
Cites_doi | 10.1109/TDSC.2021.3118636 10.3390/electronics10161914 10.1109/TPWRS.2021.3121673 10.1007/s40565-018-0398-0 10.1016/j.enconman.2018.11.074 10.1109/EEEIC.2017.7977738 10.1109/ACCESS.2019.2923006 10.1109/TSG.2019.2933413 10.1109/TIA.2009.2031786 10.1109/ACCESS.2019.2937222 10.1109/ACCESS.2021.3092748 10.1109/ACCESS.2020.3003568 10.1109/TSG.2018.2859360 10.1109/TPWRS.2010.2055902 10.1109/ACCESS.2020.3019562 10.1109/TPWRS.2018.2823641 10.1109/ISGT-Europe47291.2020.9248786 10.1109/TSG.2017.2672881 10.1016/j.procs.2015.04.160 10.1016/j.egypro.2017.05.231 10.1016/j.rser.2019.109524 10.17775/CSEEJPES.2020.04120 10.1016/j.ijepes.2017.11.045 10.1109/JESTPE.2020.2968243 10.1109/JSYST.2021.3086145 10.1109/EPEPEMC.2018.8521896 10.3390/smartcities4020029 10.1109/TSG.2020.3010510 10.1109/EnergyEconomics.2015.7235063 10.1109/JSAC.2019.2952182 10.3390/app9183854 10.1109/TPWRS.2003.821457 10.1016/j.aej.2021.07.037 10.1109/PESGM41954.2020.9282137 10.1109/JSYST.2016.2614723 10.1109/ISGT-Asia.2018.8467835 10.1109/TPEL.2020.3024914 10.1016/j.rser.2020.109899 10.1109/JSYST.2014.2341597 10.3390/en13092149 10.1109/TSG.2017.2703842 10.1109/TSG.2016.2555245 10.1109/TPWRS.2017.2746379 10.1109/TPWRS.2019.2922671 10.1016/j.rser.2014.05.045 10.17775/CSEEJPES.2018.00520 10.1109/IYCE.2017.8003734 10.1109/ACCESS.2021.3074460 10.1109/TPEL.2007.911799 10.1109/ICPR48806.2021.9413093 10.1109/ACCESS.2019.2909267 10.1109/IECON.1995.483450 10.1109/JSEN.2020.3027778 10.1109/TCSII.2020.3011324 10.1109/TPWRS.2013.2269803 10.5152/electrica.2020.19034 10.1109/OJIA.2020.3034608 10.1109/ICPESYS.2017.8215914 10.1109/TPWRS.2018.2794541 10.1109/TPEL.2016.2514370 10.1016/j.jclepro.2019.118983 10.3390/app10165649 10.1016/j.segan.2020.100413 10.1049/iet-gtd.2018.6230 10.1080/15325008.2015.1070384 10.17775/CSEEJPES.2020.04970 10.1109/ACCESS.2020.3048586 10.1109/KST.2013.6512797 10.1109/JSYST.2015.2422253 10.1109/ACCESS.2018.2873712 10.3390/electronics9061030 10.1109/NAPS50074.2021.9449635 10.1109/TSTE.2014.2300150 10.1109/TPEL.2011.2169685 10.1109/JSAC.2019.2951964 10.1109/TPWRS.2019.2941162 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/JESTIE.2022.3198504 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2687-9743 |
EndPage | 890 |
ExternalDocumentID | 10_1109_JESTIE_2022_3198504 9855853 |
Genre | orig-research |
GroupedDBID | 0R~ 97E AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE JAVBF OCL RIA RIE AAYXX CITATION 7SP 8FD L7M |
ID | FETCH-LOGICAL-c227t-5be70cb3eda883d1f6e7670ce078ba7c1b9b423de3e68e0e452914ba4489517f3 |
IEDL.DBID | RIE |
ISSN | 2687-9735 |
IngestDate | Mon Jun 30 04:51:26 EDT 2025 Tue Jul 01 00:56:33 EDT 2025 Thu Apr 24 22:54:47 EDT 2025 Wed Aug 27 02:18:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c227t-5be70cb3eda883d1f6e7670ce078ba7c1b9b423de3e68e0e452914ba4489517f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4124-061X 0000-0002-7960-5007 0000-0002-2005-6242 |
PQID | 2717159460 |
PQPubID | 5075792 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_JESTIE_2022_3198504 proquest_journals_2717159460 crossref_primary_10_1109_JESTIE_2022_3198504 ieee_primary_9855853 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE journal of emerging and selected topics in industrial electronics (Print) |
PublicationTitleAbbrev | JESTIE |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 gu (ref8) 2019; 6 ref44 ref43 ref49 hekimo?lu (ref63) 2020; 20 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref75 ref31 ref74 ref30 ref77 ref33 ref76 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref66 ref22 ref65 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref75 doi: 10.1109/TDSC.2021.3118636 – ident: ref67 doi: 10.3390/electronics10161914 – ident: ref14 doi: 10.1109/TPWRS.2021.3121673 – ident: ref28 doi: 10.1007/s40565-018-0398-0 – ident: ref35 doi: 10.1016/j.enconman.2018.11.074 – ident: ref53 doi: 10.1109/EEEIC.2017.7977738 – ident: ref12 doi: 10.1109/ACCESS.2019.2923006 – ident: ref39 doi: 10.1109/TSG.2019.2933413 – ident: ref24 doi: 10.1109/TIA.2009.2031786 – ident: ref33 doi: 10.1109/ACCESS.2019.2937222 – ident: ref16 doi: 10.1109/ACCESS.2021.3092748 – ident: ref3 doi: 10.1109/ACCESS.2020.3003568 – ident: ref45 doi: 10.1109/TSG.2018.2859360 – ident: ref31 doi: 10.1109/TPWRS.2010.2055902 – ident: ref32 doi: 10.1109/ACCESS.2020.3019562 – ident: ref27 doi: 10.1109/TPWRS.2018.2823641 – ident: ref22 doi: 10.1109/ISGT-Europe47291.2020.9248786 – ident: ref52 doi: 10.1109/TSG.2017.2672881 – ident: ref30 doi: 10.1016/j.procs.2015.04.160 – ident: ref55 doi: 10.1016/j.egypro.2017.05.231 – ident: ref41 doi: 10.1016/j.rser.2019.109524 – ident: ref49 doi: 10.17775/CSEEJPES.2020.04120 – ident: ref43 doi: 10.1016/j.ijepes.2017.11.045 – ident: ref70 doi: 10.1109/JESTPE.2020.2968243 – ident: ref68 doi: 10.1109/JSYST.2021.3086145 – ident: ref57 doi: 10.1109/EPEPEMC.2018.8521896 – ident: ref7 doi: 10.3390/smartcities4020029 – ident: ref74 doi: 10.1109/TSG.2020.3010510 – ident: ref58 doi: 10.1109/EnergyEconomics.2015.7235063 – ident: ref37 doi: 10.1109/JSAC.2019.2952182 – ident: ref9 doi: 10.3390/app9183854 – ident: ref17 doi: 10.1109/TPWRS.2003.821457 – ident: ref62 doi: 10.1016/j.aej.2021.07.037 – ident: ref4 doi: 10.1109/PESGM41954.2020.9282137 – ident: ref10 doi: 10.1109/JSYST.2016.2614723 – ident: ref56 doi: 10.1109/ISGT-Asia.2018.8467835 – ident: ref11 doi: 10.1109/TPEL.2020.3024914 – ident: ref2 doi: 10.1016/j.rser.2020.109899 – ident: ref1 doi: 10.1109/JSYST.2014.2341597 – ident: ref42 doi: 10.3390/en13092149 – ident: ref69 doi: 10.1109/TSG.2017.2703842 – ident: ref25 doi: 10.1109/TSG.2016.2555245 – ident: ref18 doi: 10.1109/TPWRS.2017.2746379 – ident: ref13 doi: 10.1109/TPWRS.2019.2922671 – ident: ref65 doi: 10.1016/j.rser.2014.05.045 – ident: ref5 doi: 10.17775/CSEEJPES.2018.00520 – ident: ref29 doi: 10.1109/IYCE.2017.8003734 – ident: ref21 doi: 10.1109/ACCESS.2021.3074460 – ident: ref23 doi: 10.1109/TPEL.2007.911799 – ident: ref50 doi: 10.1109/ICPR48806.2021.9413093 – ident: ref47 doi: 10.1109/ACCESS.2019.2909267 – ident: ref59 doi: 10.1109/IECON.1995.483450 – volume: 6 start-page: 384 year: 2019 ident: ref8 article-title: Hierarchical control of DC microgrids robustness and smartness publication-title: CSEE J Power Energy Syst – ident: ref71 doi: 10.1109/JSEN.2020.3027778 – ident: ref72 doi: 10.1109/TCSII.2020.3011324 – ident: ref38 doi: 10.1109/TPWRS.2013.2269803 – volume: 20 start-page: 19 year: 2020 ident: ref63 article-title: Optimally designed PID controller for a DC-DC buck converter via a hybrid whale optimization algorithm with simulated annealing publication-title: Electr Des doi: 10.5152/electrica.2020.19034 – ident: ref46 doi: 10.1109/OJIA.2020.3034608 – ident: ref73 doi: 10.1109/ICPESYS.2017.8215914 – ident: ref36 doi: 10.1109/TPWRS.2018.2794541 – ident: ref66 doi: 10.1109/TPEL.2016.2514370 – ident: ref64 doi: 10.1016/j.jclepro.2019.118983 – ident: ref77 doi: 10.3390/app10165649 – ident: ref19 doi: 10.1016/j.segan.2020.100413 – ident: ref54 doi: 10.1049/iet-gtd.2018.6230 – ident: ref44 doi: 10.1080/15325008.2015.1070384 – ident: ref48 doi: 10.17775/CSEEJPES.2020.04970 – ident: ref20 doi: 10.1109/ACCESS.2020.3048586 – ident: ref60 doi: 10.1109/KST.2013.6512797 – ident: ref26 doi: 10.1109/JSYST.2015.2422253 – ident: ref40 doi: 10.1109/ACCESS.2018.2873712 – ident: ref6 doi: 10.3390/electronics9061030 – ident: ref76 doi: 10.1109/NAPS50074.2021.9449635 – ident: ref34 doi: 10.1109/TSTE.2014.2300150 – ident: ref61 doi: 10.1109/TPEL.2011.2169685 – ident: ref51 doi: 10.1109/JSAC.2019.2951964 – ident: ref15 doi: 10.1109/TPWRS.2019.2941162 |
SSID | ssj0002512104 |
Score | 2.485442 |
Snippet | A microgrid can be formed by the integration of different components such as loads, renewable/conventional units, and energy storage systems in a local area.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 878 |
SubjectTerms | Artificial intelligence Artificial intelligence (AI) Artificial neural networks control cyber security Cybersecurity Distributed generation Electrical loads Energy management Energy resources Energy sources Energy storage Fuzzy logic Load fluctuation load forecasting (LF) Machine learning machine learning (ML) microgrid (MG) Microgrids Performance measurement Power system reliability Power system stability Power systems protection Reliability Storage systems Support vector machines |
Title | A Review on Application of Artificial Intelligence Techniques in Microgrids |
URI | https://ieeexplore.ieee.org/document/9855853 https://www.proquest.com/docview/2717159460 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH8BTnrwC40omh48MujWrd2OxGAAgxch4basWzFEsxkYF_96X7sPiRrjbVnapunrx-_X9_p7AHcikoiCXWEJHmiCIqXlS5vrKMLEZnzFuLnvmD3x8cKdLr1lA3r1WxillAk-U339aXz5SRbv9FXZIPA9RLesCU0kbsVbrfo-RZ_TtskW6HBcN4FgXikyZNNgMB09zycjpIOOgywV2ykTs1UHkcms8mM7NmfMwzHMqt4VoSWv_V0u-_HHN-HG_3b_BI5KsEmGxew4hYZKz-BwT4KwDY9DUrgHSJaS4Zc3m2QrU68QmCCTPeVOMq90X7dknZKZDul72ayT7TksHkbz-7FVJliwYscRueVJJWgsmUoi32eJveJKcPyjEDfISMS2DCTCrUQxxX1FlXbS2q6MkNIhMBMrdgGtNEvVJRAa-V7E0OzUQ0yAoAVbFIGv1ej8QFCnA0412mFcqo_rJBhvoWEhNAgLE4XaRGFpog706krvhfjG38XbetDrouV4d6BbmTUsF-g2dJDGIpJzOb36vdY1HOi2i7i9LrTyzU7dIP7I5a2ZeJ9XVNK6 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADr4IoFPDA2LRJnNjJWKFWfS-0UrcoTlxUgRLUx8Kv5-w8QIAQWxT5nMRn577znb8DeOChQBTscIMzXzkoQhiesJjKIowtypaU6f2OyZT1585w4S4q0CzPwkgpdfKZbKlLHcuP02intsravuciuqV7sI9237Wy01rljoqy1JauF2gzXDk-p25OM2SZfnvYfZoNuugQ2jb6qdhTXpqtMEW6tsqPH7K2Mr0TmBTvlyWXvLR2W9GK3r9RN_73A07hOIebpJPNjzOoyOQcjr6QENZg1CFZgICkCel8xrNJutRyGcUEGXzh7iSzgvl1Q1YJmaikvuf1Kt5cwLzXnT32jbzEghHZNt8arpDcjASVceh5NLaWTHKGdyQiBxHyyBK-QMAVSyqZJ02pwrSWI0J06hCa8SW9hGqSJvIKiBl6bkhR8aaLqABhC_bIfU_x0Xk-N-062MVoB1HOP67KYLwG2g8x_SBTUaBUFOQqqkOzFHrL6Df-bl5Tg142zce7Do1CrUG-RDeBjY4sYjmHmde_S93DQX82GQfjwXR0A4fqOVkWXwOq2_VO3iIa2Yo7PQk_AIN81gM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+on+Application+of+Artificial+Intelligence+Techniques+in+Microgrids&rft.jtitle=IEEE+journal+of+emerging+and+selected+topics+in+industrial+electronics+%28Print%29&rft.au=Mohammadi%2C+Ebrahim&rft.au=Alizadeh%2C+Mojtaba&rft.au=Asgarimoghaddam%2C+Mohsen&rft.au=Wang%2C+Xiaoyu&rft.date=2022-10-01&rft.issn=2687-9735&rft.eissn=2687-9743&rft.volume=3&rft.issue=4&rft.spage=878&rft.epage=890&rft_id=info:doi/10.1109%2FJESTIE.2022.3198504&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JESTIE_2022_3198504 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2687-9735&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2687-9735&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2687-9735&client=summon |